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Abstract

In a recent paper we characterized the classes of triangular matrix transformations mapping from the spaces 
 

and  into the spaces  and , respectively, where the spaces , k≥1, series summable by absolute 
summability method. In the present paper we show that each element of these classes corresponds to a bounded linear 
operator, and determine exactly or estimate their norms and those in some well known classes. Also, we characterize 
compact operators in these classes by using Hausdorff measure of noncompactness.
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1. Introduction

Let  be a given infinite series with  as its nth partial 
sums. Let  be an arbitrary infinite matrix 
of complex numbers and  be a positive sequence. 
By  we denote the -transform of the 
sequence , i.e.,

                         
(1)

provided that the series are convergent for . A 
series  is said to be summable , , if 

(Sarıgöl, 2010). If  and , then 
the summability  is reduced to the summabilities 

 and , (Sulaiman, 1992; Bor & Thorpe, 
1987), respectively. Also,  for  
and , (Flett, 1957). By a weighted mean matrix we 
mean one such that

where

                           (2)

By , we donete the set of series summable by the 
summability method . Then it can be easily 
seen that 

and so it means that a series  is summable  if and only if the sequence . Also, it is 
routine to verify that  is a Banach space with respect to the norm 

                                (3)

with  (Sarıgöl, 1991). In addition, the space  generalizing the space  with  was studied 
by Altin et al.(2004).
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Let X ve Y be two sequence spaces. We say that the 
matrix A defines a matrix transformation from X into Y, 
and denote it by writing   if  exists and is 
in Y whenever . By , we denote the class of 
all infinite matrices which map X into Y. For a long time, 
problems of comparision of summability methods and 
summability factors have widely been examined by many 
authors (Bor & Thorpe, 1987; Bosanquet, 1950; Kuttner, 
1985; Mazhar, 1971; Mehdi, 1960; McFadden, 1942; 
Mohapatra & Das, 1975; Orhan & Sarıgöl, 1993; Sarıgöl, 
1991; Sarıgöl, 1993; Sarıgöl, 2011; Sarıgöl & Bor, 1995; 
Sarıgöl, 2010; Sarıgöl, 2015; Sulaiman, 1992; Sunouchi, 
1949). Now, according to other viewpoint we note that 
most of these results correspond to the special matrix 
transformations , where I is identity matrix 
and W is the matrix defined by  for , zero 
otherwise, respectively. In a recent paper (Sarigol, 2011), 
in this way, the following classes of triangular matrix 
transformations in  and  have 
been characterized, which also include some well known 
results of Bosanquet (1950), Orhan & Sarıgöl (1993), and 
Sunouchi (1949).

Theorem 1.1. Assume that  is a triangular matrix 
of complex numbers and  is a positive sequence. Then 

,  if and only if

Theorem 1.2. Let  Assume 
that  is a triangular matrix of complex numbers 
and  is a positive sequence. Then   if 
and only if 

We also need the following results for our 
investigations:

Lemma 1.3. (Stieglitz & Tietz, 1977). Let  
Then,  if and only if 

where N is any finite set of positive numbers. 

It may be noted that the norm  is exactly 
determined by Lemma 1.3. However, it exposes a 
rather difficult condition to apply in applications. So the 
following lemma, which gives equivalent norm, is more 
useful in many cases. 

Lemma 1.4. (Sarıgöl, 2015). Let . Then, 
 if and only if 

and there exists  such that 

The second part of this Lemma is easily seen by 
following the lines in Sarıgöl (2015) that

From this inequality we can obtain the required result.

Lemma 1.5. (Maddox, 1970). Let  Then, 
 if and only if 

Lemma 1.6. Let  Then, the spaces  and  
are isometrically isomorphic. 

Proof. Let us consider the mapping  
defined by 

       
 (4)

Then, it is clear that T is linear and one to one. Now, given 
 for surjectivity. Take, for 

    
 (5)

Then,  and so , which implies 
that T is surjective. Also, it preserves the norm, i.e.,

 .

Lemma 1.7. Let  If  is a sequence of 
positive numbers satisfying 
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then

                    
(6)

Proof. Let us consider the function  defined 
by 

Then, since f is a positive decreasing function and 

 
as  we have  for all 

. So, if we take  it follows that 

which implies (6).

2. The hausdorff measure of noncompactness

If R and H are subsets of a metric space  and  
then S is called an ɛ-net of H, if, for every , there 
exists an  such that ; if S is finite, then 
the ɛ-net S of H is called a finite ɛ-net of H. Let X and Y 
be Banach spaces. A linear operator  is called 
compact its domain is all of X and, for every bounded 
sequence  in X, the sequence  has a convergent 
subsequence in Y. We denote the class of such operators 
by . If Q is a bounded subset of the metric space 
X, then the Hausdorff measure of noncompactness of Q is 
defined by 

 has a finite ɛ-net in ,

and  is called the Hausdorff measure of noncompactness. 

