
Distributed partition detection and recovery using UAV in wireless sensor and actor

networks

Aditi Zear, Virender Ranga∗

Dept. of Computer Engineering
NIT Kurukshetra, India

*Corresponding author: virender.ranga@nitkkr.ac.in

Abstract

Wireless Sensor and Actor Networks (WSANs) have been extensively employed in various domains
ranging from elementary data collection to real-time control and monitoring for critical applications.
Network connectivity is a vital robustness measure for overall network performance. Different
network functions such as routing, scheduling, and QoS provisioning depends on network connectivity.
The failure of articulation points in the network disassociates the network into disjoint segments.
We proposed Distributed Partition Detection and Recovery using Unmanned Aerial Vehicle (UAV)
(DPDRU) algorithm, as an optimal solution to recover the partitioned network. It consists of three steps:
Initialization, Operational and Detection, and Recovery. In the Initialization phase sink node collects all
the information about the network. In the Operational and Detection phase, network nodes communicate
regularly by exchanging HEARTBEATS, detects failure if some nodes do not get a message from the
neighbor node and send failure reports, and sink node identifies network partition. In the recovery
phase, the sink node sends UAV at the positional coordinates of the failed node and examines network
recovery after UAV reaches the desired location. Our approach primarily focuses on reducing message
overhead by sending few update messages to sink node and energy consumption by engaging network
nodes only for communication. The requirements of the recovery process (physical movement and
communication) are fulfilled by UAV. The algorithm is tested according to the following parameters:
Detection Time, Recovery Time, message overhead, and distance traveled by UAV. Simulation results
validate the efficacy of the proposed algorithm based on these parameters to provide reliable results.
The minimum and the maximum number of messages transmitted are 11 for 10 nodes and 24 for 100
nodes respectively. Hence these results demonstrate that the message overhead in our proposed solution
is less as compared to other techniques when the number of nodes increases.

Keywords: Knowledge table; partition detection; partition recovery; relay node; sensor network;
Unmanned Aerial Vehicle.

1. Introduction

WSANs have been gaining the attention of
the researcher’s community because of their
serviceability in rough environments. They
reduce human engagement to attain intelligent
and autonomous interactions with the environment
(Younis et al., 2014; Akkaya & Senel, 2009,
Ranga et al., 2013). WSANs comprise connected
sensor and actor nodes through a wireless
medium. Sensors report information related
to multiple events to actors, and actors make

quick decisions based on the received data
and carry out actions. As compared to
sensors, actors have better computation and
communication capabilities. Actors can do sensing
mechanisms. However, the decision-making
capability is not present in sensors. The extensive
applications of WSANs in different domains
require effectiveness, reliability, and some degree
of robustness (Bayrakdar, 2020a,b). However,
the robustness of the network to handle different

Kuwait J.Sci., Vol.48, No.(4),October.2021,pp(1-16)

1

kinds of failures depends on the specificity of
the deployed nodes (Shriwastav & Ghose, 2018;
Verma & Ranga, 2018; Bayrakdar, 2020c). The
minimal characteristics of sensor nodes and their
deployment in the rough environment result in a
drastic decrease in the reliability of WSANs. Also,
the interferences caused by the sensor and actor
nodes increase collisions and the process of re-
transmissions, which causes the premature failure
of sensor nodes because of the increase in energy
consumption. These factors affect the proper
functioning of the network and lead to the failure
of nodes without completing their actual mission
or task. The failures can also create a network
partition where parts of the deployed network
get entirely disconnected from the base station
(sink) node. Thus network connectivity to avoid
such partitioning can be assured by integrating
node deployment mechanisms along with recovery
mechanisms (Stojmenovic et al., 2011; Mahmood
et al., 2018; Lee et al., 2015; Jha et al., 2019;
Senturk et al., 2014; Joshi & Younis; 2016; Ranga
et al., 2016b; Lalouani et al., 2017; Bayrakdar,
2020d).

