
1. Introduction
Over the last years, speech-processing technology has been significantly evolved due to its potential in
dealing with speech recognition, speech correction, and speech synthesis (Khan Wahab et al., 2016).
Speech recognition can be considered a very useful tool for recognizing and capturing voices (Alkhatib et
al., 2017). It is currently used in building systems for learning and memorization. Usually, memorization
is performed through the traditional recitation process. It is based on a face-to-face method, which
requires another person that listens to the reciter to ensure the memorization and correct the mistakes.
Various studies investigated the recitation based on speech recognition in English and some languages.
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Abstract

Automated recitation plays an important role in improving self-learning. It is based on Speech/Text 
recognition. The research in Arabic speech recognition is very limited. The few existing applications are 
only based on the Holy Qur’an. This article proposed a new system (Samee’a -       ) to facilitate 
memorizing any kind of text such that poems, speeches and the Holy Qur’an. Samee’a system is based on 
Google Cloud Speech Recognition API to convert the Arabic speech to text and Jaro Winkler Distance 
algorithm to determine the similarity between the original and converted texts. The system has been 
tested using 70 collected files ranging between 12 to 400 words and some chapters from the Holy Qur’an. 
The average similarity achieved 83.33% for the 70 files and 69% for the selected chapters of the Holy 
Qur’an. These results were enhanced to 91.33 % and 95.66% after applying preprocessing operations on 
the text files and the Holly Qur’an respectively. To validate the obtained results, two comparison studies 
were performed. The Jaro Winker distance was successfully compared to the cosine and the Euclidean 
distance. In addition, the proposed system outperformed the related work with an improvement of the 
similarity reaching 5% when using section 30 of the Holy Qur’an. Finally, the user experience testing was 
carried out by 10 users of different ages (between 5 and 50-year-old) using small texts and some small 
chapters of the Holy Qur’an. The proposed system proved its efficiency.
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The Arabic language is widely spoken (Larabi-Marie-Sainte et al., 2019), the research in the field of the
Arabic Speech Recognition is limited in comparison with other languages (El-mashed et al., 2011). For
example, the authors in (Alkhatib et al., 2017) and (Yousfi et al., 2016) introduced only the Holy Qur’an
recitation. In (Ghadage et al., 2016), the authors designed a multi-language speech-to-text conversion
system focusing on Marathi –Indian-English, Marathi-English to extract, characterize and recognize
the information about speech. However, all the presented studies and surveys investigated either the
recitation of the Holy Qur’an in the Arabic language or the recitation of other different languages. This
paper proposed a new system called [Samee’a] to promote the learning/memorization of any kind of
Arabic text. It supports the research of Arabic speech recognition by converting the speech signal to a
sequence of words. Samee’a system employed Google Cloud Speech Recognition API. Google API has
proved its efficiency in converting speech to text, and outperformed both Microsoft API and Sphinx-4
(Këpuska , 2017). The proposed system is based on three main steps. It provides the reciter the ability
to upload any text file for memorization, record the recitation, and display the similarity results after
comparing the uploaded text with the recorded one. The similarity result is obtained using the Jaro
Winkler Distance algorithm. To enhance the results, the text files were pre-processed to remove the
Arabic diacritics, punctuations, and any other noise ((Khan Wahab et al., 2016), (Khan Khairullah et
al., 2016)). Using this self-learning tool, the reciter can easily perform the recitation skills at any time.
To demonstrate the effectiveness of this system, 70 text files, with different lengths, were created and
used for testing. In addition, some chapters of the Holy Qur’an were also tested to compare the obtained
results with those provided in the existing studies. The contribution of this study is threefold.

1. Develop a new system for Arabic speakers to ease the self-learning and recitation in the Arabic
language.

2. Provide an Arabic recitation tool tackling any kind of text, Holy Qur’an, poem, lesson, etc.

3. Support the Arabic speech recognition and the Arabic Natural Language Processing research
fields.

This paper is organized as follows: Section 2 presents the related works. Section 3 includes the 
methodology. Section 4 introduces briefly Natural Language Processing. Section 5 discusses the 
experimental results. Section 6 investigates the comparison study. Section 7 displays Samee’a interface 
and the user experience testing. Finally, section 8 concludes the study.

2. Literature review

Nowadays, the techniques of speech recognition and speech-to-text conversion and vice versa are very 
common, but they are rarely in the Arabic language. It is known that how Arabic speech recognition is 
hard due to the pronunciation of Arabic letters. In the following, the speech-to-text /text-to-speech and 
speech recognition-related works are discussed.

2.1 Speech-To-Text
In (Muhammad et al., 2012) the authors proposed a system called ‘E-hafiz’ that assists learners to 

recite the Holy Qur’an based on the idea of Tajweed rules. The system used MFCC feature extraction 
techniques to get the feature vectors of some specific verses read by some experts and stored in the 
system’s database. For the evaluation, three groups of reciters men, women and children were chosen. 
The accuracy of the three categories were 92% for men, 90% for children and 86% for women.

In (Reddy et al., 2013), the authors presented an android application that converts voice to text to be 
sent as an SMS message to the entered phone number. This helped handicapped, deaf and blind people. 
The speech recognition technique was based on Hidden Markov Model (HHM) and Google’s servers. 
This idea helps with memory saving and fasts the recognition process rather than installing a complex 
software. The database used contains more than 230 billion words. The system compared each oral word 
recorded with the saved word on the server. The authors have not presented how the results are accurate 
or how many users are satisfied. For future work, they planned to apply it for more than one language.
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In (Ahsiah et al., 2014), the authors described the Mel-Frequency Cepstral Coefficient and Vector 
Quantization (MFCC-VQ) procedure to develop a speech recognition system for Qalqalah Tajweed 
Checking rule. The main objective of this research was to help students to revise and recite the holy 
Qur’an properly by themselves and to recognize the types of bouncing sound in both Qalqalah Sughrah 
and Qalqalah Kubrah on the five letters                           . The system consists of four main modules, 
including the input Module, training module, testing module and analysis module. The overall real-time

factor outperformed the conventional MFCC algorithm by 86.928%, 94.495% and 64.683% for males, 
females, and children respectively. The recognition accuracy obtained was 83.9% for males, 82.1% for 
females, and 95.0% for children.

