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Abstract 

The work reported in the paper analyses the adventitious stridor breath sound (ST) and the 
normal bronchial breath sound (BR) using spectral, fractal, and nonlinear signal processing 
methods. The sixty breath sound signals are subjected to power spectral density (PSD) and 
wavelet analyses to understand the temporal evolution of the frequency components. The energy 
envelope of the PSD plot of ST shows three peaks labeled as A (256 Hz), B (369 Hz), and C 
(540 Hz), of which A alone is present in BR at 265 Hz. The appearance of B and C in the PSD 
plot of ST is due to the obstructions in the trachea and upper airways caused by lesions. The 
phase portrait analysis of the time series data of ST and BR gives information about the 
dynamical system's randomness and sample entropy. The study reveals that the fractal 
dimension and sample entropy values are higher for BR, which may be due to the musical 
ordered behavior of ST. The machine learning techniques based on the features extracted from 
the PSD data and phase portrait parameters offer good predictability, besides the classification 
of BR and ST, thereby revealing its potential in pulmonary auscultation. 
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1. Introduction 

Our environment is the storehouse of essential elements for our living and harmful 
microorganisms like viruses, fungi, and bacteria. These microorganisms and aerosol pollutants 
cause chronic respiratory tract diseases in humans and other living organisms (Monto & 
Fukuda, 2020). Asthma, tuberculosis, lung cancer, chronic obstructive pulmonary disease, and 
acute lower respiratory tract infections are the five respiratory tract diseases among the top most 
common causes of death (Li et al., 2020). Therefore, there is a need for accurate and earlier 
detection methods to decrease the number of deaths and health burdens caused by respiratory 
tract diseases. Breath sounds heard at specific locations on the respiratory tract carry 
information about various health conditions (Gavriely et al., 1981; Debbal & Bereksi-Reguig, 
2008). The friction between the airway walls and the turbulent airflow in the respiratory tract 
during respiration is the primary cause of breath sounds. In addition, the glottis and airflow 
from a narrow to a broader region also produce breath sounds (Jones, 1995). Auscultation is the 
primary method that analyses breath sounds to diagnose and monitor different respiratory tract 
diseases. The main two groups of breath sounds are normal and adventitious breath sounds 
(Bohadana et al., 2014). 
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 Normal breath sounds like vesicular and bronchial breath sounds are heard over the 
respiratory tract during normal functioning. The bronchial breath sounds (BR) are auscultated 
over the large airways – trachea (Bohadana et al., 2014; Andrès et al., 2018). The bronchial 
sounds are louder and high-pitched relative to the vesicular breaths sounds auscultated over the 
lung periphery. The respiratory tract problems like infection, obstruction, inflammation, asthma 
and others perturb the normal breath sounds and become adventitious. Crackles, stridor, pleural 
rub, rhonchi, and wheezing are the familiar adventitious breath sounds (Sarkar et al., 2015; 
Pramono et al., 2017). Among the adventitious signals, stridor breath sound (ST) is a high-
pitched, musical sound formed due to the turbulent airflow through the narrowed segment of 
the upper airways of the respiratory tract like trachea, glottis, subglottis, or supraglottis. Stridor 
sound can be heard during inspiration, expiration, or respiration (biphasic). Stridor sound is 
heard while inspiration due to the upper airway obstruction caused by the extrathoracic 
laryngomalacia and vocal cord lesion. Due to the intrathoracic tracheomalacia and 
bronchomalacia lesions, the upper airway obstruction is responsible for the stridor sound during 
expiration. Stridor breath sounds heard during respiration (both inspiration and expiration – 
biphasic) are due to the upper airway obstruction due to fixed lesions such as laryngeal mass or 
web, croup, and others. Stridor breath sounds can be auscultated over the upper airways or even 
be heard without a stethoscope (Pfleger & Eber, 2016; Udupi & Prabhakar, 2016).   

