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ABSTRACT

In the present paper, we first derive g-analogue of nonlinear Schrédinger equation from
its discrete version and then solve it by two-dimensional g-differential transform method.
The solution is obtained in the form of a series and in the case ¢ — 1, reduces to the
exact solution of a nonlinear Schrodinger equation studied by Borhanifa and Abazari.
We also draw some graphs of solution for different values of the parameter ¢ using the
software Mathematica.
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INTRODUCTION

The study of g-analysis is an old subject, which dates back to the end of the 19
century. A detail account of it can be seen in the books by Slater (1966), Exton
(1983), Gasper & Rahman (1990) and a thesis (Ernst, 2000). It has found many
applications in such areas as the theory of partitions, combinatorics, exactly
solvable models in statistical mechanics, computer algebra etc (Andrews, 1986).
In recent years, mathematicians have considered ¢-difference equations for their
links with other branches of mathematics such as quantum algebras and g¢-
combinatorics.

The differential transform method is a semi numerical analytic method for
solving differential equations. The concept of differential transform in one-
dimension was first introduced by Zhou (1986), who solved linear and nonlinear
initial value problems in electrical circuit analysis. The g-extension of one-
dimensional differential transform method was introduced by Jing & Fan (1995)
for solving the ordinary g¢-differential equations. Recently, Shahed & Gaber
(2011) have introduced two-dimensional g-differential transform method for
solving linear and nonlinear partial ¢g-differential equations.

The Schrodinger equation is the fundamental equation of physics for
describing quantum mechanical behavior. It is also often called the Schrodinger
wave equation, and is a partial differential equation that describes how the wave
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function of a physical system evolves over time. The Schrodinger equation and
its variants is one of the basic equations studied in the field of partial differential
equations and has applications to geometry, to spectral and scattering theory
and to integrable systems. Nonlinear problems are of interest to engineers,
physicists and mathematicians because most physical systems are inherently
nonlinear in nature. Various nonlinear dynamical systems and modified
nonlinear Schrodinger equation (MNLSE) have been discussed in the papers
(Konar & Sengupta, 1994; Srivastava & Konar, 2009; Jana & Konar, 2006). For
complex systems, the linear multi-particle Schrédinger equation is often
replaced by a nonlinear single-particle Schrodinger equation as in the density
functional theory of solid state physics. The nonlinear Schrodinger equation
(NLSE) is one of the most universal models that describe many physical
nonlinear systems. In the book by Biswas & Konar (2006) it has been outlined
and the NLSE for Kerr law nonlinearity from basic principles has been derived.
A MNLSE is given by

i%d}(X, 1) = —%Vzw + 7(X)p4-Bal 9, X € R 4p(X,0) = ¢ho(X), £ >0 (0.1)

where 7(X) is the trapping potential, and [, is a real constant. Equation (0.1) is
a non-linear partial differential equation (PDE) of parabolic type that is not
integrable, in general. The Equation (0.1) in the special case 7(X) = 0 has been
solved by Ablowitz & Clarkson (1999) by the method of inverse scattering
transform (IST). Recently, Borhanifa & Abazari (2011) have solved the
following NLSE

1 9*

~3ga VWl x ER1Z0.4(x,0) =" xE R, (02)

i %w(x, 1) =
using two-dimensional differential transform method. Various nonlinear
Schrodinger equations have also been solved by, Adomian decomposition
method (Sadighi & Ganji, 2008), variational iteration method (Wazwaz, 2008)
and other methods as well. In paper (Green & Biswas, 2010), 1-soliton solution
of the nonlinear Schrédinger’s equation that governs the propagation of solitons
through optical fibers has been obtained.

DEFINITIONS

For g € C,0 < |g| < 1, g-analogue of a natural number 7 is given by (Ernst, 2000)

