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Abstract

Ridge estimator is an alternative to ordinary least square estimator, when there is multicollinearity problem. There are 
many proposed estimators in literature. In this paper, we propose some new estimators. A Monte Carlo experiment 
has been conducted for the comparison of the performances of the estimators. Mean squared error (MSE) is used as a 
performance criterion. The benefits of new estimators are illustrated using a real dataset. According to both simulation 
results and application, our new estimators have better performances in the sense of MSE in most of the situations.
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1. Introduction 

Consider the following standard multiple linear regression 
model

                                (1)

where y is an n×1 vector of dependent variable, X is an 
n×p design matrix consisting explanatory variables as 
columns, where p is the number of explanatory variables, 
β is a p×1 vector of regression coefficients and ε is an 
n×1 error vector distributed normally with zero mean and 
variance σ2. The ordinary least squares (OLS) estimator 
of the coefficient vector β is defined as follows:

                             (2)

The well-known problem of multicollinearity arises due 
to linear dependencies between the explanatory variables, 
which lead to large variance and large mean squared 
error (MSE). As a consequence, we observe ineffective 
inference and prediction in regression focus parameters. 
For instance, this situation occurs in econometric data.

In literature, there are various methods to solve 
multicollinearity. One of the most popular method is the 
ridge regression, firstly suggested by Hoerl & Kennard 
(1970), which is defined as

                       (3)

where 0k > .

The mean squared error (MSE) of the ridge estimator 

 is given as follows

    (4)

where ’s are the eigenvalues of the matrix .

The first term of Equation (4), namely, the asymptotic 
variance function is monotonically decreasing and 
the second term, namely, the squared bias function 
is a monotonically increasing in parameter k . Thus, 
there is some k  such that 

 
is less than

. However, 
 

depends 

on the parameters  and k  which are unknown in 
practice. Thus, k  should be estimated from the data. Most 
of the papers on ridge regression discusses the methods of 
estimating the ridge parameter k . 

In recent papers, the new suggested estimators have 
been compared to the one proposed by Hoerl & Kennard 
(1970) and each other. Many of the studies in this area 
suggest different estimators of ridge parameter. For 
detailed discussions we refer to the following studies; 
Hoerl et al. (1975), Lawless & Wang (1976), Saleh & 
Kibria (1993), Kibria (2003), Khalaf & Shukur (2005), 
Alkhamisi et al. (2006), Muniz & Kibria (2009), Mansson 
et al. (2010) and Muniz et al. (2012).

The purpose of this study is to investigate the estimation 
methods of ridge parameter in the literature and make a 
comparison between them by conducting a Monte Carlo 
simulation. We also suggest some new modifications of 
the estimator defined by Lawless & Wang (1976). We 
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use MSE criterion to compare the performances of the 
estimators. The organization of this paper is as follows. In 
section 2, we present the methodology and propose some 
new estimators. In section 3, we provide the details of 
Monte Carlo simulation. Moreover, results and discussions 
aregiven in section 4. Finally, we analyze a real data 
example to illustrate the benefits of new estimators in 
section 5.

2. Methodology and proposed estimators 

Firstly, we review the generalized ridge regression 
(Alkhamisi & Shukur, 2007). To do so, we write the 
general model (1) in canonical form. Assume that the 
matrix D includes the eigenvectors of  as columns 
such that  where  ’s 
are the eigenvalues of the matrix . Let us substitute 

 and  in model (1), then the canonical 
version of (1) is given by the following equation

                                (5)

Thus the generalized ridge estimator is given as 
follows

                        
(6)

where 
 
such that 

 
for each 

. The OLS estimator of  can be computed 
as follows

                             (7)

The MSE of   and  are respectively obtained as

        (8)

and

                     
  (9)

Hoerl & Kennard (1970) showed that the value of 
minimizing (8) is

                                 (10)

where σ2 is the error variance and α j is the thi element of 
α . Since σ2 and  are not known, they suggested to use 
the common unbiased estimators  and  respectively 

and obtained  where .