Stridor breath sounds can occur at any age. The presence of ST is more in children because 
of their softer and narrow respiratory tract (Gray et al., 1985; Leiberman et al., 1986). The 
removal of the tracheal tube (extubation) from patients in ventilator care can damage the upper 
airways, resulting in the development of ST (Pluijms et al., 2015). Thus, the ST is an indicator 
of several respiratory conditions that leads to upper airway obstruction in the respiratory tract. 
The analysis of breath sounds like ST using computer-aided digital techniques, which 
eliminates the shortcomings of the conventional auscultation like inter listener variability, could 
make the auscultation accurate, faster, and automatic (Debbal & Bereksi-Reguig, 2008; Gurung 
et al., 2011). Breath sounds are nonstationary time series signals formed by the pressure 
variations due to the passage of turbulent air through the respiratory tract (Bohadana et al., 
2014). The pressure variations contain several frequency components related to the mechanism 
of sound production, which can be studied using the Fourier transform technique employing a 
Fast Fourier transform (FFT) algorithm. The FFT analysis only gives information about the 
frequency components present in the signal but not about their temporal details. The time of 
occurrence of a particular frequency and its temporal evolution can be studied using wavelet 
analysis (Gavriely et al., 1981; Polat & Guler, 2004; Debbal & Bereksi-Reguig, 2008). The 
turbulent airflow through the respiratory tract can be considered a dynamic system.  

Nonlinear time series analysis is a proven nonlinear signal processing tool to unveil the 
underlying dynamics using phase portrait, maximal Lyapunov exponent, and sample entropy. 
The phase portrait analysis reconstructs the attractor of the dynamical system using the time lag 
and embedding dimension, which gives a geometrical representation of the system's dynamics. 
Maximal Lyapunov exponent of a system measures the divergence of two attractor points with 
time, thus providing information about the degree of predictability. The sample entropy 
quantifies the disorder or uncertainty of a time series, thereby giving information about the 
complexity of the underlying dynamical system (Kantz & Schreiber, 2003; Raj et al., 2020). 
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The self-affine nature and complexity of the breath sound signals can be probed and quantified 
by estimating the fractal dimension through fractal analysis (Kenkel & Walker, 1996). The box-
counting method, which counts the number of boxes to fill the pattern at different box sizes, is 
an easy and effective method for estimating the fractal dimension (Swapna et al., 2020). Hurst 
exponent, calculated from the fractal dimension, classifies the signal based on its nature of 
randomness (García & Requena, 2019).  

Automatic and fast diagnosis of disease from different biomedical signals like a heartbeat, 
lung sounds, electrocardiogram (ECG), and others using machine learning techniques (MLTs) 
is now essential for clinical monitoring. The MLTs rely on statistics and learning algorithms to 
develop models to classify and cluster data. The two machine learning approaches for 
biomedical signals are supervised and unsupervised. The supervised approach learns the 
similarity within the classes and boundaries between the types from labeled datasets and then 
predicts new input datasets. However, in the unsupervised approach, the machine groups or 
clusters the unlabelled data by finding the similarities and boundaries using statistical theories. 
The unsupervised principal component analysis (PCA) is a linear transformation tool based on 
dimensionality reduction used for grouping breath sound signals without labeling the dataset 
(Jolliffe & Cadima, 2016; Husson et al., 2017). The commonly used supervised MLTs for the 
classification of biomedical signals are Linear discriminant analysis (LDA), Quadratic 
discriminant analysis (QDA), support vector machines (SVMs), and k-nearest neighbor (KNN). 

The Linear discriminant analysis (LDA) is a multivariate classification and dimensionality 
reduction technique. Unlike PCA, LDA maximizes the separability between the classes, using 
a linear decision boundary (Wallace et al., 1997). The QDA is another MLT similar to the LDA 
but with a quadratic border. The SVM classifies the classes by constructing linear hyperplanes 
that create maximum separation in higher dimensional spaces (Colak et al., 2016). The original 
data is nonlinearly mapped into higher dimensions using appropriate kernel functions like 
linear, quadratic, cubic, fine Gaussian, medium Gaussian, and coarse Gaussian. KNN is a robust 
and straightforward non-parametric lazy learning algorithm-based MLT for nonlinear systems. 
The KNN algorithm searches for courses with majority neighbors among the k nearest 
neighbors to classify a data point to a class. There are different types of KNN based on the k-
value, distance metric, and weight of the neighboring points (Noble, 2006; Subasi, 2019; M. S. 
Swapna et al., 2021). The present study aims to develop novel digital auscultation techniques 
for ST breath sounds, integrating the principles of mathematics, statistics, and computer-aided 
machine learning.  

