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Abstract

Wireless Sensor and Actor Networks (WSANs) have been extensively employed in various domains
ranging from elementary data collection to real-time control and monitoring for critical applications.
Network connectivity is a vital robustness measure for overall network performance. Different
network functions such as routing, scheduling, and QoS provisioning depends on network connectivity.
The failure of articulation points in the network disassociates the network into disjoint segments.
We proposed Distributed Partition Detection and Recovery using Unmanned Aerial Vehicle (UAV)
(DPDRU) algorithm, as an optimal solution to recover the partitioned network. It consists of three steps:
Initialization, Operational and Detection, and Recovery. In the Initialization phase sink node collects all
the information about the network. In the Operational and Detection phase, network nodes communicate
regularly by exchanging HEARTBEATS, detects failure if some nodes do not get a message from the
neighbor node and send failure reports, and sink node identifies network partition. In the recovery
phase, the sink node sends UAV at the positional coordinates of the failed node and examines network
recovery after UAV reaches the desired location. Our approach primarily focuses on reducing message
overhead by sending few update messages to sink node and energy consumption by engaging network
nodes only for communication. The requirements of the recovery process (physical movement and
communication) are fulfilled by UAV. The algorithm is tested according to the following parameters:
Detection Time, Recovery Time, message overhead, and distance traveled by UAV. Simulation results
validate the efficacy of the proposed algorithm based on these parameters to provide reliable results.
The minimum and the maximum number of messages transmitted are 11 for 10 nodes and 24 for 100
nodes respectively. Hence these results demonstrate that the message overhead in our proposed solution
is less as compared to other techniques when the number of nodes increases.

Keywords: Knowledge table; partition detection; partition recovery; relay node; sensor network;
Unmanned Aerial Vehicle.

1. Introduction

WSANs have been gaining the attention of 
the researcher’s community because of their 
serviceability in rough environments. They 
reduce human engagement to attain intelligent 
and autonomous interactions with the environment 
(Younis et al., 2014; Akkaya & Senel, 2009, 
Ranga et al., 2013). WSANs comprise connected 
sensor and actor nodes through a wireless 
medium. Sensors report information related 
to multiple events to actors, and actors make

quick decisions based on the received data 
and carry out actions. As compared to 
sensors, actors have better computation and 
communication capabilities. Actors can do sensing 
mechanisms. However, the decision-making 
capability is not present in sensors. The extensive 
applications of WSANs in different domains 
require effectiveness, reliability, and some degree 
of robustness (Bayrakdar, 2020a,b). However, 
the robustness of the network to handle different 
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kinds of failures depends on the specificity of 
the deployed nodes (Shriwastav & Ghose, 2018; 
Verma & Ranga, 2018; Bayrakdar, 2020c). The 
minimal characteristics of sensor nodes and their 
deployment in the rough environment result in a 
drastic decrease in the reliability of WSANs. Also, 
the interferences caused by the sensor and actor 
nodes increase collisions and the process of re-
transmissions, which causes the premature failure 
of sensor nodes because of the increase in energy 
consumption. These factors affect the proper 
functioning of the network and lead to the failure 
of nodes without completing their actual mission 
or task. The failures can also create a network 
partition where parts of the deployed network 
get entirely disconnected from the base station 
(sink) node. Thus network connectivity to avoid 
such partitioning can be assured by integrating 
node deployment mechanisms along with recovery 
mechanisms (Stojmenovic et al., 2011; Mahmood 
et al., 2018; Lee et al., 2015; Jha et al., 2019; 
Senturk et al., 2014; Joshi & Younis; 2016; Ranga 
et al., 2016b; Lalouani et al., 2017; Bayrakdar, 
2020d).

The network partitioning can be either due 
to single cut-vertex failure or because of the 
simultaneous failure of multiple nodes that can 
include cut-vertex or non-cut vertices (Stojmenovic 
et al., 2011). Restoring connectivity after 
failure because of unknown reasons with limited 
resources for the continuation of sensing and 
acting services is critical. The mechanisms to 
recover from simultaneous multiple node failures 
can be categorized depending on whether the 
damaged nodes are collocated or dispersed. The 
dispersed damaged node’s failure recovery is 
similar to handling separate single-node failures 
when recovered in a centralized manner. On 
the other hand, autonomous recovery through 
distributed solutions is problematic due to resource 
conflicts. An example of such conflict is 
simultaneous requests to a node to assist recovery 
from two different individual node failures. 
Synchronization mechanisms are required to 
mitigate such conflicts. The most challenging 
scenario is mitigating the simultaneous failure of 
numerous collocated nodes because it becomes 
difficult to resolve the scope of failure (Shriwastav 
& Ghose, 2018; Senturk et al., 2014; Abbasi et al., 
2010; Zhang et al., 2018; Chouikhi et al., 2017; 
Ma et al., 2016; Hashim et al., 2016; Joshi & 
Younis, 2014; Akkaya & Senel, 2009; Afzaal et al.,

2017; Senturk et al., 2012; Akkaya et al., 2010; 
Srinivasaperumal et al., 2017; Akkaya & Senel, 
2009; Bayrakdar, 2020e; Ranga et al., 2016a).