In (Yousfi et al., 2016), the authors have discussed the progress of speech recognition with the Holy 
Quran; where various applications used the technology for reciting, reading and learning. They have 
shown an overview of speech recognition techniques that have been used. As a result, they figured out 
that the best technique to use for feature extraction - one step of speech recognition - is Mel-Frequency 
Cepstrum Coefficients (MFCC) and the best method for the classification feature is the Hidden Markov 
Model (HMM).

In (Ghadage et al., 2016), the authors have designed a multi-language speech-to-text conversion 
system. It was focused on Marathi –Indian, English, Marathi-English mix speech using Mel-Frequency 
Cepstrum Coefficients (MFCC) technique for feature extraction. The system has been tested with 1200 
samples and achieved a high accuracy between 88% to 92% for the Marathi, English and Marathi 
English mix.

In (Alkhatib et al., 2017), the authors presented a mobile application that helps children of non native 
Arabic speakers to learn, reciting the Holy Qur’an by detecting incorrect pronouncing words. This was 
done by removing the silence of their recordings then comparing it with multiple correct recording, using 
a modified version of Dynamic Time Warping algorithm. As a result, 100 teachers have answered a 
survey to check the performance of the system, which showed that 86% of them were satisfied and 
approved the ability of the application to improve children’s skills in studying the Holy Quran.

In (Këpuska , 2017), the authors displayed a comparison between the commercial speech recognition 
tools that convert speech-to-text. They have presented a comparison between Google API, Microsoft 
API and Sphinx-4 that focused on using audio recording then detecting word error rate (WER) to judge 
the tool. The results showed that Google API achieved 9% WER, where Microsoft API achieved 18%
and Sphinx achieved 37%.

In (Trivedi et al., 2018), the authors presented different algorithms and techniques to achieve 
conversion from speech to text and vice versa. Speech-to-text and speech recognition followed the same 
steps. Various techniques such as Hidden Markov Model (HMM) with two metrics (Recognition Speed 
and Recognition Accuracy) were used. Then, the Artificial Neural Network was applied for the 
Classification with Cuckoo Search Optimization technique to remove noise and improve communication 
and recognition. The authors figured out that the most important step in speech recognition is pre 
processing to remove the unwanted waves. HMM is an excellent technique for converting speech to text 
because of their computational feasibility.

In (Gerhana et al., 2018), the authors presented an application that helps memorize the Holy Quran 
by shuffling verses of the Quran using the Fisher-Yatis algorithm. The tool starts recording the recitation, 
after that it converts the voice to text then compares it with a version of the Holy Quran that has been 
added previously to check similarity. The accuracy was about 91% with an average running time of 1.9 
ms.
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Table 1. Existing works dealing with ths Arabic language

Main feature Evaluation metric Dataset Evaluation result
(Ahsiah
et al.,
2014)

Reciting the Holy Qur’an and
focusing on Tajweed
Qalqalah rule Checking

Accuracy
Sourate Al-Ikhlas 82.1-95%
Sourate An-Nas 72-93%

Sourate Al-Fatihah 86.4 - 91.95%
(Alkhatib
et al.,
2017)

Reciting the Holy Qur’an Accuracy
Not
mentioned

Men: 92%
Children: 90%
Women: 86%

(Elsayed
et al.,
2019)

Holy Quran Tajweed rules
according to “Hafs from
Asim reading”.

Recall
Precision
F-measure

Sourate
Al-Ikhlas

92%
81%
86%

(Gerhana
et al.,
2018)

Help memorize Al-Qur’an
Jaro Winkler
distance
algorithm

Sourate Al- Kautsar 100%
Sourate Al- Buruj 100%

Juz 30 of the Holy Quran 91%

In (Elsayed et al., 2019), the authors proposed a general automatic system evaluating Quran recitation 
according to “Hafs reading”. The aim was to solve the problem of evaluating all intonations (Tajweed) 
in addition to evaluate a set of Quran segments in the right arrangement of reading. The system used 
MFCC for feature extraction and Vector Quantization (VQ) for dimension reduction, in addition to the 
Quran ontology prepared for Quranic speech to support speech recitation recognition of the Quran. The 
recall achieved 92%, the precision was about 81%, and the F-measure was about to 86%.

2.2 Text-To-Speech
In (Hamad et al., 2011), the authors discussed how rarely text-to-speech system has been 

implemented in Arabic. They developed guidelines for Arabic speech synthesis. They presented a new 
text-to-speech (TTS) system for Arabic based on the allophone concatenation method. The input was 
any text while the output was available in one male voice. The allophone defines the variations in 
phonemes, where a phoneme is the smallest unit of sound in speech. They were able to convert the 
entered Arabic text to speech to signals. To assess sound quality and pronunciation, they have made a 
survey to test a group of 20 persons with different language knowledge. The results showed that the 
speech was so natural and the quality was acceptable.

In (Alrouqi et al., 2016), The authors presented a framework to build an Arabic Navigation System 
for blind people. The text-to-speech technique was used. They compared five Arabic text-to-speech 
(TTS) synthesizers for mobile devices and evaluated their intelligibility and naturalness using VoiceOver, 
Uspeech, Acapela, Adel, and SVOX synthesizers. VoiceOver got the highest score of 93.75%.