The network partitioning can be either due
to single cut-vertex failure or because of the
simultaneous failure of multiple nodes that can
include cut-vertex or non-cut vertices (Stojmenovic
et al., 2011). Restoring connectivity after
failure because of unknown reasons with limited
resources for the continuation of sensing and
acting services is critical. The mechanisms to
recover from simultaneous multiple node failures
can be categorized depending on whether the
damaged nodes are collocated or dispersed. The
dispersed damaged node’s failure recovery is
similar to handling separate single-node failures
when recovered in a centralized manner. On
the other hand, autonomous recovery through
distributed solutions is problematic due to resource
conflicts. An example of such conflict is
simultaneous requests to a node to assist recovery
from two different individual node failures.
Synchronization mechanisms are required to
mitigate such conflicts. The most challenging
scenario is mitigating the simultaneous failure of
numerous collocated nodes because it becomes
difficult to resolve the scope of failure (Shriwastav
& Ghose, 2018; Senturk et al., 2014; Abbasi et al.,
2010; Zhang et al., 2018; Chouikhi et al., 2017;
Ma et al., 2016; Hashim et al., 2016; Joshi &
Younis, 2014; Akkaya & Senel, 2009; Afzaal et al.,

2017; Senturk et al., 2012; Akkaya et al., 2010;
Srinivasaperumal et al., 2017; Akkaya & Senel,
2009; Bayrakdar, 2020e; Ranga et al., 2016a).

The way of illustrating the deployed network
using a graph is regarded as an efficient way for
failure recovery. The failure recovery techniques
are categorized into four types: Deploying
redundant nodes, Node relocation, employing
data mules to relay data (data ferrying), and
placement of relay nodes. The first category
is based on provisioning additional resources for
establishing k-connectivity, with the aim that
network operates even after some node damages
(Akkaya et al., 2010). This technique results
in huge communication overhead and significant
deployment expenditure. The second technique
is based on the assumption that nodes are mobile
and can move in a particular direction to restore
communication links by relocating a subset of
surviving nodes for failure recovery (Younis et al.,
2014; Shriwastav & Ghose, 2018; Chouikhi et al.,
2017). This solution requires complex hardware
for network nodes and leads to high energy
consumption (Younis et al., 2014; Mahmood et al.,
2018; Lee et al., 2015). The third technique is
a temporary recovery mechanism where mobile
data collectors (data mules) are used to transfer
information between the partitioned clusters. This
solution is not efficient because of the increased
overhead and data latency. The utmost important
fourth network recovery technique is through relay
node deployment. It is the most popular and
efficient mechanism where existing and additional
nodes are deployed to re-establish connection
among nodes (Jha et al., 2019; Joshi & Younis,
2016; Ranga et al., 2016b; Chouikhi et al.,
2017). Finding an optimal relay count required
to restore links is an optimization problem and
requires complete information about the number of
partitions and locations of nodes in them (Younis
et al., 2014; Shriwastav & Ghose, 2018; Senturk
et al., 2014; Chouikhi et al., 2017; Alfadhly et al.,
2011; Cheng et al., 2017; Nikolov & Haas, 2016;
Devi & Manickam, 2014; Zahid et al., 2018; Liu
et al., 2018; Lee et al., 2016; Kumar & Amgoth,
2019; Lalouani et al., 2017; Ranga et al., 2016a).

All the techniques mentioned above for network
partition recovery are based on the assumption that
nodes are moving in an obstacle-free environment,
which is impossible in real environments. Various
physical obstacles like buildings or mountains

2

Distributed partition detection and recovery using UAV in wireless sensor and actor networks

gj
Highlight

obstruct the network communication. Dynamic
obstacles such as a group of birds or animals
and environmental conditions harm sensor network
and blocks the connection. The less applicability
of proposed solutions in practical situations can
be solved by employing drones or Unmanned
Aerial Vehicles (UAVs). UAVs are suitable
because of their serviceability in areas that are
not in the reach of ground nodes (vehicles or
robots) due to obstacles and capability to work in
harsh environmental conditions. These advantages
of UAVs have increased their usage in several
applications such as agriculture, disaster recovery,
industrial inspections, military, and remote sensing.
Therefore the objective of our research is to
examine the performance of UAVs for network
partition recovery (Zhang & Liu, 2019; Chriki
et al., 2019). Thus our research in this paper
is based on distributed monitoring of neighboring
nodes and reporting their failures to sink node. If
the sink node addresses this failure as a network
partition, then it employs UAV for the network
recovery, as shown in Figure1.