The way of illustrating the deployed network 
using a graph is regarded as an efficient way for 
failure recovery. The failure recovery techniques 
are categorized into four types: Deploying 
redundant nodes, Node relocation, employing 
data mules to relay data (data ferrying), and 
placement of relay nodes. The first category 
is based on provisioning additional resources for 
establishing k-connectivity, with the aim that 
network operates even after some node damages 
(Akkaya et al., 2010). This technique results 
in huge communication overhead and significant 
deployment expenditure. The second technique 
is based on the assumption that nodes are mobile 
and can move in a particular direction to restore 
communication links by relocating a subset of 
surviving nodes for failure recovery (Younis et al., 
2014; Shriwastav & Ghose, 2018; Chouikhi et al., 
2017). This solution requires complex hardware 
for network nodes and leads to high energy 
consumption (Younis et al., 2014; Mahmood et al., 
2018; Lee et al., 2015). The third technique is 
a temporary recovery mechanism where mobile 
data collectors (data mules) are used to transfer 
information between the partitioned clusters. This 
solution is not efficient because of the increased 
overhead and data latency. The utmost important 
fourth network recovery technique is through relay 
node deployment. It is the most popular and 
efficient mechanism where existing and additional 
nodes are deployed to re-establish connection 
among nodes (Jha et al., 2019; Joshi & Younis, 
2016; Ranga et al., 2016b; Chouikhi et al., 
2017). Finding an optimal relay count required 
to restore links is an optimization problem and 
requires complete information about the number of 
partitions and locations of nodes in them (Younis 
et al., 2014; Shriwastav & Ghose, 2018; Senturk 
et al., 2014; Chouikhi et al., 2017; Alfadhly et al., 
2011; Cheng et al., 2017; Nikolov & Haas, 2016; 
Devi & Manickam, 2014; Zahid et al., 2018; Liu 
et al., 2018; Lee et al., 2016; Kumar & Amgoth, 
2019; Lalouani et al., 2017; Ranga et al., 2016a).

All the techniques mentioned above for network 
partition recovery are based on the assumption that 
nodes are moving in an obstacle-free environment, 
which is impossible in real environments. Various 
physical obstacles like buildings or mountains
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obstruct the network communication. Dynamic 
obstacles such as a group of birds or animals 
and environmental conditions harm sensor network 
and blocks the connection. The less applicability 
of proposed solutions in practical situations can 
be solved by employing drones or Unmanned 
Aerial Vehicles (UAVs). UAVs are suitable 
because of their serviceability in areas that are 
not in the reach of ground nodes (vehicles or 
robots) due to obstacles and capability to work in 
harsh environmental conditions. These advantages 
of UAVs have increased their usage in several 
applications such as agriculture, disaster recovery, 
industrial inspections, military, and remote sensing. 
Therefore the objective of our research is to 
examine the performance of UAVs for network 
partition recovery (Zhang & Liu, 2019; Chriki 
et al., 2019). Thus our research in this paper 
is based on distributed monitoring of neighboring 
nodes and reporting their failures to sink node. If 
the sink node addresses this failure as a network 
partition, then it employs UAV for the network 
recovery, as shown in Figure1.

Fig. 1. UAV Connecting Disjoint Network 
Partitions.

In this paper, we proposed Distributed Partition 
Detection and Recovery using UAV (DPDRU). The 
main advantage of our approach is that it reduces 
the message overhead on the sink node, and uses 
UAV as the relay node for re-connection that can 
even work in rough environments with obstacles 
where normal network nodes cannot work properly. 
The approach that involves node re-locations 
dissipates energy for both node movements and 
communication. Therefore in our approach, 
network nodes are free from this overhead. The 
sink node and network nodes consume energy 
only for communication. UAV with better 
communication range, durable battery as compared 
to sensor nodes, is utilized for both movements and

communication purposes. The algorithm is divided 
into three phases: Initialization, Operational and 
Detection phase, and Recovery phase. The 
initialization phase is used to collect all the network 
information by the nodes for the sink node. 
Depending on the collected information, the sink 
determines the cut-vertices in the network graph 
and stores them. The Operational and Detection 
phase is used to detect the failures and notifying 
the sink node about them. In the Recovery phase, 
UAV reconnects the partitioned network, and the 
sink node confirms that partitions are reconnected. 
Hence our proposed algorithm aims at detecting 
and recovering the network partition. The 
previously proposed solutions are less applicable 
in practical situations, and this issue can be solved 
by employing drones or Unmanned Aerial Vehicles 
(UAVs) that can even work in harsh environmental 
conditions. Hence instead of focusing on node 
relocation-based solutions, We propose to use UAV 
for re-establishing connectivity in the network 
partitions. Along with this, we have also tried 
to reduce the number of messages transmitted to 
detect and recover the network partitions.