Now, we review some proposed estimators in previous 
research works:

The estimator

                              
 (11)

was suggested by Hoerl & Kennard (1970) where  is 
the maximum element of . Likewise the estimator

                          
 (12)

which is the harmonic mean of 
 
and suggested by Hoerl 

et al. (1975).

                          (13)

which is the harmonic mean of  and 

proposed by Lawless & Wang (1976) whereas

                        

  (14)

as an estimator which is the harmonic mean of 

 proposed by Dorugade (2014). The 

estimators

           (15)

and

 
          (16)

were defined by Muniz et al. (2012).

We define our new estimators which are modifications 

of  proposed by Lawless & Wang (1976) for 

the generalized ridge regression. To achieve our desired 
estimators, we apply the square root transformation to 

this individual parameter and get 
 
in a similar 

manner performed in Muniz & Kibria (2009) and 
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Mansson et al. (2010). After this transformation, we apply 
arithmetic mean, geometric mean and harmonic mean 
transformations and we also use maximum, minimum and 
median functions following Kibria (2003) and Muniz et 
al. (2012).

Thus, we get the following new estimators: Let

,

                         (17)

which is the arithmetic mean of Yjk ’s.

Similarly, the estimator

                      (18)

is the geometric mean of Yjk ’s whereas the estimator

                       (19)

is the median of Yjk ’s.

Likewise the estimator we suggest

                          (20)

is the maximum of Yjk ’s and the estimator 

                     (21)

is the median of 1/ Yjk ’s. In a similar fashion, we propose 
the estimator

                        (22)

which is the median of 1/ Yjk ’s and the estimator

                        (23)

the mean of 1/ Yjk ’s.

Finally, we present the estimators

                        (24)

and

                         (25)

which are and the harmonic means of Yjk ’s and 1/ Yjk ’s 
respectively.

All of these estimators are compared via a Monte Carlo 
simulation and details of the simulation are given in 
section 4.

3. The Monte Carlo simulation 

In this section, we provide the design of the Monte 
Carlo simulation, which is conducted to compare the 
performances of the estimators. In order to conduct a 
meaningful simulation, we need to specify the effective 
properties of the estimators and the performance criteria. 
Effective factors in this simulation are the degree of 
correlation ρ among variables, the error variance σ2, the 
number of explanatory variables p and the data size n . 
Also the mean squared error of the estimators has been 
chosen to be the performance criteria for the simulation. 
In order to get different degrees of multicollinearity and to 
generate the explanatory variables, we used the following 
generally used equation (Kibria (2003)):

                     (26)

where 1,2, , , 1, 2, ,i n j p= … = … , ρ2 is the correlation 
between the explanatory variables and zij’s are independent 
pseudo-random numbers following the standard normal 
distribution. The vector of dependent variable y is 
generated by 

              (27)

where 1, 2, , i n= …  satisfying  where β is the 
eigenvector corresponding to the largest eigenvalue 
of X X′  in order to get a minimized MSE due to Kibria 
(2003) and εi has zero mean and variance σ2. 

We consider three different degrees of correlation, 
namely,  and 0.99. The sample size varies as 

50, 100n =  and 200. The number of explanatory variables 
are chosen as 4p =  and 8. Finally, the error variance is 
chosen as  and 5.0 . For the values of  and 
σ2, the simulation is repeated 5000 times by producing the 
errors in Equation (27). For each replicate we compute 

 
and 

 
by using the following equation

          (28)
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where  is the estimator given in previous section at the 
thr  replication.

4. Results and discussions

The results of the simulation have been presented in 
this section. Performance of an estimator is quantified 
through the MSE criterion. The average mean squared 
error (AMSE) values of the estimators, according to ρ,n,p 
and σ2 have been given in Tables 1-4. According to tables, 
all new proposed estimators have better performance than 
OLS estimator, namely, they have less AMSE than OLS 
estimator. 

Increasing the sample size has a positive effect 
on the estimators, i.e, for large values of sample size, 
ASME values decrease as it is seen from Figure 1. It 
is obvious from tables that when the error variance σ2 
increases, AMSE values increase for all estimators. This 

result is represented for specific situations, namely, for 
 in Figure 2. Moreover, an increase 

in the degree of correlation makes a negative effect as it is 
observed from Figure 3.