2. Materials and methods 

The progress in biomedical signal processing has given us many tools for the rapid and accurate 
analysis of biomedical signals like electrocardiograms, electroencephalograms, breath sounds, 
and others. Digital audio signals of sixty ST (30) and BR (30) from various sound repositories 
are investigated in the present work (Easyauscultation, 2021; EMTprep, 2021; Medzcool, 
2021). The time-domain signal is generated from the digital data using which its wavelet and 
fast Fourier transform are found for unveiling the nature and peculiarities of the path of airflow 
through the respiratory tract. The time-domain signal x(t) at a time t can be converted into 
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Fourier transformed complex signal X(f) of frequency f using Equation (1) (Debbal & Bereksi-
Reguig, 2008). 
 
𝑋(𝑓) = ∫𝑥(𝑡)𝑒!"#$%𝑑𝑡     (1) 

The power spectral density (PSD) function, proportional to the square of the magnitude of 
the Fourier transformed signal X(f), gives the power distribution over its frequency 
components. The PSD function of a signal of length N, given by Equation (2), can be used to 
study the presence of a frequency component, its spread, and magnitude (Bahoura, 2009). The 
spectral signatures of various signals estimated using the PSD function could help classify 
signals. However, the temporal characteristics of the frequency component cannot be studied 
using the PSD function, which is overcome through wavelet analysis. 

𝑃𝑆𝐷	(𝑓) = |'($)|!

*
,  (2) 

Wavelet analysis employs a fixed-function called mother wavelet (𝜑), translated through the 
time series signal to generate the wavelets. The mother wavelet function used in the present 
study is the Morse wavelet, suitable for time-varying amplitude and frequency signals. The 
wavelet analysis could estimate the dominant frequency and its magnitude at a particular instant 
(Debbal & Bereksi-Reguig, 2008). The wavelet transform of a continuous time-series signal is 
given by Equation (3). 

𝑊+𝑓(𝑠, 𝜏) = ∫ 𝑥(𝑡). 𝑠,-/"𝜑	0
,	0 5%,1

2
6𝑑𝑡  (3) 

where s and 𝜏 are the scale and translation parameters, respectively. 
The turbulent airflow through the respiratory tract makes the breath sound nonlinear. 

Nonlinear time series analysis is a proven tool to unveil the nonlinearity in the data, which 
reflects the complexity of the underlying dynamics. The phase portrait gives the visual 
representation of the system's dynamics in the phase plane. The parameters time lag and 
embedding dimension are required to reconstruct phase portrait from the time series, which can 
be computed using the R software. Time lag (l) is the time separation between the uncorrelated 
data points, and embedding dimension (m) is the number of independent coordinates required 
for specifying a complex system. According to the method of delays, using the values of l and 
m for a time series (xn), the phase portrait can be drawn using the vector given in Equation (4) 
(Kantz & Schreiber, 2003). 

 
𝒙𝐧 =	 8𝑥4,(5,-)6 , 𝑥(4,(5,")6), …… , 𝑥4:    (4) 

R software is employed for finding the coordinates of the phase portrait. The time lag, 
embedding dimension, and coordinates of the phase portrait are estimated using functions in 
the 'nonlinear series' package. The 'time-lag' function employing the nonlinear average mutual 
information function algorithm finds the time lag. The 'estimatingEmbeddingDim' function 
employing Cao's algorithm finds the embedding dimension (Cao, 1997). From the value of l 
and m, the coordinates of phase portrait are generated according to Equation (4), employing the 
'buildTakens' function.  
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The complexity of the dynamics of a nonlinear system can also be studied by estimating the 
maximal Lyapunov exponent (λ) (Ahlstrom et al., 2006). The value of λ, pointing to the 
system's complexity, measures average exponential variation in the separation between two 
neighboring phase points in a phase portrait. If there is a divergence between the trajectories, 
the value of λ is positive, indicating the system's sensitivity to the initial condition. The negative 
value of λ points to convergence between the trajectories. The separation between two-phase 
points at time t (δZt) and t=0 (𝛿𝑍7) are related, as given in Equation (5) (Kantz & Schreiber, 
2003).  