The brief introduction of the remaining sections 
in the paper is depicted as follows: Section 
2 provides related work of network partition 
detection and recovery solutions. The system 
model is depicted in Section 3, and Section 4 
explains the phases of the algorithm along with 
pseudocode. Section 5 and Section 6 discuss 
the algorithm analysis of DPDRU and simulation 
results.

2. Background

Maintaining connectivity is an essential 
requirement of WSANs. Various efforts have 
been made to remodel network partitions to form 
connected sensor and actor-network topology. 
The proposed solutions can be divided into two 
categories: preventive and curative. The curative 
solution for failure management is triggered after 
the failure is identified. It includes different 
techniques, such as the deployment of additional 
nodes and reorganizing the partitioned network. 
The preventive approach for fault tolerance aims at 
handling network partitions before failure include 
avoiding damages of the node, and transmitting 
information through alternate paths, if some node 
fails (Younis et al., 2014; Akkaya & Senel, 2009; 
Shriwastav & Ghose, 2018). These solutions focus 
on deployment strategies (relay nodes, redundant
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nodes, etc.), multiple-path routing strategies, 
managing energy consumption (sensor activities, 
sleep schedule, multi-channel communication, 
etc.) (Chouikhi et al., 2017; Kumar & Amgoth, 
2019).

Partition Detection and Recovery Algorithm 
(PADRA) in (Akkaya & Senel, 2009) detects the 
partitioned segments in the network and recover 
the connections through the regulated displacement 
of sensor nodes. The partition in the network 
is identified by monitoring the failure of a cut-
vertex. (Abbasi et al., 2010) proposed the 
least disruptive topology repair algorithm (LeDiR), 
which relocates the block containing a smaller 
number of nodes among the network segments 
for recovery. It ensures that path length between 
the pair of network nodes does not increase as 
compared to the previously connected network. 
Distributed Node Recovery Algorithm (DARA) is 
proposed in (Abbasi et al., 2007) to recover the 
disconnected network. It uses the least number 
of actor nodes for establishing connectivity. The 
Distributed Prioritized Connectivity Restoration 
Algorithm (DPCRA) (Ranga et al., 2014) approach 
restores connectivity with minimum nodes. This 
hybrid approach assigns failure handlers to each 
cut-vertex nodes. When the network gets 
partitioned, these failure handlers perform the 
recovery process. In (Chouikhi et al., 2017) two 
centralized approaches have been proposed for 
reconnecting disjoint segments resulted because of 
the failed cut-vertex node. The PFR algorithm 
takes preventive steps for making network robust 
so that network partition should not occur, and 
the second RNFR algorithm intent to recover the 
partitioned network.

Two-connected topology is formed in (Hwang 
et al., 2014) to federate the disjoint segments of the 
network. At the first stage, the smallest convex hull 
is located, and each segment places the network’s 
center point and then relays in the convex hell for 
connecting different segments. Federating network 
segments via triangular Steiner tree approximation 
(FeSTA) in (Senel & Younis, 2011a) represents 
the disjoint segment using terminal nodes, and a 
triangle is used to describe the subset of three 
terminals. The triangle is steinerized by reducing 
the edges of MST. This step either creates a 
new connected component or joins the terminal 
with already present connected components. The 
algorithm works quite well when tested according

to network coverage, average path length, and 
average node degree. In (Lalouani et al., 
2017) Boundary-aware optimized Interconnection 
of Disjoint segments (BIND) algorithm uses the 
shorter length topology in the two-dimensional 
plane to restore the network. The subset of nodes is 
selected from the boundaries of disjoint segments 
and then interconnected using the additional 
Steiner pairs to form interconnected topology 
between the segments. In (Joshi & Younis, 
2016), the Geometric Skeleton based Reconnection 
(GSR) approach shapes the partitioned network 
area in a distributed way to recover connectivity. 
The network area is transformed into the two-
dimensional skeleton for placing relays along with 
this skeleton which acts as the support structure to 
reconnect the network