For the case 4p =  and , the estimator 6Yk  
has the best performance among all of the estimators. 
However, 8KMk  is superior to other when  and 
small sample sizes. For the case 4p =  and  

HKBk  becomes the best estimator for lower degrees of 
correlation and 4Yk  has the lowest AMSE values for high 
degrees of correlation.

Moreover, for the case 8p =  and , 6Yk  has the 
best estimator most of the time and 4Yk  has the lowest 
AMSE when . Similarly, when 8p =  and 

, although 4Yk  has the lowest AMSE most of the 
time, HKBk  is superior to other estimators for lower degree 
of correlation and large sample sizes. 

Table 1. Average MSEs of the estimator when p = 4, σ2 = 1.0

ρ 0.90 0.95 0.99

n 50 100 200 50 100 200 50 100 200

Y1 0.3275 0.2120 0.1171 0.5061 0.3478 0.2122 0.8369 0.6956 0.5800

Y2 0.3301 0.2141 0.1119 0.5259 0.3662 0.2128 0.8789 0.7369 0.6196

Y3 0.3303 0.2127 0.1110 0.5361 0.3687 0.2113 0.9210 0.7695 0.6430

Y4 0.3476 0.2281 0.1360 0.5000 0.3505 0.2300 0.7955 0.6695 0.5593

Y5 0.3034 0.1985 0.1072 0.4811 0.3288 0.1977 0.9808 0.7538 0.5796

Y6 0.2333 0.1433 0.0883 0.3576 0.2278 0.1489 0.7011 0.5361 0.4110

Y7 0.2796 0.1778 0.0990 0.4451 0.2949 0.1799 0.8821 0.6845 0.5329

Y8 0.3551 0.2296 0.1154 0.5856 0.4081 0.2256 1.0020 0.8504 0.7113

Y9 0.3401 0.2173 0.1114 0.5876 0.3906 0.2145 1.5461 1.1214 0.7715

LW 0.3912 0.2472 0.1187 0.6935 0.4727 0.2408 1.3995 1.1668 0.8996

HK 0.3412 0.2147 0.1118 0.5908 0.3851 0.2132 2.0763 1.3688 0.7990

HKB 0.3048 0.1864 0.1034 0.5017 0.3218 0.1883 1.6540 1.0655 0.6414

AD 0.4151 0.2545 0.1194 0.8508 0.5302 0.2475 4.5628 2.9008 1.3476

KM8 0.3001 0.2008 0.1081 0.4408 0.3227 0.2009 0.6666 0.5320 0.4849

KM12 0.3399 0.2221 0.1140 0.5476 0.3873 0.2211 0.8626 0.7748 0.6789

OLS 0.4191 0.2553 0.1195 0.8651 0.5332 0.2478 4.7208 2.9418 1.3526
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Table 2. Average MSEs of the estimator when p = 4, σ2 = 5.0