Fig. 1. UAV Connecting Disjoint Network
Partitions.

In this paper, we proposed Distributed Partition
Detection and Recovery using UAV (DPDRU). The
main advantage of our approach is that it reduces
the message overhead on the sink node, and uses
UAV as the relay node for re-connection that can
even work in rough environments with obstacles
where normal network nodes cannot work properly.
The approach that involves node re-locations
dissipates energy for both node movements and
communication. Therefore in our approach,
network nodes are free from this overhead. The
sink node and network nodes consume energy
only for communication. UAV with better
communication range, durable battery as compared
to sensor nodes, is utilized for both movements and

communication purposes. The algorithm is divided
into three phases: Initialization, Operational and
Detection phase, and Recovery phase. The
initialization phase is used to collect all the network
information by the nodes for the sink node.
Depending on the collected information, the sink
determines the cut-vertices in the network graph
and stores them. The Operational and Detection
phase is used to detect the failures and notifying
the sink node about them. In the Recovery phase,
UAV reconnects the partitioned network, and the
sink node confirms that partitions are reconnected.
Hence our proposed algorithm aims at detecting
and recovering the network partition. The
previously proposed solutions are less applicable
in practical situations, and this issue can be solved
by employing drones or Unmanned Aerial Vehicles
(UAVs) that can even work in harsh environmental
conditions. Hence instead of focusing on node
relocation-based solutions, We propose to use UAV
for re-establishing connectivity in the network
partitions. Along with this, we have also tried
to reduce the number of messages transmitted to
detect and recover the network partitions.

The brief introduction of the remaining sections
in the paper is depicted as follows: Section
2 provides related work of network partition
detection and recovery solutions. The system
model is depicted in Section 3, and Section 4
explains the phases of the algorithm along with
pseudocode. Section 5 and Section 6 discuss
the algorithm analysis of DPDRU and simulation
results.

2. Background

Maintaining connectivity is an essential
requirement of WSANs. Various efforts have
been made to remodel network partitions to form
connected sensor and actor-network topology.
The proposed solutions can be divided into two
categories: preventive and curative. The curative
solution for failure management is triggered after
the failure is identified. It includes different
techniques, such as the deployment of additional
nodes and reorganizing the partitioned network.
The preventive approach for fault tolerance aims at
handling network partitions before failure include
avoiding damages of the node, and transmitting
information through alternate paths, if some node
fails (Younis et al., 2014; Akkaya & Senel, 2009;
Shriwastav & Ghose, 2018). These solutions focus
on deployment strategies (relay nodes, redundant

3

Aditi Zear, Virender Ranga

nodes, etc.), multiple-path routing strategies,
managing energy consumption (sensor activities,
sleep schedule, multi-channel communication,
etc.) (Chouikhi et al., 2017; Kumar & Amgoth,
2019).

Partition Detection and Recovery Algorithm
(PADRA) in (Akkaya & Senel, 2009) detects the
partitioned segments in the network and recover
the connections through the regulated displacement
of sensor nodes. The partition in the network
is identified by monitoring the failure of a cut-
vertex. (Abbasi et al., 2010) proposed the
least disruptive topology repair algorithm (LeDiR),
which relocates the block containing a smaller
number of nodes among the network segments
for recovery. It ensures that path length between
the pair of network nodes does not increase as
compared to the previously connected network.
Distributed Node Recovery Algorithm (DARA) is
proposed in (Abbasi et al., 2007) to recover the
disconnected network. It uses the least number
of actor nodes for establishing connectivity. The
Distributed Prioritized Connectivity Restoration
Algorithm (DPCRA) (Ranga et al., 2014) approach
restores connectivity with minimum nodes. This
hybrid approach assigns failure handlers to each
cut-vertex nodes. When the network gets
partitioned, these failure handlers perform the
recovery process. In (Chouikhi et al., 2017) two
centralized approaches have been proposed for
reconnecting disjoint segments resulted because of
the failed cut-vertex node. The PFR algorithm
takes preventive steps for making network robust
so that network partition should not occur, and
the second RNFR algorithm intent to recover the
partitioned network.