Cell-based Optimized Relay Placement (CORP) 
algorithm in (Lee & Younis, 2010b) divides the 
area into equal size cells or grids. The cells present 
at the minimum distance between two pairs of 
segments are called the best neighbor cell. The 
algorithm works in several iterations. Each round 
consists of electing the best cell, and relay nodes 
are populated in the selected cell. The process 
continues until the segments form connected 
topology by including relay nodes. Partition 
detection and Connectivity Restoration (PCR) 
algorithm in (Imran et al., 2010) determined the 
critical-actor node from the local topological data. 
Actor nodes that function as backup monitor the 
critical nodes continuously. After detecting the 
failure, they coordinate their movements towards 
the failed critical node. These displacements are 
continued until the connectivity is re-established. 
The work in (Senel & Younis, 2011b) represents 
each partition using all the nodes present in the 
boundary. It constructs a minimum spanning 
tree between boundary nodes and computes the 
required relay count to set up the network with no 
partitions. The main objective is to reduce the total 
path length. Connectivity Restoration with Assured 
Fault Tolerance (CRAFT) algorithm in (Lee et al., 
2015) creates a larger inner cycle, which is the 
backbone polygon (BP). No partition resides in 
this backbone polygon as BP is constructed around 
the failure region. The relay nodes are placed on 
BP, and every outer partition is then connected 
to BP. The algorithm works by reducing the path 
length between each pair of segments, and network 
topology is made bi-connected by deploying relays
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with a high node degree. (Lee & Younis, 2010a) 
proposed a Distributed algorithm for Optimized 
Relay placement using a Minimum Steiner tree 
(DORMS) algorithm in which relay nodes are 
reduced with the help of the Minimum Steiner tree. 
The relay nodes selected from the existent nodes 
in each partition are moved towards the middle 
of the deployed network until these nodes come 
in the communication radius of each other, and 
the disconnected partitions start operating again. 
The main objective of the presented approach is 
to plan an organized topology with the minimum 
number of additional relay nodes. However, the 
shifting of existing nodes also causes overhead. 
Optimized Bi-Connected federation of multiple 
sensor network segments (OBiC) in (Lee et al., 
2016) creates the Hamiltonian cycle such that 
every segment can be reached once. The algorithm 
works in two phases: The first phase consists of 
inward connecting of outer segments towards the 
center where each segment connects to the closest 
inner segment. On the other hand, the second phase 
forms the concave hull, and its circumference is 
minimized in the third phase to place the fewer 
relay nodes on every edge. The (Han et al., 2009) 
considered the different communication radius of 
all deployed nodes in the network, which resulted 
in asymmetric links between the neighboring 
nodes. Therefore a systematic fault tolerance is 
required. An approximation algorithm is proposed 
to tolerate faults, and its performance is evaluated 
for various networks.

3. System model

We considered a randomly deployed network 
consisting of sensor and actor nodes. The base 
station or sink node is static, and it collects data 
from other deployed network nodes. The nodes are 
stationary. However, they can move when required. 
The Sink node is reachable to all network nodes 
through direct or multi-hop links. A direct link is 
present between the two if the distance between 
them is less than their communication radius. 
Nodes obtain information about their immediate 
one-hop neighbors by sending periodic BEACON 
or HELLO or HEARTBEAT messages. All nodes 
are aware of their location and communicate their 
position coordinates to the sink node when the 
network is initialized. The network can contain 
articulation (cut-vertex) and non-articulation 
nodes (non-cut-vertices). Various factors such

as electrical and radio frequency interference,
environmental factors, physical objects affect the
deployed wireless nodes. If there are missing
HEARTBEAT or HELLO messages, then the
node is considered as failed by its neighbors. The
failure of the cut-vertex disconnects the network
into multiple partitions. In such scenarios, the
sink node does not get information from the
nodes in other partitions. Therefore it takes a
decision and performs recovery operation based
on important information it receives from the
surviving nodes. The network is depicted as a
graph G (Vi, Ei) where Vi represents the nodes
(actors or sensors) in the network, and Ei depicts
edges between the nodes which are in each other’s
communication radius. This system model consists
of the following assumptions:

1. All the nodes and UAVs have the same
communication range.

2. Single cut-vertex-node fails at a time, and
during recovery, there will be no damage in
other network nodes.

3. Nodes are aware of their locations.

4. All network nodes have finite energy and
cannot be recharged except the sink node.

5. The sink node does not fail.

4. Proposed approach

The proposed DPDRU algorithm consists of
Initialization Phase, Operational and Detection
phase, and Recovery phase, which are described
below:

4.1 Initialization phase

Network configuration starts when each node
starts transmitting a HELLO message to its 1-
hop neighbors. When a node receives a HELLO
message from a node, it includes it into its 1-hop
neighbors (OHN) list. After this step, the nodes
send their node ID, position coordinates (xcoord,
ycoord), and the newly created one-hop neighbor
list to the central sink node. Sink node constructs
Knowledge Table (KT) after receiving data from all
nodes. The entries of KT are node ID and their
position coordinates (xcoord, ycoord). The sink also
constructs the adjacency list (Adj) that contains
the one-hop neighbors (OHN) of all nodes in the
network. The example network in Figure 2 shows
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its corresponding Adj in Figure 3. Sink node then
executes Depth First Search (DFS) algorithm on
this adjacency list to find out the cut-vertices or
articulation points in the graph whose failure can
cause network partitioning. Nodes in the DFS tree
are cut-vertices, if they meet these two properties
given below:

1. Root node with at least two child nodes is cut-
vertex.

2. The internal node (N) of the DFS tree is cut-
vertex if at least one sub-tree rooted at one of
the child nodes of N should not have an edge
connected to any ancestors of node N.

Fig. 2. Example Network

The output of the DFS algorithm consisting
of cut-vertices or articulation points of the given
network is stored in a separate array called
CUT VERTICES. Referring to Figure 2, the cut
vertices in the example network are 10, 8, 24, 14, 7.
The pseudocode of this figure is given in Figure5.
Line 1-5 explains sending the HELLO packet,
receiving packets from neighbors, and creating the
one-hop neighbor list.

4.2 Operational and detection phase

In our proposed approach, total messages
exchanged among the sink node and the network
nodes are reduced as compared with state-of-the-
art approaches. The network works according
to the standard procedure. The nodes send
HEARTBEATs to their neighbors (OHN) after
some pre-determined time interval. This time
interval varies according to the type of application.
However, the UPDATE messages that nodes send
to inform the sink node about several events are

Fig. 3. Adjacency list (Adj) of Example Network

Fig. 4. Partitioned Network

reduced. In our proposed approach, network nodes
send UPDATE messages to the sink node only
to notify about important events. These essential
updates include sending the one-hop neighbor list
at the initial stage, failure, and recovery reports.
When a node in the deployed network does
not receive two HEARTBEAT messages from
its neighboring node (1-hop neighbor), then
it considers it failed node. After identifying the
failure of the adjacent node, it sends a failure report
containing the node ID of the failed node to sink.
The sink node compares the received node ID of
the damaged node with the CUT VERTICES. If
the failed node is one of the cut-vertices, then
the sink acknowledges this failure as a network
partition. It stores the node ID of the neighbor
node, which reported the failure of damaged
cut-vertex in a separate array called FRNN (Failure
Reporting Neighboring Nodes).

After acknowledging network partition, the sink
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Fig. 5. Initialization Phase

node enforces the partition recovery procedure.
Referring to Figure 4, when node 24 fails,
the resulting network consists of three disjoint
partitions. The one-hop neighbors of 24 are
16, 20, 14, 1, 9, and 8. The sink does
not receive a failure report from 14 and 8,
because they are not present in other partitions.
Therefore, the nodes 16, 1, 9, and 20 will be
recorded in FRNN. The pseudocode in Figure 6
explains the working of this phase. Lines 1-
6, in ‘PROCEDURE AT NETWORK NODES’,
describes the detection process to identify the
failed node and transmit its information to the
sink. Lines 1-6 in ‘PROCEDURE AT SINK
NODE,’ sink node identifies network partition by
comparing failed node ID with CUT VERTICES.
The decision related to handling network partition
by calling ‘RECOVERY PROCEDURE AT SINK
NODE’ or no recovery required is made in lines 7-
12. The ID of the failure reporting node is stored in
FRNN.

4.3 Recovery phase

In the recovery phase, UAV is employed to place
the stationary node to establish the connection.
The Sink node sends UAV to the positional
coordinates of failed cut-vertex. Upon reaching
the desired locations, UAV deploys the nodes,
and deployed nodes send HELLO messages to the
nearby nodes that lie in its transmission radius,
i.e.,1-hop neighbors. Network nodes add node ID
to their 1-hop neighbor list after receiving the

HELLO message from the deployed node. After 
including deployed node in the list, these nodes 
send a recovery report to the sink node containing 
this updated list. Sink node records the node ID 
of nodes submitting recovery report in RRNN 
(Recovery Reporting Neighboring Nodes) array.

After that, the sink compares the elements of 
FRNN with all the entries in RRNN. If all the 
node IDs in FRNN will be present in RRNN, then 
the sink node considers it as partition recovered. It 
empties FRNN, RRNN, and updates the Adjacency 
matrix (Adj) with new one-hop lists of the nodes.