 

|δZ%| ≈ 	 𝑒8%|𝛿𝑍7|   (5) 
 
The slope of 𝑙𝑜𝑔 9:"

;<#
 vs. t plot gives the value of λ. The value of λ in the present study is 

estimated using the function 'maxLyapunov', employing Equation (5) in the nonlinear series 
package of R software. Sample entropy (S) is another statistical tool based on information 
theory that measures the uncertainty in a time series. The correlation sum C(r) for a radius r and 
embedding dimension m and m+1 is used to estimate the value of S using Equation (6) (Chen 
et al., 2019). The value of S for a particular dimension is its average value for different r. The 
'sampleEntropy' function in the nonlinear series package of R is used to estimate S using 
Equation (6). 

 

𝑆 = 	ln	 5 =$(>)
=$%&(>)

6                                                                                                                     (6) 

 
For investigating the self-affinity of the breath sound signal, fractal analysis is done by 

estimating the fractal dimension (D) and Hurst exponent (H). The signals originating from 
systems with complex dynamics also have a fractal nature (Mandelbrot, 1982). Box counting 
method, which counts the number of boxes occupied by the fractal pattern at different scales, 
is a simple and effective method for estimating D. In this method, the number of boxes N(ε) 
containing the signal at different box sizes ε is counted. The slope of the 𝑙𝑜𝑔𝑁(𝜀) vs. log	(-

?
) 

plot gives the value of D (Gneiting et al., 2012). The package 'fractaldim' in the R software 
employs the function 'fd.estim.boxcount’ is used to estimating D. The Hurst exponent H = 2 – 
D is calculated using the value of D (Kenkel et al., 1996). Depending on the value of H, the 
time series is classified into (i) antipersistent (0≤H<0.5), (ii) random (H ~ 0.5) and (iii) 
persistent (0.5<H≤1) (García & Requena, 2019). 

Principal component analysis (PCA) is a tool to decrease the dimensionality of a given 
dataset, conserving its variance for grouping into identical clusters. The PSD value is nearly 
equal for datasets with exact spectral features, enabling PSD to be a vital component for 
grouping. Features are selected by dividing the frequency range between 100 Hz and 1000 Hz 
into n parts (n = 26) and finding the mean PSD value of each piece. The packages ‘FactoMineR’ 
and ‘factoextra’ in R software are employed for the PCA analysis using the extracted 26 features 
(Moses, 2015; Jolliffe & Cadima, 2016; Husson et al., 2017). 
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Computer-based automated classifiers are required to classify lung sounds rapidly in real-
time. The accuracy of classification mainly depends on the selected method and features. The 
present work employs supervised MLTs like LDA, QDA, SVM, and KNN to classify BR and 
ST signals. For supervised MLTs, the phase portrait parameters such as D, S, λ, l and m, which 
represent the nonlinear properties of the movement, are selected as the variables or predictors. 
The accuracy and sensitivity of the classification are analyzed from the confusion matrix (CM). 
The CM gives an overall view of the actual values and predicted values by providing the four 
fundamental values – True Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN). The TP and TN represent the number of correctly predicted positive and 
negative values, respectively. The FP represents the number of negative values wrongly 
predicted as positive, and FN represents the number of positive values wrongly expected as 
unfavorable. Based on the values of TN, TP, FP, and FN from CM, the statistical parameters of 
MLT (accuracy, precision, specificity, sensitivity, and error rate) can be evaluated. A 
classification technique's accuracy (A) gives its overall effectiveness in giving exact 
predictions. A value can be assessed by dividing the number of samples predicted accurately 
by the entire pieces considered, as shown in Equation (7) (Amin et al., 2015; Swapna et al., 
2021). 

 
𝐴 = (@AB@*)

(@ABCAB@*BC*)
	                                (7) 

  
The true-positive rate (TPR) or sensitivity is the ratio of accurate positive predictions to the 

total positive cases. Equation (8) gives the value of TPR. 
 