ρ 0.90 0.95 0.99

n 50 100 200 50 100 200 50 100 200

Y1 1.3244 0.9091 0.5156 1.8762 1.4019 0.9107 2.3209 2.1786 2.0446

Y2 1.4955 1.0095 0.5453 2.2153 1.6270 1.0050 2.8943 2.7179 2.5044

Y3 1.5195 1.0207 0.5445 2.2940 1.6716 1.0129 3.1440 2.9083 2.6499

Y4 1.0670 0.7590 0.4707 1.3751 1.0714 0.7632 1.5299 1.4527 1.4133

Y5 1.5530 1.0046 0.5354 2.5217 1.7215 1.0004 4.5115 3.8330 3.0642

Y6 1.2195 0.8069 0.4613 1.7448 1.2636 0.8176 2.1889 2.0900 1.9193

Y7 1.5094 0.9768 0.5230 2.4047 1.6591 0.9758 3.8951 3.4471 2.8753

Y8 1.6341 1.0801 0.5633 2.5611 1.8252 1.0682 3.7627 3.4242 3.0232

Y9 1.7290 1.0977 0.5582 3.0385 2.0087 1.0835 7.7538 5.8839 4.0391

LW 1.7626 1.1505 0.5812 2.9230 2.0334 1.1311 5.4392 4.5521 3.6558

HK 1.1732 0.7721 0.4508 2.0031 1.3138 0.7729 8.4268 5.3113 2.8338

HKB 0.9558 0.6269 0.3874 1.5987 1.0296 0.6291 6.8312 4.1164 2.1880

AD 2.0454 1.2652 0.5963 4.1946 2.6331 1.2348 22.6858 14.4506 6.7237

KM8 1.5875 1.0652 0.5605 2.2805 1.7238 1.0642 1.8245 2.1179 2.4347

KM12 1.7188 1.1216 0.5701 2.8197 2.0059 1.1139 3.6712 3.9506 3.5952

OLS 2.0956 1.2766 0.5975 4.3257 2.6660 1.2388 23.6041 14.7092 6.7628

Table 3. Average MSEs of the estimator when p = 8, σ2 = 1.0

ρ 0.90 0.95 0.99

n 50 100 200 50 100 200 50 100 200

Y1 0.5670 0.3797 0.2168 0.7396 0.5627 0.3627 1.0358 0.9590 0.8317

Y2 0.7215 0.4517 0.2330 0.9407 0.7007 0.4146 1.2997 1.2182 1.0199

Y3 0.7554 0.4567 0.2333 1.0144 0.7271 0.4197 1.4980 1.3626 1.1021

Y4 0.4583 0.3292 0.2274 0.5928 0.4615 0.3457 0.8610 0.7695 0.6990

Y5 0.8515 0.4882 0.2415 1.1811 0.8097 0.4477 2.1570 1.7801 1.3128

Y6 0.3968 0.2591 0.1600 0.5850 0.4062 0.2654 0.9830 0.8592 0.7221

Y7 0.7139 0.4313 0.2235 1.0146 0.7028 0.4038 1.8353 1.5452 1.1684

Y8 0.9032 0.5157 0.2499 1.1809 0.8445 0.4665 1.7150 1.5654 1.2471

Y9 1.1448 0.5443 0.2532 1.7840 0.9923 0.4941 4.0779 2.9249 1.8220

LW 1.2359 0.5864 0.2640 1.6434 1.0502 0.5240 2.4264 2.1084 1.5833

HK 0.9926 0.4804 0.2397 1.7876 0.8400 0.4433 5.2419 3.2713 1.6524

HKB 0.5774 0.3047 0.1778 1.0317 0.5035 0.2985 3.1291 1.8972 0.9943

AD 1.8030 0.6249 0.2684 3.8716 1.3128 0.5614 11.3430 7.2704 3.0909

KM8 0.6642 0.4639 0.2368 0.7984 0.6998 0.4254 0.8952 0.9351 0.9341

KM12 1.1122 0.5537 0.2561 1.5154 0.9858 0.5022 2.0181 1.9750 1.5903

OLS 1.8328 0.6271 0.2687 3.9512 1.3198 0.5623 11.5169 7.3363 3.1027



Yasin Asar, Aşır Genç 80

Fig. 1. AMSE values of some estimators for changing values of n  
when 

Fig. 2. AMSE values of some estimators for changing values of 
variance when 

Fig. 3. AMSE values of some estimators for different degrees of 
correlation when 

5. Real data application 

In order to show the performances of new estimators, we 
use a well-known real data set which was studied originally 
by Stamey et al. (1989). The data represents the relationship 
between the dependent variable y, the logarithm of prostate-
specific antigen (lpsa) and the explanatory variables which 
are log (cancer volume) (lcavol), log (prostate weight) 
(lweight), age (age), the logarithm of benign prostatic 
hyperplasia amount (lbph), log (capsular penetration) (lcp), 
seminal vesicle invasion (svi), Gleason score (gleason), and 
percent of Gleason scores 4 or 5 (pgg45).