Referring to Figure 7, UAV reaches the location 
of 24 and deploys a recovery node at that location. 
Then deployed node sends a HELLO to the 
neighboring nodes in its communication range. 
Upon receiving the HELLO message, the nodes 
that had detected the failure, i.e., 16, 1, 9, 20, 14, 
and 8, update their one-hop list. These nodes then 
send the recovery report to the sink, and the sink 
records their node ID in RRNN. The number of 
nodes in RRNN can be higher than the node entries 
in FRNN, because the sink node can now receive 
messages from all the nodes that had detected the 
partition. The sink node terminates the recovery 
procedure when the node IDs in FRNN, i.e., 16, 
1, 9, and 20 are entirely present in RRNN. This 
step implies that UAV has established the lost 
connectivity again, and all the nodes that had sent 
the failure report to the sink node previously have 
now sent a recovery report. The pseudocode in
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Fig. 6. Operational and Detection Phase

Figure 8 explains the recovery procedure. Lines 1-
7 demonstrate the working of the sink node sending
UAV to the location of failed cut-vertex and waiting
for UPDATE message from failure reporting nodes.
If the sink receives a recovery report, then it stores
the recovery reporting node’s ID in RRNN and
calls procedure Rec conf (FRNN, RRNN) in line
number 6. Line 8-23 explains the process of
comparison between FRNN and RRNN to check
whether FRNN is entirely present in RRNN. Based
on the results, it decides whether the network is
recovered or not. It updates Adj if the network is
recovered in line number 20.

5. Algorithm analysis of DPDRU

The brief algorithmic analysis of the detection
and recovery processes of the proposed DPDRU
algorithm is illustrated below:

Lemma 1: DPDRU connects partitions
successfully and aborts successfully.
Proof: The sink node keeps a record of the failure
reporting nodes and stores their ID in a separate
array. When these nodes receive HEARTBEAT
messages from deployed UAV node, they include

them in the OHN list and send a recovery report to
the sink node. Sink stores the node IDs of recovery
reporting nodes in a separate array and compares
it with that failure reporting nodes array. If all
failure reporting nodes are present in the recovery
reporting array, then the sink confirms that UAV
has recovered the network partition.

Lemma 2: The utmost distance traveled by
UAV during recovery in DPDRU is equivalent to√

d2

2 , where d×d are the dimensions of the area
where nodes are deployed.
Proof: The UAV is present at the center of the
network. In the worst case, when cut-vertex is
at the corner of the region fails, then it moves
from its location to that corner, and that distance
is equivalent to half the length of the diagonal of
squared area.
Length of diagonal =

√
d2 + d2 =

√
2d2

And distance traveled by UAV = Length of

diagonal/2 =
√
2d2

2 =
√

2d2

4 =
√

d2

2
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Fig. 7. UAV Restoring Network Partition

Fig. 8. Recovery Phase
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Lemma 3: DPDRU takes total (2(Tdelay + 
Tvar)+ x/v) recovery time, where Tdelay is the time 
interval between sending the heartbeat messages, 
Tvar is the time between which HEARTBEAT 
messages are transmitted, x is the distance traveled 
by UAV with velocity v.
Proof: The nodes in the network wait for the 
Tdelay period before sending HEARTBEAT 
messages to the neighboring nodes, and they send 
between the time intervals Tvar. DPDRU waits for 
two missing HEARTBEAT messages to detect the 
failed node. Therefore the average time required 
for the detection is 2(Tdelay + Tvar). After the 
failure detection, they immediately send a failure 
report to the sink. If the sink detects network 
partition, then it sends UAV at the location of 
failed cut-vertex to deploy a stationary node for 
recovery. Therefore, the time required for the 
recovery (NRT) directly depends on the distance 
traveled by UAV to reach the site of the failed 
node, and it is indirectly proportional to the 
velocity of UAV, i.e., NRT is proportional to x/v. 
Therefore the total time required by the algorithm 
for recovery after failure is equivalent to (2(Tdelay

+ Tvar)+ x/v).

Lemma 4: The best case and the worst case 
message complexity of DPDRU are O(1) and 
O(N), respectively.
Proof: In the best case, the failed cut vertex has 
two 1-hop neighbors (OHN), and one of them is 
present in the sink node’s partition. Therefore, sink 
receives a failure report from only one node, and 
when the network recovers, it gets two recovery 
nodes, which is equivalent to three messages. 
If each node sends recovery and failure reports 
twice, then in the best case, the total number of 
messages will be six, a constant number. Therefore 
the best case message complexity is O(1). In the 
worst case, the failed cut-vertex can have N-1 
one-hop neighbors, where N is the total number 
of deployed network nodes, and N-2 nodes are 
present in the sink node’s partition. If failure and 
recovery reports are sent twice, then the sink will 
receive 2(N-2) failure reports and 2(N-1) recovery 
reports. Therefore total messages are equivalent 
to 2((N-2) + (N-1)) = 4N-6. Thus, the worst case 
message complexity for the recovery process is 
O(N).