], = iqk” and [0],= 0, (0.3)
k=1
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and g-factorial (Ernst, 2000) is defined by

n

]! = [ JIk], and [0],! = 1. (0.4)
k=1

The g-shifted factorial is defined as

1, ifn=20
a;q), = < "=l , 0.5
(a:4), H(l—aq’”), ifne N 05)

m=0

or equivalently

(a;9) 1
a,q),= ———=—, where (a;q),. = 1 —aq™). 0.6
(a;9) (aq"q) (a;q) ’Eo( q") (0.6)
Also (a;q),= i(_z)’(") q@ d, (0.7)
o k/q
and its inverted form da" = d (n) (a"; q)k. (0.8)
= W '

g-analogue of power function

<[ 1-(5/4 )¢ 0/
R S T g

¢q-Exponential function
For 0 < |¢| < land |x| < (1 — ¢)'the g-exponential function E,(x) is given by
(Ernst, 2000)

xk
E,(x) = ZW (0.10)

k=0 q

The g-analogues of the trigonometric functions (Ernst, 2000) are defined by
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' 1 ' ' e (_l)kx2k+l
Slnq(x) = Z [Eq(lx) — Eq(—lx)] = ;W, (011)
1 , o (—1)F X
Cosy(x) =5 [Ey(ix) + Ey(—ix)] = ZW (0.12)
k=0 q°

h-Derivative
The h-derivative of a function f{x) as given in (Kac & Cheung, 2002) is defined
by

(Dyf)(x) ZW’ (0.13)

df(x)
dx

where ]hn’(l) Dpf(x) = , if f(x) is differentiable.

g-Partial derivatives (Rajkovic’ et al., 2003)

If f(x,y) is a function of two variables, then its g-partial derivative with respect
to the variable x is given by

Dyuft) =T H =) (1t 0) and o f(0)] o=ty Dy fl ). (014

1. FORMATION OF NONLINEAR ¢-SCHRODINGER EQUATION

A discrete version of the NLSE is used to describe the dynamics of pulses in
optical waveguide arrays and photorefractive crystals (Porter, 2009). In this
section, we form a nonlinear ¢g-Schrodinger equation from its discrete version. A
discrete version of nonlinear Schrédinger equation (DNLSE) considered in
(Hernadez & Levi, 2003) is given by

. 1
0= |00 5 (1-410,P) (@1 + 010 (L)
Taking e = —1, (1.1) becomes

. 1 1
iQn = _W(Qwrl - 2Qn + anl) - W |Q11|2(Qn+l =+ anl)a (1'2)

Now, to express (1.2) in terms of A-derivative defined in (0.13) of « function ,
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we proceed as follows

O, = hnh, 1), @t = Ip((n — D, 1), Qs = h((n+ Dhyt)  (13)

P((n+ Dh,t) = pnh, 1) p(nh, 1) —p((n = 1)h, 1)
h h

S| =

Dip((n—1)h,1) =
(1.4)

1
= ﬁ [Qn+1 - 2Qn + anl}

Now, using (1.3) and (1.4) in (1.2) it can be written as

iD(nh, 1) = Dﬁw(( 1)h, 1) —-W (nh, 1)|[((n + 1)h, 1) + 9((n = 1)k, 1)) (1.5)

To find a g-analogue of NLSE from its discrete analogue given by (1.5), we
make the following substitutions in (1.5)

x=nh, ¢ 'x=m—1)h, gx=(n+1)h (1.6)

and get the following equation

l W(x, OF [gx, ) + (g7 x,0)], x R, >0, (1.7)

iDq.tw(xv t) = _lDz 1/)(6]71% Z) B

27

which is a g-analogue of the NLSE.

In this paper we solve the nonlinear g-Schrédinger equation (1.7) using two-
dimensional g¢-differential transform method. The equation (1.7) in the case
q — 1 gives the NLSE (0.2).

2. TWO-DIMENSIONAL ¢-DIFFERENTIAL TRANSFORM
(Shahed & Gaber, 2011)

Two-dimensional g-differential transform F,(k, /) of the function f(x,y) at
(x,y) = (a,b) is defined as follows

awmzm&ypﬁm o 2.1)

The inverse two-dimensional ¢-differential transform of F,(k, h) is given by:
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= iin (x—a) Py — )", (2.2)

k=0 h=0

=

Here f(x,y) is called the original function and F,(k,h) the transformed
function.

Some basic properties of the two-dimensional g-differential transform are as
given below (Shahed & Gaber, 2011, Theorems 3, 4, 5 and 8):

Let F,(k,h), Uy(k,h) and W,(k,h) be g-differential transforms of the
functions f(x, y), u(x, y) and w(x, y) respectively, then the following results hold

(@) Iffix,y) =u(x,y) £w(x,y), then F,(k,h) = U,(k,h) £ W,(k, h).
(b) Iff(x,y) = au(x,y), ais constant, then F,(k,h) = aU,(k, h).
)

© Iff(x,y) = (x—a)"(y =)™, n,m e N, then U,(k, h) = 8(k — n)8(h — m).