Two-connected topology is formed in (Hwang
et al., 2014) to federate the disjoint segments of the
network. At the first stage, the smallest convex hull
is located, and each segment places the network’s
center point and then relays in the convex hell for
connecting different segments. Federating network
segments via triangular Steiner tree approximation
(FeSTA) in (Senel & Younis, 2011a) represents
the disjoint segment using terminal nodes, and a
triangle is used to describe the subset of three
terminals. The triangle is steinerized by reducing
the edges of MST. This step either creates a
new connected component or joins the terminal
with already present connected components. The
algorithm works quite well when tested according

to network coverage, average path length, and
average node degree. In (Lalouani et al.,
2017) Boundary-aware optimized Interconnection
of Disjoint segments (BIND) algorithm uses the
shorter length topology in the two-dimensional
plane to restore the network. The subset of nodes is
selected from the boundaries of disjoint segments
and then interconnected using the additional
Steiner pairs to form interconnected topology
between the segments. In (Joshi & Younis,
2016), the Geometric Skeleton based Reconnection
(GSR) approach shapes the partitioned network
area in a distributed way to recover connectivity.
The network area is transformed into the two-
dimensional skeleton for placing relays along with
this skeleton which acts as the support structure to
reconnect the network

Cell-based Optimized Relay Placement (CORP)
algorithm in (Lee & Younis, 2010b) divides the
area into equal size cells or grids. The cells present
at the minimum distance between two pairs of
segments are called the best neighbor cell. The
algorithm works in several iterations. Each round
consists of electing the best cell, and relay nodes
are populated in the selected cell. The process
continues until the segments form connected
topology by including relay nodes. Partition
detection and Connectivity Restoration (PCR)
algorithm in (Imran et al., 2010) determined the
critical-actor node from the local topological data.
Actor nodes that function as backup monitor the
critical nodes continuously. After detecting the
failure, they coordinate their movements towards
the failed critical node. These displacements are
continued until the connectivity is re-established.
The work in (Senel & Younis, 2011b) represents
each partition using all the nodes present in the
boundary. It constructs a minimum spanning
tree between boundary nodes and computes the
required relay count to set up the network with no
partitions. The main objective is to reduce the total
path length. Connectivity Restoration with Assured
Fault Tolerance (CRAFT) algorithm in (Lee et al.,
2015) creates a larger inner cycle, which is the
backbone polygon (BP). No partition resides in
this backbone polygon as BP is constructed around
the failure region. The relay nodes are placed on
BP, and every outer partition is then connected
to BP. The algorithm works by reducing the path
length between each pair of segments, and network
topology is made bi-connected by deploying relays

4

Distributed partition detection and recovery using UAV in wireless sensor and actor networks

with a high node degree. (Lee & Younis, 2010a)
proposed a Distributed algorithm for Optimized
Relay placement using a Minimum Steiner tree
(DORMS) algorithm in which relay nodes are
reduced with the help of the Minimum Steiner tree.
The relay nodes selected from the existent nodes
in each partition are moved towards the middle
of the deployed network until these nodes come
in the communication radius of each other, and
the disconnected partitions start operating again.
The main objective of the presented approach is
to plan an organized topology with the minimum
number of additional relay nodes. However, the
shifting of existing nodes also causes overhead.
Optimized Bi-Connected federation of multiple
sensor network segments (OBiC) in (Lee et al.,
2016) creates the Hamiltonian cycle such that
every segment can be reached once. The algorithm
works in two phases: The first phase consists of
inward connecting of outer segments towards the
center where each segment connects to the closest
inner segment. On the other hand, the second phase
forms the concave hull, and its circumference is
minimized in the third phase to place the fewer
relay nodes on every edge. The (Han et al., 2009)
considered the different communication radius of
all deployed nodes in the network, which resulted
in asymmetric links between the neighboring
nodes. Therefore a systematic fault tolerance is
required. An approximation algorithm is proposed
to tolerate faults, and its performance is evaluated
for various networks.