Table 1. Simulation parameters

Parameter Value
Simulation Area 400m×400m -

1000m×1000m
Nodes 10 - 100
Transmission
Range

80m - 200m

Packet Size 512bytes
Mobility model of
nodes

On-demand mobility

Mobility model of
UAV

Linear mobility

UAV speed 2ms−1 - 30ms−1

UAV altitude 10m
Simulation Time 1000s
Data rate 54 Mbps

6. Simulation results and analysis

OMNeT++ 5.4.1 is used to implement and test the 
working of our proposed algorithm. The algorithm 
is implemented in the application layer of the 
INET 4.0 project. Table 1 describes the parameters 
used in the simulations. The algorithm is tested for 
different node topologies containing 10-100 nodes. 
These topologies include articulation points and 
deployed in an area ranging from 400m×400m to 
1000m×1000m randomly. The communication 
range of deployed nodes varies between 
80m-200m. UAV is present at the center of the area 
near the sink node, where all nodes are deployed.

Initially, all the nodes send update messages, 
including their one-hop neighbors and location 
information to the sink node. The Sink stores all 
this information and find out the cut-vertices in 
the graph. If nodes detect some failure, it sends 
the failure report (FR) to the sink node. The 
Sink node finds out whether it is a simple node 
failure or cut-vertex failure. If cut-vertex fails, it 
commands UAV to reach the location of the failed 
node to deploy the node for recovery. After getting 
a message from a deployed node, failure reporting 
nodes send recovery reports to the sink node. 
We have proposed a distributed failure detection 
algorithm and partition recovery using UAV. In 
the proposed algorithm, we have tried to reduce 
the messages overhead during the detection and 
the recovery process compared with state-of-the-art 
approaches. This message overhead is compared
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with other similar approaches for network partition 
recovery from the single cut vertex failure such as 
LeDir (Abbasi et al., 2010), DARA (Abbasi et al., 
2007), PADRA (Akkaya et al., 2010), DPCRA 
(Ranga et al., 2014). These approaches recover 
partitioned segments by relocating the nodes that 
survived after failure. Most of the parameters used 
for testing these approaches are based on this node 
relocation process such as total distance traveled 
by nodes, energy consumed due to relocation 
process, coverage reduction, messages transmitted, 
and the number of relocated nodes. Therefore, 
we performed the comparative analysis based on 
message overhead only. The recovery is performed 
with the help of UAV, which also reduces the 
recovery time. The details of parameters used for 
the analysis and the experimental results based on 
them are described below:

1. Partition Detection Time (PDT): Detecting
the network partition is an essential step
for the recovery. Many approaches in the
literature assume the number of partitions
formed after the failure and start the recovery
process. Our proposed algorithm is not based
on this assumption. Therefore we also tested
the algorithm for the partition detection time
(PDT), which is not present in other proposed
solutions. It is the time interval between
the failures of the cut-vertex node and sink
determining network partition after receiving
the failure report from other network nodes.
Figure 9 refers to the results of PDT w.r.t
number of nodes; it is almost the same for
10 and 20 nodes. After that, it increases
with the growth in network size. However,
some deviation is also present in results, e.g.,
detection time of 50 nodes and 100 nodes
are less than the detection time of 40 nodes
and 90 nodes, respectively. These deviations
are because of various factors such as Tvar,
Tdelay, and the total number of one-hop
neighbors (OHN) of a failed cut-vertex. The
increasing number of nodes increases Tvar

because of more variations in starting time
when nodes start sending. The delay time
Tdelay varies from application to application.
It should be less for real-time applications. If
the node fails after sending the HEARTBEAT
message, then its failure can be detected
after waiting for the whole Tdelay period. If
the node fails before Tdelay then its failure

can be detected immediately by neighboring
nodes. PDT is directly related to OHN
because if one-hop neighbors of failed cut-
vertex are more, then the sink node receives
failure report from many nodes, which takes
time because of the previously discussed
parameters. Figure 10 describes the detection
time performance of the proposed algorithm
for Tdelay. The detection time grows with an
increase in the value of Tdelay. There are some
slight variations in the graph where detection
time reduces with an increase in Tdelay. These
variations depend on the time when the node
is failed, i.e., before Tdelay or after Tdelay.