1, when k =0

0, otherwise

where 6 is defined as 6(k) = {

(d)  Iff(x,y) = Dyu(x,y), then Fy(k, h) = [k + 1], Uy(k + 1, h).

Tyk+r+1)y(h+s5s+1)
Ly(k+ 1)Ly (h+1)
Two-dimensional g-differential transform of product of two functions (Garg

& Chanchlani, 2012)

) Ifflx,y) = D;Ptju(x, ¥), then F,(k, h) = Uyk+r,h+35).

If f(x,y) = u(x,y)v(x,y), then its two-dimensional ¢-differential transform
Fy(k,h) at (x,y) = (a,b) is given by

—j(h—j) 1 j  h=j

F,(k,h) = szo " i 'ZZZ Ay(r,i, s,k —i)Ay(L,j,m, h — j)

’1 r=0 s=0 /=0 m=0
[r + s]q![l + m]q!a’“’k“b”m’h*’ Uy(r+ s, 14+ m)V,(i,j),
(2.3)

where U,(k,h) and V,(k,h) are two-dimensional g-differential transforms of
functions u(x, y) and v(x, y) respectively and

|

aton i) = (a1t " () % W), e

Also, the two-dimensional g¢-differential transform F,(k,h) of
Jx,3) = u(x,y)v(x,y) at (x,y) = (0,0) is given by
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h

k
=D > Uk —ish =)V, (i.)). (2.5)

i=0 j=0

3. APPLICATION OF TWO DIMENSIONAL ¢-DIFFERENTIAL
TRANSFORM METHOD TO SOLVE NONLINEAR
¢-SCHRODINGER EQUATION

We consider the following nonlinear ¢g-Schrodinger equation

1 1
—ED;J\w(q’lx, l) =3 |¢2(x, t)] W(qx, )+ w(q’lx, l)], X€ERt>0, (3.1

iDq,tw(xv l) =
with the initial condition

P(x,0%) = E,(ix), x € R, (3.2)

To solve the above problem, we write ¥ (x, ) = u(x,t) + iv(x, 1) so that it
transforms into

iDy Ju(x,t) +iv(x,t)] = —%D;_’x [u(q_lx, t) + iv(q_lx, t)]

(3.3)
—% [ (o, 1) + v (x, )] [[ulgoe, 1) + iv(gx, )] + [u(g ™ x, 1) +iv(g ™" x, 1) ]]
and  u(x,0") + iv(x,0") = Cos,(x) + iSiny(x). (3.4)

Equating real and imaginary parts in (3.3) and initial condition (3.4), we get
following system of g-partial differential equations

Dy u(x,1) = ; oV (q X, t) —%[ 2(x, 1) + v (x, t)] [v(qx, )+ v(q‘lx7 t)], s

Dyv(x, 1) = ;Df],C (¢ 'x,1) -I—% [t (x, 2) + 2 (x, )] [u(gx, ©) + u(q "' x,1)],

with initial conditions

{u(x, 0%) = Cos,(x),
v(x,0%) = Siny(x).

On applying the two-dimensional g¢-differential transform (2.1) with
(a,b) = (0,0) to (3.5) and (3.6), using properties (a), (b), (c), () and result (2.5),
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we get
_ 1 —k—2
Uyk,h+1) = 7 l]q [—5 [k + l]q[k—i— 2]qVq(k +2,h)q
1 k k—r h h—s )
-3 Volk =r —1p)lg"~"" 4+ ¢~
r=0 /=0 s=0 p=0
X [Ug(ryh — s = p)Uy(lys) + Vy(rsh — s = p)Vy(L,5)]],
(3.7)
_ 1 k-2
Vylk,h+1) = 0 l}q [2 [k + l]q[k + Z]qu(k +2,h)q
1 k k—r h h—s ‘ .
320 Uy(rch—s—p)ld +¢7"]
r=0 /=0 s=0 p=0
X [Uglk —r = Lp)Uy(lys) + Vylk —r = Lp)Vy(L,5)]],
and
. k-1
0, k is odd (-7 s odd
Uyl h) =14 (Z1p o V) =< K . (38)
Gl k is even

0, k is even

where U,(k,h) and V,(k,h) are two dimensional g-differential transforms of
u(x,y) and v(x, y) respectively.