𝑇𝑃𝑅 = 	 @A

@ABC*
                              (8) 

 
The true-negative rate (TNR) or specificity gives the total number of accurate negative 

predictions relative to the actual total negatives (Equation (9)). The high value of sensitivity 
and specificity points to the high efficiency of an MLT on a particular data set. The total number 
of accurate positive predictions relative to the whole positive predictions is the positive 
predictive value (PPV) or precision of an MLT (Equation (10)). The inefficiency of an MLT 
can be evaluated by finding the error rate (ER) using Equation (11). The ER value represents 
the number of wrong predictions relative to the whole samples considered. 

Along with the CM, the Receiver Operating Characteristic (ROC) curve also gives 
information about the effectiveness of MLT used. The area under the ROC plot measures 
distinguishability between the classes. The classification Learner app in the Matlab software is 
utilized to perform MLTs (Subasi, 2019). 

 
𝑇𝑁𝑅 = 	 @*

@*BCA
                             (9) 

𝑃𝑃𝑉 = 	 @A
@ABCA

                            (10) 

𝐸𝑅 = 	 (CAB@*)
(@ABCAB@*BC*)

                                                                                                    (11) 
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3. Results and discussion 

Computerized digital auscultation and signal processing techniques are becoming a quantitative 
and accurate tool for diagnosing respiratory tract diseases. The time-series spectrum of the lung 
sound gives information about the lung condition buried in it. Among the 60 breath signals, BR 
and ST, representative signals are shown in Figures 1a and 1b, respectively, with a portion of 
each signal enlarged (Figures 1c and 1d). The duration of the inspiration and expiration phases 
is almost similar, and there is a distinct pause between the phases in the time domain signal of 
BR and ST. The loudness of ST and BR is due to the turbulent airflow through the large-
diameter region of the respiratory tract (Bohadana et al., 2014). In ST, the constricted area, due 
to lesion, introduces turbulence and modulation in the signal (Udupi & Prabhakar,2016). The 
discontinuous, noisy nature of the BR is evident from Figure 1c. The musical and sinusoidal 
nature of the ST is visible in the magnified time-domain signal of ST (Figure 1d) (Barker & 
Elphick,  2018). The time-domain signal of ST also contains regions, a combination of two 
modulated signals. The ST signal, continuing for more than 250 ms without interruption, 
reveals its inherent continuous nature (Andrès et al., 2018). 

The turbulent flow of air through the respiratory tract with varying diameter produces a 
spectrum of frequencies, whose spread, intensity, and number of components gives valuable 
information about the condition of the airways. A representative normalized power spectral 
density (PSD) plot with an energy envelope, drawn using the FFT data, of the BR and ST during 
respiration is shown in Figure 2. Several frequency components of higher intensity are visible 
from the normalized PSD plot of BR and ST (Figure 2). The higher degree of freedom of the 
air passing through the trachea and upper airways of a larger cross-section is responsible for the 
number of frequency components in BR and ST. A comparison of Figures 2a and 2b show many 
frequency components of high intensity in BR spread over a limited frequency range of 200 Hz 
(150 Hz to 350 Hz). In the case of ST shown in Figure 2b, the span of frequency distribution 
ranges from 215 Hz to 580 Hz, with very few frequency components of high intensity. The 
lesser number of high intense frequency components in ST agrees well with the literature report 
of its musical nature. The wider frequency band in ST can be attributed to the non-uniformity 
in the trachea and upper airways cross-sectional area due to the lesion (Udupi & Prabhakar, 
2016). The airflow velocity through the constricted regions is more significant than that of other 
standard regions due to the obstacles present. This increase in velocity increases the oscillations 
of the walls that account for the spreading frequency in ST.  

The energy envelope shown in the normalized PSD plot gives information about energy 
distribution over the spectral range. The peaks of the energy envelope are labeled as A, B, and 
C in Figure 2. When BR shows a single dominant peak at 265 Hz (peak A) in the energy 
envelope plot, ST shows three significant peaks A, B, and C at 256 Hz, 369 Hz, and 540 Hz, 
respectively. The full width at half maximum of the peak A in BR is 82 Hz (224 Hz – 305 Hz), 
while it is 74 Hz (219 Hz – 293 Hz) in ST. The frequency range of peak A in ST suggests its 
origin is the same as in BR. In other words, ST comprises the signature of BR. From Figure 2b, 
it can be inferred that the appearance of peaks B and C at a higher frequency is due to the lesion 
in the trachea and upper airways. The signature peaks B and C of ST can be effectively used to 
monitor the lesion's level during treatment continuously. For understanding the type of ST, it is 
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essential to analyze the inspiration and expiration separately. The normalized PSD plot of 
inspiration and expiration of BR and ST (Figure 3) is similar. P peaks B and C during inspiration 
and expiration of ST (Figures 3c and 3d) suggest that the type of stridor is biphasic due to the 
upper airway obstruction. In the case of inspiratory or expiratory stridors, peaks B and C arise 
only during the inspiration or expiration. Peak A appears invariably in all the three types of 
stridors, as in BR.  