Fig. 9. PDT w.r.t number of nodes

Fig. 10. PDT w.r.t Tdelay

2. Messages Transmitted during Recovery
(MTR): This parameter is used to analyze
message overhead during the partition
recovery process. In the proposed approach,
we reduced the messages exchanged between
the nodes and the sink. After two missed
HEARTBEAT messages, nodes send the
failure report to the sink node. The Sink
after receiving these updates, examines the
network condition. In the case of partitioning,
it commands UAV to reach the location of the
failed node. When UAV reaches that location,
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it sends HEARTBEAT messages similar to 
the normal working of network nodes. When 
failure reporting nodes add UAV to their OHN 
list, they send a recovery report to the sink 
node. Figure 11 illustrates the comparative 
analysis of the proposed algorithm based on 
MTR with other similar approaches such as 
LeDir (Abbasi et al., 2010), DARA (Abbasi 
et al., 2007), PADRA (Akkaya et al., 2010), 
DPCRA (Ranga et al., 2014). In these 
approaches, there is a sudden increase in 
the MTR with the growth in network size. 
However, such an increase in the MTR is 
not present in our approach. The maximum 
numbers of messages transmitted are 24 
for 100 nodes which is a very less number. 
Therefore our proposed algorithm recovers 
the network with less message overhead. 
From the figure, i t c an b e d etermined that 
MTR increases when the network grows. 
However, MTR also remains the same in 
some cases, such as it is equal for (20, 30),
(40, 50, 60), and (80, 90). Because this 
parameter also depends on the number of 
OHN of failed cut-vertex. E.g., if OHN of 
failed cut-vertex is the same for 80 nodes and 
90 nodes, then the value for MTR will be 
equal in both the cases.

Fig. 11. MTR w.r.t number of nodes

3. Distance Travelled by UAV for Recovery
(DTUR): Limited energy of UAV is an
important constraint that limits deploying
UAVs in various applications. More energy
gets dissipated when UAV moves at a
particular altitude. Therefore this DTUR
parameter also signifies the energy dissipation
of UAV during the recovery process. In
this approach, distance traveled by UAV
grows with more number of nodes, as shown

in Figure 12. However, this parameter
depends on the gap between the UAV and
the failed node. Therefore, in some cases in
Figure 12 distance traveled by UAV for 10
nodes and 90 nodes is less than the distance
traveled by UAV for 20 nodes and 100 nodes,
respectively. The velocity of UAV used for
collecting these results is 10m/s.

Fig. 12. DTUR w.r.t number of nodes

4. Network Recovery Time (NRT): NRT
is an essential parameter for testing the
performance, and it is equal to the time during
which the network recovers. It is the time
during which the sink node determines the
failure of cut-vertex, commands UAV to reach
the location of cut-vertex, and when it receives
a recovery report from failure reporting nodes.
All the periods involved in these steps are
essential; however, the maximum time is
utilized during the movement of UAV to
the location of failed cut-vertex. Therefore
NRT is directly proportional to the DTUR,
as shown in Figure 13. This recovery time
also varies with the velocity of UAV, with
which it covers the whole distance after
getting command from the sink. Thus Figure
14 shows the relationship between NRT and
the velocity of UAV. NRT is indirectly
proportional to the velocity of UAV. Figure 15
shows the NRT performance NRT concerning
the network size. NRT grows with an increase
in network size. However, it also depends on
the arrangement of nodes, i.e., the distance
between the failed cut-vertex and UAV, time
taken by network nodes to send recovery
reports. The NRT of 60 nodes and 100 nodes
is less than the NRT of 50 nodes and 90 nodes.
More NRT for fewer nodes can be related to
Figure 12 where distance traveled by UAV is
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Fig. 13. NRT w.r.t distance traveled by UAV

Fig. 14. NRT w.r.t Velocity of UAV

less for 60 nodes and 100 nodes as compared
to 50 nodes and 90 nodes. The velocity of
UAV used to collect the results of Fig 13 and
Figure 15 is 10 m/s.

Fig. 15. NRT w.r.t number of nodes

7. Conclusion

This paper describes the proposed work on the
detection and recovery of portioned WSANs. Our
proposed approach Distributed Partition Detection
and Recovery using UAV consist of three phases:
Initialization, Operation and Detection phase,
and Recovery phase. The algorithm focuses on
reducing the computation and message overhead
on the sink node by distributed detection of failure
and sending sink node only important update

messages (network information, failure report, 
and recovery report). The network recovery 
is performed with the help of UAV; thus, the 
energy of another network nodes remain conserved 
from additional movements of these nodes for 
network reconnection. The algorithmic analysis 
of the algorithm is done to analyze its efficacy. 
Experimental results are collected based on 
parameters such as Detection time, Network 
Recovery Time, distance traveled by UAV, and the 
number of messages transmitted. The message 
overhead is also compared with other similar 
approaches. In future work, we will try to 
improve the path traveled by UAV and improve 
the proposed algorithm to handle multiple node 
failures. We will also focus on the placement 
of UAVs in the 3-D environment in our research 
work, which is yet not seen in any literature. The 
security aspect is another area of exploration in the 
future which can halt the dispatch of the UAV for 
recovery.
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