3. System model

We considered a randomly deployed network
consisting of sensor and actor nodes. The base
station or sink node is static, and it collects data
from other deployed network nodes. The nodes are
stationary. However, they can move when required.
The Sink node is reachable to all network nodes
through direct or multi-hop links. A direct link is
present between the two if the distance between
them is less than their communication radius.
Nodes obtain information about their immediate
one-hop neighbors by sending periodic BEACON
or HELLO or HEARTBEAT messages. All nodes
are aware of their location and communicate their
position coordinates to the sink node when the
network is initialized. The network can contain
articulation (cut-vertex) and non-articulation
nodes (non-cut-vertices). Various factors such

as electrical and radio frequency interference,
environmental factors, physical objects affect the
deployed wireless nodes. If there are missing
HEARTBEAT or HELLO messages, then the
node is considered as failed by its neighbors. The
failure of the cut-vertex disconnects the network
into multiple partitions. In such scenarios, the
sink node does not get information from the
nodes in other partitions. Therefore it takes a
decision and performs recovery operation based
on important information it receives from the
surviving nodes. The network is depicted as a
graph G (Vi, Ei) where Vi represents the nodes
(actors or sensors) in the network, and Ei depicts
edges between the nodes which are in each other’s
communication radius. This system model consists
of the following assumptions:

1. All the nodes and UAVs have the same
communication range.

2. Single cut-vertex-node fails at a time, and
during recovery, there will be no damage in
other network nodes.

3. Nodes are aware of their locations.

4. All network nodes have finite energy and
cannot be recharged except the sink node.

5. The sink node does not fail.

4. Proposed approach

The proposed DPDRU algorithm consists of
Initialization Phase, Operational and Detection
phase, and Recovery phase, which are described
below:

4.1 Initialization phase

Network configuration starts when each node
starts transmitting a HELLO message to its 1-
hop neighbors. When a node receives a HELLO
message from a node, it includes it into its 1-hop
neighbors (OHN) list. After this step, the nodes
send their node ID, position coordinates (xcoord,
ycoord), and the newly created one-hop neighbor
list to the central sink node. Sink node constructs
Knowledge Table (KT) after receiving data from all
nodes. The entries of KT are node ID and their
position coordinates (xcoord, ycoord). The sink also
constructs the adjacency list (Adj) that contains
the one-hop neighbors (OHN) of all nodes in the
network. The example network in Figure 2 shows

5

Aditi Zear, Virender Ranga

its corresponding Adj in Figure 3. Sink node then
executes Depth First Search (DFS) algorithm on
this adjacency list to find out the cut-vertices or
articulation points in the graph whose failure can
cause network partitioning. Nodes in the DFS tree
are cut-vertices, if they meet these two properties
given below:

1. Root node with at least two child nodes is cut-
vertex.

2. The internal node (N) of the DFS tree is cut-
vertex if at least one sub-tree rooted at one of
the child nodes of N should not have an edge
connected to any ancestors of node N.

Fig. 2. Example Network

The output of the DFS algorithm consisting
of cut-vertices or articulation points of the given
network is stored in a separate array called
CUT VERTICES. Referring to Figure 2, the cut
vertices in the example network are 10, 8, 24, 14, 7.
The pseudocode of this figure is given in Figure5.
Line 1-5 explains sending the HELLO packet,
receiving packets from neighbors, and creating the
one-hop neighbor list.