In (Oumaima et al., 2018), the authors presented a web-based platform that helps kids with dictation. 
The text-to-speech API will convert the written text to a voice so that the student can hear what he wrote. 
Words with misspelling will be highlighted to detect the mistakes. The study was tested by 30 students 
from third, fourth and fifth grades. The results showed that the number of vocal errors and the corrected 
vocal errors were very similar.

2.3 Discussion
To sum up, the number of Arabic Speech recognition applications is less than the number of the 

existing applications in other languages. Moreover, all the presented studies in the Arabic language 
discussed the recitation of the Holy Qur’an as displayed in Table 1. Our contribution consists of 
developing a new system that targets the Arabic speakers for self-learning and memorization using the 
speech-to-text technique. The proposed system supports any type of text and not only the Holy Qur’an.

3. Natural language processing

Natural Language Processing (NLP) is the branch of artificial intelligence (AI) that aims at inventing 
theories, discovering techniques and building software that can understand, analyze and generate human

4

A new framework for Arabic recitation using speech recognition and the Jaro Winkler algorithm



languages in both written and spoken contexts. The NLP techniques are parsing language input (word, 
sentence, text, dialogue) according to the rules (derivational rules, inflectional rules, grammatical rules, 
etc.) and resources (like lexicon, corpus, dictionary) of the target language (Moath et al., 2014). Arabic 
Natural language deals with Arabic language and involves both text (for example (Larabi-Marie-Sainte 
et al., 2019) and (Al-Saleh et al., 2021)) and speech processing (Khan Wahab et al., 2016).

4. Methodology

The methodology consists of three main parts: Google Cloud Speech Recognition API, where the user 
enters his/her voice using a microphone then the system converts it to text. The second part is the Jaro 
Winkler Distance algorithm to compare the recited text with the uploaded text file, and then present the 
similarity percentage. The third part is Text Preprocessing to show the necessity of these operations and 
how they can overcome the limitations of both Google API and the Jaro Winkler Distance algorithm.

4.1 Google Cloud speech recognition API
Machine Learning is part of the Google Cloud Platform when it comes to building speech 

recognition software. Speech recognition (SR) is the process when a computer takes voice signal (from a 
microphone) and transforms it into words. SR has five stages. 1) The cleaning step, where the recorded 
signals are cleaned and separated from unvoiced speech and then discard unnecessary or irrelevant 
information (Yousfi et al., 2016). 2) Feature extraction, to get utterance properties that have acoustic 
correlations in the speech signal (Aggarwal et al., 2008). 3) The acoustic modeling, where the model 
links the observed speech signal with the expected phonetics of the hypothesis sentence. 4) The language 
model, which has the structural constraints in the language for the occurrence probabilities. It induces the 
probability of a word occurring after a sequence of words. 5) Features classification, this step will 
compare the unknown test pattern with each reference pattern in the sound class and compute a similarity 
measure between them (Saksamudre et al., 2015). To support a global user base, Google API can 
understand up to 120 languages including the Arabic language. Google’s API is used in this application 
to transform the recorded audio into text. Google cloud speech to text has three primary methods for 
recognizing speech. The first method is Synchronous Recognition that sends the speech signals to the 
speech-to-text API The API pre-processes the signals and returns the result. This method accepts data 
with 1 minute or less only. The second method is Asynchronous Recognition, which is the same as 
Synchronous Recognition but with a Long Running Operation (longer than 1 minute). Unlike 
synchronous method, this method can be processed while other operations are running. Last method is 
Streaming Recognition, which is designed for the real-time identifying purposes. Unlike the 
synchronous and asynchronous calls where both configuration and audio can be sent together in one 
request, this method requires sending multiple requests each time, In other words, the live audio taken 
from a microphone is immediately translated while the user is still speaking. In this study, the 
Asynchronous Recognition is applied since the recitation may take more than 1 minute, and there is no 
need for real time identification.

4.2 Jaro Winkler Distance algorithm
It consists of calculating the distance between two strings sequence to check the similarity of two 

words. The measurement scale is 0 to 1, 1.0 is a positive match and 0.0 is the least likely. It is done 
in three steps. Firstly, calculating the string length. Then, count the character in both words. Finally, 
check the number of character transpositions. Jaro Winkler uses the formula in Equation 1 to calculate 
distance.

dj =
1

3
∗ ( m

|S1|
+

m

|S2|
+

m− t

|m|
) (1)

|S1|and|S2| : are the length of the first and second strings. m: is the total of matches characters,
even the unordered one. t: is the half number of character transpositions, matched characters that are
not in the same order. Note that matched characters in two strings cannot be further away in position
than (max|S1|,|S2|

2 ) − 1 to be considered for matching. The algorithm uses a prefix scale p that provides
accurate judgments, defined in Equation 2
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Table 2. Empirical Example to carry out the Jaro Winker Distance Algorithm

String 1 | S1| String 2 |S2| m t Result dj l Result dw
1 �

é
�
¯@Pð@ 6-

�
é
�
¯@Pð@ 6- 6 1 0.9444 3 0.96

2 �
èQm.

�
�
� 4- ú



k@Qk. 5- 2 0 0.6333 0 0.633

dj formula dw formula
1 1

3 ∗ (
6
6 + 6

6 + 6−1
6 ) 0.944+(3*0.1*(1-0.944))

2 1
3 ∗ (

2
4 + 2

6 + 2−0
2 ) 0.633+(0*0.1*(1-0.633))

dw = dj + (lp(1− dj)) (2)

Where: dw: is the Jaro Winker formula. dj: is the result of the similarity between two strings after
comparison. p: is a constant defining how much the score is adjusted upwards to have common prefixes,
the standard value, according to Jaro, is p=0.1. l: is the length of the similar prefix, checked from the
start of a string up to the 4th character maximum (Gerhana et al., 2018). To understand the Jaro Winker
Distance Algorithm, an example is given in Table 2.