 

 
Fig. 1. Time-domain signal of (a) BR and (b) ST. The magnified time-domain signal of (c) 

BR and (d) ST shows musical nature. 
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Fig. 2. The normalized PSD plot with energy envelope of (a) BR and (b) ST 

 
Fig. 3. The normalized PSD plot of (a) BR inspiration, (b) BR expiration, (c) ST inspiration, 

and (d) ST expiration. 

 

The normalized PSD plot gives only the frequency components in the signal, whereas 
wavelet analysis provides information about the temporal evolution of the frequency 
components. The wavelet scalogram of the BR and ST are shown in Figure 4. The distinct pause 
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between the inspiration and expiration for both the signals is visible in the wavelet scalogram 
(Bohadana et al., 2014). The wavelet scalogram of BR shown in Figure 4a shows the persistence 
of the dominant frequency, peak A, shown in Figure 2a, and the frequency spread during 
respiration. In the wavelet scalogram of ST, shown in Figure 4b, an increase with time is visible 
in the value of frequency and its magnitude, which can be interpreted using Bernoulli’s 
principle. When air passes through a constricted region in ST, the pressure decreases, or the 
flow velocity increases in the flow direction. Such a temporal evolution of frequency and 
magnitude in the wavelet scalogram can be considered a signature of ST. As observed in Figure 
2b, the increased frequency spread in ST is explained earlier.  

 

Fig. 4. Wavelet scalogram of (a) BR and (b) ST 

The information about the complexity of the dynamics of a system can be understood by 
plotting its phase portrait. BR's phase portrait and three-dimensional representation are shown 
in Figures 5a and 5b. The phase portrait of BR shows a random distribution of densely packed 
phase points, the evolution of which is understood from the three-dimension plot. The 
randomness in phase points is revealed by plotting 4000 phase points of BR, as shown in Figure 
5c. The phase portrait of ST and its three-dimensional representation are shown in Figures 6a 
and b, respectively. The exciting patterns observed in the time spectra of ST (Figures 1b and 
1d) are also visible in the phase portrait. The signal contains a discontinuous region, musical 
and non-musical (with some kind of discontinuous modulation) part, whose phase portraits are 
separately investigated with 4000 phase points, as shown in Figures 6c, 6d, and 6e, with the 
respective time-domain signal in the inset. The phase portrait of the discontinuous region of 
ST, shown in Figure 6c, is identical to the phase portrait of BR (Figure 5c) due to peak A with 
multiple frequency components in both BR and ST. Figure 6d shows an ordered phase portrait 
of almost elliptical shape for the continuous musical region of the time domain signal of ST. 
This ordered phase portrait is due to the musical nature of ST, as evidenced by the PSD plot. 
The ST signal exhibiting regions of superimposition of multiple signals also gets reflected in 
its phase portraits as elliptical trajectories of different eccentricities, as shown in Figure 6e.   
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Fig. 5. Phase portrait of BR (a) two-dimensional representation, 
(b) three-dimensional representation, and (c) with 4000 data points 

 

 

Fig. 6. Phase portrait of ST (a) two-dimensional representation, (b) three-dimensional 
representation; with 4000 points unveiling its characteristics along with the time domain 

signal in the inset (c) discontinuous, (d) musical, and (e) non-musical 
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Table 1. Fractal dimension, Hurst exponent, and sample entropy of BR and ST 

Parameter BR ST 

Fractal dimension 1.809 ± 0.003 1.739 ± 0.006 

Hurst exponent 0.191 ± 0.003 0.261 ± 0.006 

Sample entropy 1.28 ± 0.10 0.9187 ± 0.03 

 
The fractal analysis of self-affine time-series signals is vital for computing its complexity. 