Lemma 2.1. (Rakočević, 1998). Let Q be a bounded subset 
of the normed space X where  , for  or 

. If  is the operator defined by  
 for all  then 

Let X and Y be Banach spaces and χ1 and χ2 be 
Hausdorff measures on X and Y, then, the linear operator 

 is said to be (χ1,  χ2) –bounded if  is a 
bounded subset of Y and there exsists a positive constant 
M such that  for every bounded 
subset Q of X. If an operator L is (χ1,  χ2) –bounded then 
the number

 
for all bounded 

is called the (χ1, χ2)-measure noncompactness of L. In 
particular, if , then we write 

Lemma 2.2. (Malkowsky & Rakočević, 2000). Let X and Y 
be Banach spaces,  and  
denote the unit sphere in X. Then 

Furthermore,  if and only if  
and the Hausdorff measure of noncompactness satisfy the 
inequality  (Malkowsky & Rakočević, 2000).

Let , where  is a 
triangular infinite matrix. Then, we have 

Lemma 2.3. (Malkowsky & Rakočević, 2007). Let X be 
normed sequence space and χT and χ denote the Hausdorff 
measures of noncompactness on 

 
and , the 

collections of all bounded sets in  and X, respectively. 
Then,  for all .

3. Main results

In the present paper we show that each element of the 
classes   and 

 
corresponds to a 

bounded linear operator, and determine exactly or estimate 
their norms and also those in some well- known classes. 
Besides, we characterize compact operators in these 
classes by using Hausdorff measure of noncompactness.

Theorem 3.1. Let  be a triangular infinite 
matrix and  be a positive sequence. Then 

  i.e., 

every matrix  defines an operator 

 such that  for all 

 and if  then

and

where the matrix  defined by  



Norms and compactness of operators on absolute weighted mean summable series71

                                 (7)

Proof. Since  is a Banach space for , it is 
sufficient to prove the first part of the Theorem that 
coordinate functional  is bounded. In fact, 
by (3) and (4), we have

        
 (8)

and so it follows from the inversion of (4) and (8) that

Now, by following the lines in Sarıgöl (2011), we get

for ,

This gives that 
 

On 
the other hand, we get  if the maps  

 and 
 
are defined by

and

respectively. Therefore, by Lemma 1.6, we obtain 

               

 
which completes the proof of the second part together 
with applying the matrix D to Lemma 1.5.

Finally, let  Then, it follows 
from Lemma 2.1, Lemma 2.2 and Lemma 2.3 that

where  is defined by   
 Therefore, if we define the matrix 

 by

then

which completes the proof by Lemma 1.5.

By Lemma 2.2 and Theorem 3.1, we directly obtain the 
following result which characterize the compact operators 
in the class .

Corollary 3.2. Under conditions of Theorem 3.1,  
 is compact if and only if 

Applying Theorem 3.1 to some special cases, we 
determine exactly or estimate the norms of bounded 
linear operators in well known matrix classes. First, we 
determine exactly the norm of the matrix transformation 
characterized by Bosanquet (1950) and Sunouchi, 
(1949).

Corollary 3.3. If 
 
i.e., , then

Take  for all  and  in 
Theorem 3.1.

Corollary 3.4. If 
 
for , then 
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Take  for all  and  in Theorem 3.1. 
This matrix transformation was characterized by Orhan & 
Sarıgöl (1993).

Corollary 3.5. If 
 
for  then there 

exists   such that

On considering   for all  and  
in Theorem 3.1, also using Lemma 1.7, we get the matrix 
transformation studied in Sarıgöl (2011).

Theorem 3.6. Let  
be a triangular infinite matrix and  be a positive 

sequence. Then, 
 

i.e., 

every matrix 
 

defines an operator 

 such that  for all

, and if , then there exist 

 such that

and

where the matrix  is defined by

                               (9)

Proof. The first part is clear. Now, as in Sarigol (2011), we get, for 

for ,

This gives us that 
 

Also , where 
 

and 

  are defined by

and

respectively. So, it follows from Lemma 1.6 that

which completes the proof by applying the matrix  to 
Lemma 1.4. The last part is similar to the above, so the 
proof is omitted.

Corollary 3.7. Under conditions of Theorem 3.6,  
 is compact if and only if
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Corollary 3.8. Let . If  then 

On considering  in Theorem 3.6, we get the 
matrix transformation studied in Sarıgöl (1993).

Now, if we put  and  for all  and 
 in Corollary 3.8, then it follows that

which gives a result in Sarıgöl (1993).

Corollary 3.9. If  then 
 

for all 
positive sequences  and  satisfying (1.2), i.e., 
there exist a series which is summable by summable 

 but not summable 

4. Conclusion

In the present paper, showing that any triangular matrix 
transformation mapping from the spaces  and   
into the spaces  and , respectively, corresponds 
to a bounded linear operator, we determine or estimate 
its norm and also give necessary and sufficient conditions 
for it to be compact by means of Hausdorff measure of 
noncompactness, where the spaces , k≥1, series 
summable by absolute summability method. And so it has 
been brought a different perspective and studying field.
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