4.3 Text Preprocessing
This stage involves a set of operations that are performed on the original text because Google API

converts the voice to a preprocessed text. It consists of the following:

1. Remove the diacritics: because the Jaro Winkler Distance does not ignore diacritics while comparing
two texts. So, they are removed to increase the comparison performance.

2. Remove the punctuation: because they will not appear in the converted text as they are not
pronounced by the reciter.

3. Remove the white space: as it affects the comparison results.

4. Remove the noise: such as / �
é����J
K. QªË@ / will be converted to / �

éJ
K. QªË@ /

5. Remove the prefixes /Suffixes: the Google API does not detect some confused Arabic letters such
as letter “ta” / �

é� / and the letter “ha”/ é� /. The first letter can be pronounced either “ta” or “ha”.
The Google API always detects it as “ha” even if it was “ta”. Also, Arabic language has two types
of “a”, [alif al-qaT’] which is with ‘Hamza’ /



@ @



/ and [alif al-wasl] which is without ‘Hamza’/ @ /.

It was observed that only ‘alif’ as [alif al-wasl] was detected.

Figure 1 displays these operations. The framework process is presented in Figure 2. The user recites 
the text using a microphone, then the system saves the voice in a file and various sound processing are 
carried out. After that, the sound file is sent to Google API to be translated into text. The text is returned 
to the application in JSON format. Then, the Preprocessing operations are employed in the uploaded text 
file. The last step is the comparison between the preprocessed text and recited text file using the Jaro 
Winkler Distance algorithm. Finally, the similarity result is calculated and shown to the user.

5. Experimental results

To ensure that the proposed methodology achieves its intended goal, different experiments were 
conducted. This section starts with the data collection, then discusses three experiments. The first 
experiment demonstrates the efficiency of the Google API in translating the Arabic recitation into Arabic 
text. The second experiment shows the similarity results provided by the Jarro-Winker algorithm before 
and after applying the preprocessing operations. The third experiment involves testing the Holy Qur’an 
with
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Fig. 1. Text Preprocessing operations

Table 3. File Level’s classification

ID File Level Number of words Number of files
1 Small Less than 50 40
2 Medium 50 - 140 20
3 Large 141 and above 10

and without performing the preprocessing operations. For the implementation phase, the main Python 
library, PyArabic, was used for Arabic processing. It provides the basic functions to manipulate Arabic 
letters and text, this library has been used for all the preprocessing operations used in this study.

5.1 Data Collection

The dataset used in this study was collected and available in (https://drive.google.com/
file/d/1sTVZRkWud0rVfu-XhgPbZCtobu9i6BBz/view?usp=sharing). Seventy files have 
been collected from different open sources. The files are from different categories like kid’s stories, poems, 
articles and the Holy Qur’an. They have been classified into three different levels, including small, 
medium, and large files. Figure 3 shows a sample text divided into three levels having a different number 
of words. The different levels are explained in Table 3. These levels have been chosen to test the extent of 
the Samee’a system on different types of texts and with different text’s complexity stages. The experiments 
were performed by different ages of the reciters.

5.2 Experiment 1
The aim is to show that the Google Cloud Speech Recognition API well recognizes the Arabic 

speech. To this purpose, three objectives were investigated:

• Objective1: ensure that all the well pronounced letters are well recognized.

• Objective2: ensure that the short and long vowels are well recognized.

• Objective3: ensure that the Arabic letters outgoing from the same exit are well recognized when
they are well pronounced.
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Fig. 2. The mechanism of the Samee’a system

The experiment involved reading (instead of reciting) 35 texts from the collected text files (half of
the provided text files, See Table 3) by Arabic native speakers. Then, the resulting file (converted from
audio to text) was observed and checked to validate the aforementioned objectives. Reading the text files
is performed correctly but sometimes with intentional errors.

After reading (with a correct way) the selected text files, it was noticed that Google API efficiently
detected all the letters/words. Figure 4 shows an example of 100% detection. Thus, the first objective
was fulfilled.

Moreover, it was noticed that the converted texts are written without the short vowels (diacritics),
which means that the Google API does not support the diacritics. However, the long vowels ( / YÖÏ @/) are
detected if they are well pronounced. Figure 5 displays one example of this experience. Hence, objective
2 was investigated.

To check objective 3, two scenarios were performed. The first one was to correctly read complex
texts with many confused letters (outgoing from the same or approaching exits) such that / ¼ ,

�
�/ , /

h , è/ , / ¨ ,
	

¨/, .etc. It was noted that very few letters are not detected (around 3 letters over 20). The
second scenario intended to read some texts with bad pronunciation (intentional errors). Figure 6 displays
an example of this experience. The resulted file contained errors as expected. Consequently, confused
letters are detected only if they are well pronunciation.

To conclude, this experiment demonstrated that the efficiency of Google API depends on good pro-
nunciation and reading.
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Fig. 3. Sample text file

Fig. 4. An example of Google API conversion: Perfect Arabic words recognition

5.3 Experiment 2
As mentioned above, 70 files were used to test the proposed system. Table 4 shows the similarity

results before and after applying the preprocessing. The table also includes the running time and some
information about the used text file such as the level, the number of words, and the number of the test
file to allow any reader to check or collect it from the dataset.