In the present study, the Box-counting method is employed to estimate the fractal dimension 
(D) of BR and ST, from which the Hurst exponents (H) are calculated. The values of D and H 
are given in Table 1. The higher value of D of BR can be thought of as originating from the 
discontinuity and the presence of high intense frequency components (peak A in Figure 2a), as 
evidenced by the PSD plot. The continuous nature of the ST with a particular dominant 
frequency component makes the time-series signal of ST less complex relative to BR. The 
values of H given in Table 1, between 0 and 0.5, indicate the antipersistence nature of the BR 
and ST. The antipersistence nature of BR is higher than ST as the value of H of BR is closer to 
zero.  

The PSD and wavelet analyses show the signature of BR in ST, which is investigated from 
the portions of the time domain signal of ST, exhibiting different features like discontinuity, 
musical and non-musical, as presented in Figures 6c to 6e. The Maximal Lyapunov exponent 
(λ) calculated with the phase points represented in Figures 6c to 6e is obtained as 0.252, 0.086, 
and 0.137, respectively. The analysis reveals that the temporal evolution of divergence λ is the 
least in the musical region compared to the other two areas. The disorder of a time series can 
be quantified by estimating its sample entropy. The value of the sample entropy (S) of the BR 
and ST is shown in Table 1. The higher value of S for BR is evident from Table 1, which points 
to its disordered nature. The value of S for the phase points represented in Figures 6c to 6e are 
2.36, 0.762, and 1.98, respectively. The lowest S value for Figure 6d, the musical region, clearly 
reveals its more ordered behavior.  

Principal component analysis (PCA) is a dimensionality reducing technique used to classify 
and group signals. Here the frequency region 100 Hz to 1000 Hz in PSD data is divided into 26 
segments, and the mean of PSD of each piece is taken as a characteristic feature. As a result, 
the mean value of the distinctive feature of each part (µ) of BR and ST, represented in Figure 
7, is distinct, enabling the grouping in the PCA. For example, the peak value of µ for BR appears 
in peak A, whereas for ST, the peaks A, B, and C are distinctively visible. The PCA carried out 
using the extracted features shows 80.2% of the total variance in data in the principal component 
1 and 2. Figure 8 shows the plot of main components 1 and 2, clear separation between the 
points of BR and ST. 
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Fig. 7. The variation of µ with feature number for BR and ST 

 

 

Fig. 8. PCA plot of BR and ST 

Though PCA helps in classifying the signals by finding the directions of the highest variance, 
it has the limitation that it is unsupervised. This limitation is overcome by using supervised 
MLTs such as LDA, QDA, SVM, and KNN, which offer high specificity, accuracy, sensitivity, 
and precision. For understanding the effectiveness of the phase portrait parameters in 
classifying ST and BR, D, S, λ, l and m are selected as features in supervised MLTs. Among 
the 60 signals, 45 randomly chosen signals are selected for training the model. Five-fold cross-
validation is used to prevent overfitting in the model trainer. The performance of different 
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MLTs in classifying BR and ST breath signals is shown in Table 2. From Table 2, it is clear 
that most of the MLTs employed in the present work show 100 % accuracy, sensitivity, 
specificity, and precision, which points to the potential of D, S, λ, l, and m parameters in 
differentiating adventitious lung sound signal from normal ones. The accuracy of classification 
using QDA is higher than that of LDA. This higher accuracy might be because, unlike LDA, 
QDA assumes a different covariance matrix for another class, which increases the flexibility of 
QDA and enables it to classify the categories nonlinearly using quadratic decision boundaries. 
The confusion matrix of both LDA and QDA classifiers is shown in Figure 9, and its 
corresponding ROC curve is given in Figure 10. The area under the ROC curve is higher for 
QDA compared to LDA, which .indicates maximum distinguishability between classes in 
QDA. 