We now obtain the values of U,(k, h) and V,(k, h), using (3.7) and (3.8) with
the help of software Mathematica. As the expressions are large, we present only
some of the values in the following Table 1 and Table 2.
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Table 1. Transformed function U, (k, )

Uy(k,h) h—k| 0 1 2 3
—1+¢° +44*
0 1 0 —2¢° — 3¢° 0
44°(1 + q)

(=14 ¢*+2¢* +2¢°

67* 8*89 10

_—1+q2+q4 +6q" —¢q q +q
_6qll _6ql2 _4ql3

+17q14 _ 9q15 _ 2C]l6
+8ql7 + ql‘))
8¢P(1+q)(1+q+¢

(1-¢*-2¢"
5 1 0 —44° +3¢" + ¢° 0
1+
( ({) +4q10 _3q11
+q13 +q14)

4g'(1 + q)’
(1-¢* 24" - 2¢°
_2q8 _8q9+4q10
+7qll _ 4q12 + ]4q13
+5q14 + 17q15 _ 6ql7
(-1+¢+4¢" +4
e -)
25 (1+q)(1 +9+¢)

_34q18 + ql‘) _ 25q20
+51q21 4 “qZZ _ 4q23

—~28¢% — 147 + 16¢%
_10q27 + 96]28 _ qu‘) + q30)
8¢ (1+q/ (1 +q+¢2)
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Table 2. Transformed function V,(k, h)

Valk, 1) ke | 0 1 2 3
h —
(1-¢* 24"
0 0 | 1 0 —104% + 347 + 8¢°
2¢*
+3q9 + 206]10 _ 23q11
_10q12 _|_9q13 +q14)
8¢2(1+q)(1+q+¢*)
(—1+¢* +24*
1 1 0 +4g5 — 3¢5 — 54 0
+7(]8 _ 5q9 _ ([10)
44°(1+9q)
(-1+¢*+2¢*
+2¢% + 114 — 4¢°
710q10 _ Sqll _ 10q12
+q13 _ 14q14 + 63q15
, o +q* +24* 0 ~344"° — 16¢'7 + 44"
9.5 6
2;?112) 174" + 242 — 104
152 458 4
4+
8¢"(1+9)°(1 +4+¢)
(-1+4¢*+2¢*
+ +64" -3¢
8¢ +¢0 g
_ 1 13
3 I 0 +16¢"- - 16¢ 0

(g1 +g+¢)

+3(]14 _ 11(]15 + 106]16
—6]17 _ qIS + (119)
PP (L g+ )
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Substituting the values of U, (k, /) and V,(k,h) from Tables 1 and 2, in (2.2)
with a = b = 0, we shall get the expressions for u(x, ) and v(x, #), which in turn
gives us ¥(x, 1) = u(x, ) + iv(x, 1).

un Hatg 1)

S\
SRRI R ITRI

LR
=N

wfr-)

P

Fig.4

Figures 1 to 6, provide surface plots for approximate values of u(x,#) and
. 11
v(x, t) for different values of ¢ as 73 and 1.
Further, in the limiting case ¢ — 1, we get

(1) =1 x2+tx+tz N x4+tx3+t2x2+t3x+ r
u(x,t) = wtmt e tag Taga)

2 2 8 (3.9)
t
:Cos(x-|-§>,
v(x t)—(x+£)— x_3+ﬁ+lz_x+i +
N 3 ¢t g Tag) T 510)

t
7_S. ( 7)7
mn x—|—2
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X+ =

t
y : N )
= — ST — = 2
giving ¢(x, t) = Cos (x + 2) + iSin <x + 2) e (3.11)
which is same as given by Borhanifar & Abazari (2011).

CONCLUSION

In this paper, we have first developed a g-analogue of NLSE from its discrete
version and then solved it by two-dimensional g-differential transform method.
The solution is obtained in the form of a series and we have drawn some graphs
of the solution for different values of the parameter ¢ using the software
Mathematica. It is noted that, in the case ¢ — 1, it reduces to the NLSE studied
recently by Borhanifa & Abazari (2011).
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