Table 4. Experiment 1-Similarity and run time results before and after applying the preprocessing

Before Preprocessing After Preprocessing
Level Test File # Number of words Similarity Result Run Time Similarity Result Run Time
Small 1 23 0.87688 3.61732 1.0 4.22811
Small 2 16 0.84549 3.52537 1.0 3.22901
Small 3 22 0.90931 3.32654 0.92833 3.32647
Small 4 17 0.83106 3.39179 1.0 5.92216
Small 5 27 0.85387 5.07407 0.83450 9.69097
Small 6 22 0.90039 3.14730 0.94069 4.60508
Small 7 20 0.89899 3.09534 1.0 4.09458
Small 8 15 0.82521 2.92113 0.92023 6.09962
Small 9 20 0.82863 3.52796 0.97910 10.47554
Small 10 17 0.81975 2.71626 0.95241 4.08985
Small 11 33 0.89509 4.61103 0.90537 5.31696
Small 12 30 0.80312 4.62008 0.896203 7.01379
Small 13 22 0.86612 3.36361 1.0 3.97660
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Small 14 24 0.86396 2.91833 0.913019 5.66293
Small 15 24 0.96263 3.56152 0.970358 4.32730
Small 16 19 0.80710 3.59690 1.0 3.27493
Small 17 20 0.80200 3.21670 0.97623 2.83460
Small 18 18 0.86326 3.09410 1.0 3.95990
Small 19 12 0.99427 1.68401 1.0 1.90216
Small 20 17 0.96265 2.74962 1.0 3.61752
Small 21 35 0.85103 3.62400 0.87482 3.03745
Small 22 19 0.88942 2.45489 0.91321 2.51097
Small 23 16 0.85746 2.58014 0.88977 2.70789
Small 24 15 0.92825 3.98225 0.96700 2.90023
Small 25 17 0.90813 2.66837 0.98327 2.66220
Small 26 17 0.93199 2.77364 0.95909 2.23938
Small 27 16 0.88893 2.88976 0.90926 2.59419
Small 28 17 0.89899 2.56377 1.0 3.57457
Small 29 46 0.84435 3.76199 0.854188 5.19949
Small 30 24 0.88404 2.89221 0.88968 2.77268
Small 31 24 1.0 3.11782 1.0 3.02829
Small 32 16 0.818917 2.45622 0.890864 2.48279
Small 33 14 0.90703 2.44323 0.908298 2.20252
Small 34 15 0.98543 2.76236 0.995720 2.31327
Small 35 15 0.99061 2.98273 1.0 2.51088
Small 36 24 0.87374 3.78221 0.90099 2.65363
Small 37 21 0.86855 3.23568 0.92431 2.70739
Small 38 13 0.971332 2.19332 1.0 2.65025
Small 39 14 0.980238 2.33628 1.0 2.37025
Small 40 13 0.832128 1.77261 0.96422 2.28943

Average 88% 3.12581sec 95% 3.8264 sec
Medium 41 100 0.78618 11.89413 0.90963 16.76075
Medium 42 116 0.86190 19.11728 0.89931 26.48759
Medium 43 112 0.88770 9.151897 0.95247 13.13580
Medium 44 139 0.61680 26.32314 0.83190 31.45933
Medium 45 97 0.71968 11.33177 0.87517 17.44564
Medium 46 122 0.76770 12.83897 0.85338 16.11669
Medium 47 115 0.79531 15.86353 0.99531 13.12489
Medium 48 122 0.81531 22.91785 0.84215 25.16138
Medium 49 140 0.79860 14.15330 0.93860 25.72329
Medium 50 137 0.79518 21.42546 0.88098 31.57457
Medium 51 77 0.88368 11.57489 0.93727 7.80486
Medium 52 111 0.84961 10.37192 0.884576 8.29505
Medium 53 68 0.849355 12.03203 0.89465 5.874893
Medium 54 97 0.837759 10.62012 0.86166 8.60130
Medium 55 120 0.888841 10.44083 0.90264 9.62636
Medium 56 71 0.873462 8.74923 0.956882 5.81076
Medium 57 74 0.843235 9.52837 0.850807 5.97167
Medium 58 80 0.832297 10.92273 0.903698 7.23172
Medium 59 70 0.871828 9.22783 0.933640 5.95164
Medium 60 68 0.904724 8.44623 0.957127 7.41575

Average 82% 13.34657 sec 93% 3.8264 sec
Large 61 148 0.71832 28.86499 0.81832 38.87629
Large 62 166 0.73923 27.40820 0.85446 27.96598
Large 63 244 0.80648 39.46840 0.88356 41.95432
Large 64 240 0.80193 54.10544 0.89543 62.94765
Large 65 209 0.81762 31.09710 0.88341 43.47032
Large 66 182 0.847134 17.31701 0.86010 32.31429
Large 67 245 0.839067 19.19812 0.87462 28.57876
Large 68 220 0.838290 17.97989 0.85035 24.10581
Large 69 401 0.833130 43.32693 0.86029 40.16558
Large 70 155 0.834759 17.77302 0.89333 17.3188

Average 80% 29.65391 sec 86% 35.76978 sec
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Fig. 5. An example of Google API conversion: Absence of diacritics in the converted text

Fig. 6. An example of Google API conversion: Bad utterance of some words

As indicated in this table, the average similarity of the small, medium and large files are 88%, 82%,
and 80% respectively. As for the running time, the small level took 3 seconds, and the medium level took
13 seconds, while it is 29 seconds for the large level. On the other hand, the average similarities of the 3
type files after the pre-processing stage are 95%, 90% and 87% respectively. The average running time
for the small level is 4 seconds, 14 seconds for the medium level, and 34 seconds for the large level. This
result clearly shows the proportional relationship between:

1. The number of words in each file and the similarity percentage. The similarity slightly decreases
while the file size increases. This is because the proposed medium and large text files contain a
certain level of complexity in terms of intricate words (with confused letters). Besides, experiment
1 showed that Google API produced some errors when dealing with Medium and Large text files.
Figure 7 displays this relationship after and before applying the preprocessing.