 In the case of the SVM classifier, the quadratic, cubic, medium gaussian, and coarse 
Gaussian kernel functions offer 100% accuracy compared to others. Thus these SVM kernel 
functions are suitable for classifying nonlinear time series parameters as features. The selection 
of the number of neighbors (k) is essential in the KNN classifier. From Table 2, it can be 
understood that the KNN classifiers with k=10 show 100% accuracy, irrespective of their 
distance metric and weight, compared to others. The trained, supervised MLT models predict 
the class of 15 randomly selected breath sound signals in Matlab software. All the models 
except Coarse KNN predict the courses with 100% accuracy. The confusion matrix of the 
predicted values using the Quadratic SVM model is shown in Figure 11. The highly accurate 
predictions by the modeled MLTs using phase portrait parameters can undoubtedly classify the 
lung sound of adventitious stridor from the normal one.  

 

 

Fig. 9. Confusion matrix of classification – Training of dataset. (a) LDA and (b) QDA 
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Fig. 10. Receiver Operating Characteristic curve – Training of dataset. 
(a) LDA and (b) QDA 

 

 

Fig. 11. Confusion matrix of prediction – Testing of the dataset using 
Quadratic SVM model 
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Table 2. Performance of different MLTs in classifying BR and ST breath signal 

Model name K Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Error rate 
(%) 

LDA  97.78 95.65 100.00 100.00 2.22 

Q  100.00 100.00 100.00 100.00 0 

SVM       

Linear  97.78 95.65 100.00 100.00 2.22 

Quadratic  100.00 100 100.00 100.00 
 

0 

Cubic  100.00 100 100.00 100.00 0 

Fine Gaussian  82.22 79.17 85.71 86.36 17.78 

Medium Gaussian  100.00 100 100.00 100.00 0 

Coarse Gaussian  100.00 100 100.00 100.00 0 

KNN       

Fine 1 95.56 95.45 95.65 95.45 4.44 

Medium 10 100.00 100 100.00 100.00 0 

Coarse 100 44.44 44.44 44.44 54.55 55.56 

Cosine 10 100.00 100 100.00 100.00 0 

Cubic 10 100.00 100 100.00 100.00 0 

Weighted 10 100.00 100 100.00 100.00 0 

 

4. Conclusion 

Breath sounds carry vital information about the condition of the respiratory tract and lungs. 
Auscultation of breath sound with digital techniques makes the diagnosis of respiratory diseases 
more simple, accurate, reliable, and faster. Sixty regular BR and adventitious ST, produced 
from the trachea and upper airways, are investigated in the present study using spectral, 
nonlinear time series, and fractal analyses. A periodic continuous region in the time domain 
signal of ST spanning more than 250 ms suggests its musical nature. The spectral analysis of 
BR and ST using PSD plot and wavelet scalogram reveals the spread in frequency components 
of ST due to the obstructions in the trachea and upper airways caused by lesions in ST. The 
energy envelope on the normalized PSD plot has two signature peaks in ST (peak B and C) in 
addition to the expected peak A in BR and ST. The temporal evolution of the frequency and 
intensity in the wavelet of ST towards higher values suggests the increase in the velocity of air 
passing through the constricted regions. Nonlinear time series analysis is an example of the 
nonlinear signal processing technique used to understand airflow dynamics through the trachea 
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and upper airways. The geometric representation of the dynamics revealed through the phase 
portrait analysis is random and dense for BR. The musical region of the ST has an ordered phase 
portrait, which seems to be superimposed with the random phase portrait of the discontinuous 
area. 

The Fractal dimension of BR is higher than ST due to the intermittent nature and presence of 
multiple frequency components in BR. The Hurst exponent derived from the fractal dimension 
suggests the antipersistence nature of both BR and ST. The musical region's ordered nature is 
evidenced by its low sample entropy value and maximal Lyapunov exponent. The unsupervised 
and supervised MLTs classify BR and ST lung sounds. The unsupervised PCA analysis using 
the extracted features from the PSD plot clusters the BR and ST distinctively. Thus the study 
suggests the potential of the spectral, fractal, and nonlinear time series analyses in identifying 
ST, facilitating pulmonary auscultation. The signals are also classified with the phase portrait 
parameters D, S, λ, l, and m using supervised MLTs like LDA, QDA, SVM, and KNN, which 
classify the signals and help in prediction. The 100% predictability and accuracy shown by 
supervised MLTs suggest that these methods can effectively be used in the auscultation of 
breath signals.  
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