Table 4. Average MSEs of the estimator when p = 8, σ2 = 5.0

ρ 0.90 0.95 0.99

n 50 100 200 50 100 200 50 100 200

Y1 2.5268 1.7697 1.0046 3.0642 2.5095 1.6473 3.5730 3.4507 3.2286

Y2 3.3543 2.1772 1.1446 4.2378 3.2832 1.9962 5.2919 5.1758 4.4695

Y3 3.6498 2.2636 1.1619 4.7105 3.5243 2.0715 6.1660 6.0272 4.9788

Y4 1.3927 1.1165 0.7606 1.5550 1.4004 1.0912 1.6847 1.5909 1.5635

Y5 4.3526 2.4463 1.2071 6.1623 4.1120 2.2461 10.9866 9.2113 6.7023

Y6 2.5909 1.7378 0.9666 3.3631 2.6181 1.6582 3.9440 4.2138 3.7068

Y7 4.0102 2.3353 1.1719 5.5955 3.8621 2.1579 9.2201 8.1761 6.1248

Y8 4.0289 2.4214 1.2117 5.2722 3.8510 2.2028 7.3750 6.9591 5.5651

Y9 5.8094 2.7305 1.2669 9.2274 5.0156 2.4796 20.9435 15.4628 9.6460

LW 4.8429 2.6461 1.2689 6.5049 4.4026 2.3819 10.3513 8.8126 6.6613

HK 3.8459 1.6566 0.9060 7.6554 3.1001 1.5839 24.4082 15.7781 7.1248

HKB 2.2390 1.0145 0.5831 4.3854 1.8160 0.9686 14.4423 9.1194 4.2350

AD 8.9600 3.1143 1.3401 19.2805 6.5465 2.8023 56.6544 39.9325 17.6938

KM8 3.4722 2.4634 1.2369 4.0338 3.6972 2.2569 4.7571 4.6206 4.5134

KM12 5.6448 2.7720 1.2806 7.8728 4.9735 2.5133 10.9230 10.4046 8.4176

OLS 9.1638 3.1356 1.3434 19.7561 6.5992 2.8117 57.5846 40.3097 17.7640
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The eigenvalues of the matrix X X′  are obtained 
as 8.0931, 20.2390, 44.5238, 64.7986, 175.6339, 
210.9038, 6.1907e+4 and 4.7908e+5. The condition 
number  of the data is 
approximately 5.9196e+04which show that there is a 
severe collinearity problem with this dataset. The estimated 

theoretical MSE values of the estimators considered in 
this study are reported in Table 5 by using equations (8) 
and (9) (Please see the Appendix for R codes.). According 
to Table 5, 9Yk  and 8KMk  have the least MSE values. 
Moreover, the estimators 1 2 3 8, , ,Y Y Y Yk k k k  have less MSE 
values than that of OLS. 

Table 5. Estimated theoretical MSE values of the estimators

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
0.10133 0.10548 0.10552 0.13782 0.11760 0.48129 0.18193 0.10786

Y9 LW HK HKB AD KM8 KM12 OLS
0.10073 0.11005 0.12056 0.11731 0.11015 0.10089 0.10333 0.11015

6. Conclusion

In this study, we proposed new ridge estimators, which are 
modifications of the estimator LWk  defined by Lawless & 
Wang (1976) and studied the properties of new modified 
estimators for choosing ridge parameter, when there is 
multicollinearity between the explanatory variables. We 
compared the estimators proposed earlier to our new 
proposed estimators through a Monte Carlo simulation 
having 5000 replications for each combination. Average 
mean squared error (AMSE) has been chosen to be the 
evaluation criterion for the simulation. We created tables 
consisting of AMSE values according to different values 
of the sample size n , the degree of correlation ρ, the 
number of predictors p and the variance of error terms 
σ2. We have provided some figures for selected situations. 
According to tables and figures, we may say that our new 
suggestions for ridge estimators are better than the others 
for most of the cases. Especially 4Yk  and 6Yk  have smaller 
ASME values in most of the situations. Moreover, we 
considered a real dataset to illustrate the performances of 
estimators in the sense of MSE and presented the benefit 
of using the new estimators. 9Yk  and 8KMk  have quite less 
MSE value than the others and OLS. 
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