2. The number of words in each file and the running time. More the file is large more time is spent to
find the result.

Moreover, this experimental result shows that the preprocessing stage, enhances the similarity 
percentage by 7% as shown in Figure 5, but raises the average running time by 2.5 seconds After 
performing many test cases, we found that Jaro Winkler Distance does not take more than average 0.02 
seconds to find the similarity, and in case of the similarity equals to 1, Jaro Winkler Distance takes 0 
seconds.

A deep investigation of the importance of the preprocessing was done to determine and overcome the 
limitation of both the Google Cloud Speech Recognition API and the Jaro Winkler Distance algorithm. 
As displayed in table 4, files number 31 and 45 have the highest and lowest similarity percentages 
respectively, without performing the preprocessing. File 31 is small with 25 simple and clear words. The 
Google API recognizes all the words correctly due to their simplicity. In addition, the original text file 
didn’t contain Arabic diacritics. While file number 45 is medium with 139 words containing an Arabic
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Fig. 7. The variation of the similarity percentages based on the number of words

complex poem. This file contains a lot of confusing words and the original text file has the Arabic
diacritics. It is worth to noticing that Arabic diacritics are used to indicate recognizably the presence
or absence of short vowels, distinguish long vowels from glides or diphthongs, and indicate geminate
consonants [1]. Unfortunately, the Jaro Winkler Distance algorithm can’t ignore these diacritics. For
example, comparing two similar words: one with diacritics and the other without such as: / ÕÎ

�
¯/ and /

ÕÎ

��
¯/ will give a Similarity = 0.9249999999999999. And as expected, removing the diacritic improves

similarity to 1. However, it is interesting to see that the similarity is not very low when having two words
with a different letter such as / ÕÎ

�
¯/ and / I. Ê

�
¯/ will give a Similarity = 0.8222222222222222.

5.4 Experiment 3
This experiment involves testing some chapters from the Holy Qur’an. A like the first experiment,

the same file levels (small, medium, and large) were used as indicated in Table 3. However, the number
of files used for each level type is 11, 8, 2 respectively. So, the experiment was conducted using a total
of 32 chapters from the Holy Qur’an.

Table 5. Experiment 2-Similarity and run time results using the Holy Qur’an before and after applying
the preprocessing

Before Preprocessing After Preprocessing

Level
Test
File#

Name and Verses
of Al-Quran

# of words
Similarity
Result

Run Time
Similarity
Result

Run Time

Small 1 Al-Fatiha: 1-7 29 0.767647 2.21977 1.0 5.97192
Small 2 Quraish: 1-3 39 0.37963 3.11728 0.99537 3.53565
Small 3 Al-Humazah: 1-3 49 0.45771 3.83721 0.93632 4.29911
Small 4 Al-Takathur: 1-4 45 0.60118 2.18253 0.893376 7.66418
Small 5 Al-Qariaah:1-3 43 0.71322 1.29918 0.99217 3.34298
Small 6 Al-Qader: 1-3 47 0.88129 3.88232 0.997549 6.93542
Small 7 At-Teen: 1-4 40 0.77100 3.18236 1.0 3.72891
Small 8 Ash-Sharh: 1-4 36 0.87987 5.62983 1.0 7.58649
Small 9 Al-Alaq: 1-4 47 0.639750 5.01125 0.969750 5.89196
Small 10 Al-Balad: 1-4 41 0.882271 6.81721 0.982271 8.14294
Small 11 Az-Zalzalah: 1-3 32 0.89585 5.91283 0.96585 9.57014

Average 72% 3.91743sec 98% 6.06088 sec
Medium 12 Al-Kahf: 1-9 89 0.69219 8.47342 0.94530 23.2740
Medium 13 Al-Kahf: 10-16 99 0.68941 0.84536 23.329792
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Medium 14 Al-Kahf: 17-21 139 0.68947 9.868973 0.86980 12.325084
Medium 15 Abasa: 1-4 70 0.87258 4.88273 1.0 4.90939
Medium 16 Ash-Shams: 1-4 71 0.87974 4.36555 1.0 4.80218
Medium 17 Al-Enfitar: 1-4 75 0.88876 3.79123 1.0 5.40777
Medium 18 Al-Haqqah:1-5 93 0.85373 6.98952 1.0 9.34521
Medium 19 Al-Qalam: 1-4 88 0.72971 6.19427 1.0 6.90862

Average 80% 7.03009 sec 96% 12.32414 sec
Large 20 As-Saf: 1-14 230 0.701531 19.61045 0.86638 18.41815
Large 21 Al-Mulk: 1-4 241 0.408293 17.46755 0.99923 16.44456

Average 55% 18.53900 sec 93% 17.43135 sec

As seen in Table 5, the average similarity percentages of the small, medium and large files before 
the pre-processing stage are 72%, 80%, 55% respectively. While the running time is 4 seconds for the 
small level, 7 seconds for the medium level and 18 seconds for the large level. On the other hand, the 
similarities of the 3 categories after the pre-processing stage are 98%, 96%, and 93%. The running time 
for the same categories are 6 seconds, 12 seconds and 17 seconds. We can see here the same relationship 
as the previous experiment between the number of words in each file and the similarity percentage, and 
also between the run time and length of the audio. Furthermore, the result was outstandingly enhanced 
after applying the pre-processing stage. The similarity is getting more accurate achieving an improve-
ment of 26% for the small level, 16% for the medium, and 38% for the large level. The need for the 
preprocessing operations is remarkably observed in this experiment. This is because the chapters of the 
Quran contain a lot of diacritics, which affect the similarity.

6. Comparison study

This section discusses two comparison studies using two well-known similarity distances and the state-
of-the-art-works.

6.1 Comparison with the Similarity distances

In this experiment, the Jaro Winker distance was compared to Cosine and Euclidean distances. It is 
worth to noticing that both metrics require numeric vectors for comparison purposes. Thus, some 
operations were performed on the original and converted texts as follows. Firstly, the aforementioned 
preprocessing operations were employed to both text files. Next, the stop-words were removed. Later, 
the stemming was applied to reduce the derived words to their root forms. Finally, the term frequency 
inverse document frequency was calculated to determine the frequency and the existence of each word in 
both text files. In fact, all the words detected in both documents are considered. Each word was 
represented by its frequency (the number of times it appeared in a document) or 0 when it does not exist 
in such a document. For example, if one word appears one time in the original text but was not 
mentioned in the converted text, then this word will be represented by 1 in the original file and 0 in the 
converted file. To perform this experiment, some files were taken from the collected data (20 small files, 
10 medium, and 3 large files). Table 6 figures out the results of the evaluation measures and the time 
required to calculate the metrics. As displayed, the results of the Cosine metric are very close to those of 
the Jaro Winker distance. Whereas, the Euclidean distance results are very small. The Jaro Winker 
distance yielded better average of the similarity results (94% for Small texts and 87% for the large texts) 
than the Cosine measure (92% for small and 84% for the large texts) for small and large text files. 
However, the Cosine provided the highest average of the similarity (93%) when dealing with medium 
text files. For the running time, the Cosine and the Euclidean distance provide the similarity results in an 
insignificant time (an average of 0.005 sec). This is because the time displayed in this table does not 
include the preprocessing and text representation operations nor the time required by Google API to 
convert the file. It just comprises the comparison between two numerical vectors. However, the running 
time provided for the Jaro Winker distance (an average of 32 sec) includes the whole process (API 
conversion, the preprocessing, and the similarity calculation). Not to mention that the Jaro Winker does a 
comparison in terms of words and letters which requires time. Consequently, Jaro Winker is a 
competitive similarity metric that achieved
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Table 6. Comparison study using Cosine and Euclidean distance metrics

Jarro-Winker Euclidean distance Cosine
Level Test File # Number of Similarity Run Similarity Run Similarity Run

words Result Time Result Time Result Time
Small 21 35 0.87482 3.03745 2 0.0115 0.9661 0.0080
Small 22 19 0.91321 2.51097 2.4495 0.0102 0.7273 0.0111
Small 23 16 0.88977 2.70789 0 0.0070 1 0.0050
Small 24 15 0.96700 2.90023 2 0.0116 0.8903 0.0040
Small 25 17 0.98327 2.66220 2.45 0.0100 0.7526 0.0060
Small 26 17 0.95909 2.23938 1 0.0030 0.9487 0.0020
Small 27 16 0.90926 2.59419 0 0.0039 1 0.0030
Small 28 17 1.0 3.57457 3.61 0.0030 0.8941 0.0020
Small 29 46 0.854188 5.19949 0 0.0040 1 0.0030
Small 30 24 0.88968 2.77268 0 0.0040 1 0.0030
Small 31 24 1.0 3.02829 0 0.004 1 0.003
Small 32 16 0.890864 2.48279 2.65 0.005 0.7206 0.0020
Small 33 14 0.908298 2.20252 2 0.0040 0.8462 0.0030
Small 34 15 0.995720 2.31327 1.41 0.0040 0.9375 0.0040
Small 35 15 1.0 2.51088 1.41 0.0040 0.9375 0.0030
Small 36 24 0.90099 2.65363 2 0.0040 0.9091 0.0020
Small 37 21 0.92431 2.70739 2 0.0040 0.9091 0.0020
Small 38 13 1.0 2.65025 0 0.0040 1 0.0030
Small 39 14 1.0 2.37025 1.7320 0.0070 0.8771 0.0030
Small 40 13 0.96422 2.28943 0 0.0040 1 0.0020

Average 94% 2.592 sec 1.34 0.006 sec 92% 0.004 sec
Medium 51 77 0.93727 7.80486 0 0.0050 1 0.0030
Medium 52 111 0.884576 8.29505 3.7417 0.0163 0.9314 0.0153
Medium 53 68 0.89465 5.874893 2.66 0.0162 0.9321 0.0052
Medium 54 97 0.86166 8.60130 4 0.0070 0.9177 0.0060
Medium 55 120 0.90264 9.62636 4.90 0.0070 0.9250 0.0050
Medium 56 71 0.956882 5.81076 2 0.0060 0.9565 0.0040
Medium 57 74 0.850807 5.97167 4.47 0.0084 0.8306 0.0070
Medium 58 80 0.903698 7.23172 3.46 0.0040 0.9178 0.0050
Medium 59 70 0.933640 5.95164 2.45 0.0060 0.9651 0.0045
Medium 60 68 0.957127 7.41575 3 0.0050 0.9091 0.0050

Average 91% 7.258 sec 3 0.007 sec 93% 0.005 sec
Large 66 182 0.86010 32.31429 6.63 0.0064 0.8698 0.0050
Large 68 220 0.85035 24.10581 6.40 0.005 0.9191 0.0050
Large 69 401 0.86029 40.16558 10.91 0.0040 0.7301 0.005

Average 87% 32.20 sec 7.98 0.005 sec 84% 0.005 sec

6.2 Comparison with the state of the art studies
In the following, the most similar study presented in (Gerhana et al., 2018) was chosen for the

comparison study. This work was selected because it used the same similarity metric and provided the
names of chapters tested including. Al- Kautsar Al- Buruj, and all the chapters of section 30 (Juz 30).
Accordingly, we have tested the same chapters using the proposed system. Table 7 shows the similarity
results of all the chapters included in section 30 (Juz 30) using the proposed system.

Table 8 figures out the comparison between the obtained results and those presented in (Gerhana et
al., 2018).

As it can be seen in Table 8, both studies achieved a similarity of 100% for chapters Al- Buruj and
Al- Kautsar. However, (Gerhana et al., 2018) reached a similarity of 91% whereas the proposed system
yielded a similarity of 96% when reciting Juz 30. Thus, the proposed system has a better result.

7. The Graphical user interface of the proposed system

The main contribution of this article is the implementation of a new tool for Arabic recitation. This tool
is available and can be downloaded on (https://drive.google.com/file/d/
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Table 7. Similarity result of Juz 30 of the Holy Qur’an using the proposed system

Test file # Sourat Result
1 An- Naba 0.87547
2 An-Nazi’aat 0.86031
3 Abasa 0.88415
4 At-Takwir 0.88795
5 Al-Infithar 0.93963
6 Al- Muthaffifin 0.90740
7 Al-Insyiqaaq 0.90196
8 Al-Buruuj 1.0
9 Ath-Thaariq 1.0

10 Al-‘Ala 0.88352
11 Al-Ghasyiyah 0.88178
12 Al-Fajr 0.87892
13 Al-Balad 0.90242
14 Asy-Syams 0.90796
15 Al- Lail 0.99918
16 Add-Dhuha 0.99853
17 Al-Inshirah 0.99780
18 At-Tiin 0.99847
19 Al-‘Alaq 0.97338
20 Al- Qadr 0.92872
21 Al-Bayyinah 0.945957
22 Az-Zalzalah 0.99231
23 Al-‘Aadiyaat 1.0
24 Al- Qaari’ah 0.97401
25 At-Takaatsur 1.0
26 Al- ‘Ashr 1.0
27 Al-Humazah 1.0
28 Al-Fiil 0.91598
29 Quraisy 1.0
30 Al-Maa’uun 1.0
31 Al-Kautsar 1.0
32 Al-Kaafiruun 1.0
33 An- Nasr 1.0
34 Al-Lahab 0.99737
35 AlIkhlas 1.0
36 Al-Falaq 1.0
37 An-Naas 1.0
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Table 8. Comparison study using some chapters of the Holy Qur’an

Sourat Related work (Gerhana et al., 2018) Samee’a System
Al- Buruj 100% 100%

Al- Kautsar 100% 100%
Section (Juz) 30 of the Holy Quran 91% 96%

1seBRBJC10QoPbc7dkDtHabbr8JIpncWz/view?usp=sharing) following the path:
Sameea\Recite\ArabicApplication\Main\dist and run the exe file.

This section introduces the interface of the proposed tool and shows how it works. In addition, the
user testing was performed to show the efficiency of this tool.

Fig. 8. The Graphical user interface of the proposed system

Figure 8 shows the proposed system. The GUI of the application consists of 5 steps. 1. The text entry
is where the user needs to type or paste the text into it. 2. The “Ok” button allows system to save the text
and preprocess it. 3. The counter allows the user to set the time (in seconds) needed for the recitation.
The counter will be countdown to let the user know when to stop reciting. Once the counter is null, the
system stops saving and proceeds to the recognition phase. 4. The “Start recitation” button allows the
system to start the speech recognition process. When this button is clicked, the system will hide the text
entered from the user. 5. The “Result” button allows the system to display the result of the recitation.

7.1 User experience testing
A user experience testing has been conducted for 2 different texts as displayed in Table 9
As seen in this table, the average result is 98% . We can observe that the utterance of the user affects

the result. Younger users may have non clear letter exits, which affects the Google Speech recognition
for finding the correct matched words. Yet, the obtained result is satisfactory.
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Table 9. User Experience testing performed using the proposed system

Text type Text File number User age Result

Small Text 7
7 years 93.2452%
11 years 95.8876%
16 years 100%
26 years 100%
50 years 98.5432%

Small Chapter from the Holy Qur’an 33
7 years 94.5427%
11 years 99.5432%
16 years 100%
26 years 100%
50 years 100%

Average 98%

8. Conclusion
This paper presents a new application for Arabic recitation. The proposed system comprises two parts, 
Arabic speech recognition using Google API and finding the similarity between the recognized speech 
and the text file using the Jaro Winker algorithm. A GUI was developed using Python development 
language. The proposed system was tested using various types of texts from simple and short to long and 
complex. Three experiments were done. The first one involved demonstrating the effectiveness of Google 
API in converting Arabic speech into text. The results showed that the conversion was successfully 
performed but depends on the pronunciation. The two other experiments consisted of two parts, with 
and without text preprocessing using the collected datasets and the Holly Qur’an respectively. It was 
shown that the preprocessing operations mainly increased the similarity results. Moreover, it was proved 
that the Jaro Winker distance is a competitive metric compared to the Cosine and Euclidean distance. 
Beside, the proposed study outperformed the existing study using the Holly Qur’an. The last experiment 
consisted of user acceptance testing, the obtained results were prominent. It was noted that the user’s 
utterance affects the recognition and similarity results. Finally, this work could be extended to enhance 
the proposed system. For example, displaying to the user the wrong uttered words could enhance both 
the user’s recitation/reading skills and the similarity results. Moreover, the user’s utterance could be 
more investigated to enhance Arabic speech recognition using Google API.
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