4.2 Operational and detection phase

In our proposed approach, total messages
exchanged among the sink node and the network
nodes are reduced as compared with state-of-the-
art approaches. The network works according
to the standard procedure. The nodes send
HEARTBEATs to their neighbors (OHN) after
some pre-determined time interval. This time
interval varies according to the type of application.
However, the UPDATE messages that nodes send
to inform the sink node about several events are

Fig. 3. Adjacency list (Adj) of Example Network

Fig. 4. Partitioned Network

reduced. In our proposed approach, network nodes
send UPDATE messages to the sink node only
to notify about important events. These essential
updates include sending the one-hop neighbor list
at the initial stage, failure, and recovery reports.
When a node in the deployed network does
not receive two HEARTBEAT messages from
its neighboring node (1-hop neighbor), then
it considers it failed node. After identifying the
failure of the adjacent node, it sends a failure report
containing the node ID of the failed node to sink.
The sink node compares the received node ID of
the damaged node with the CUT VERTICES. If
the failed node is one of the cut-vertices, then
the sink acknowledges this failure as a network
partition. It stores the node ID of the neighbor
node, which reported the failure of damaged
cut-vertex in a separate array called FRNN (Failure
Reporting Neighboring Nodes).

After acknowledging network partition, the sink

6

Distributed partition detection and recovery using UAV in wireless sensor and actor networks

Fig. 5. Initialization Phase

node enforces the partition recovery procedure.
Referring to Figure 4, when node 24 fails,
the resulting network consists of three disjoint
partitions. The one-hop neighbors of 24 are
16, 20, 14, 1, 9, and 8. The sink does
not receive a failure report from 14 and 8,
because they are not present in other partitions.
Therefore, the nodes 16, 1, 9, and 20 will be
recorded in FRNN. The pseudocode in Figure 6
explains the working of this phase. Lines 1-
6, in ‘PROCEDURE AT NETWORK NODES’,
describes the detection process to identify the
failed node and transmit its information to the
sink. Lines 1-6 in ‘PROCEDURE AT SINK
NODE,’ sink node identifies network partition by
comparing failed node ID with CUT VERTICES.
The decision related to handling network partition
by calling ‘RECOVERY PROCEDURE AT SINK
NODE’ or no recovery required is made in lines 7-
12. The ID of the failure reporting node is stored in
FRNN.

4.3 Recovery phase

In the recovery phase, UAV is employed to place
the stationary node to establish the connection.
The Sink node sends UAV to the positional
coordinates of failed cut-vertex. Upon reaching
the desired locations, UAV deploys the nodes,
and deployed nodes send HELLO messages to the
nearby nodes that lie in its transmission radius,
i.e.,1-hop neighbors. Network nodes add node ID
to their 1-hop neighbor list after receiving the

HELLO message from the deployed node. After
including deployed node in the list, these nodes
send a recovery report to the sink node containing
this updated list. Sink node records the node ID
of nodes submitting recovery report in RRNN
(Recovery Reporting Neighboring Nodes) array.

After that, the sink compares the elements of
FRNN with all the entries in RRNN. If all the
node IDs in FRNN will be present in RRNN, then
the sink node considers it as partition recovered. It
empties FRNN, RRNN, and updates the Adjacency
matrix (Adj) with new one-hop lists of the nodes.

Referring to Figure 7, UAV reaches the location
of 24 and deploys a recovery node at that location.
Then deployed node sends a HELLO to the
neighboring nodes in its communication range.
Upon receiving the HELLO message, the nodes
that had detected the failure, i.e., 16, 1, 9, 20, 14,
and 8, update their one-hop list. These nodes then
send the recovery report to the sink, and the sink
records their node ID in RRNN. The number of
nodes in RRNN can be higher than the node entries
in FRNN, because the sink node can now receive
messages from all the nodes that had detected the
partition. The sink node terminates the recovery
procedure when the node IDs in FRNN, i.e., 16,
1, 9, and 20 are entirely present in RRNN. This
step implies that UAV has established the lost
connectivity again, and all the nodes that had sent
the failure report to the sink node previously have
now sent a recovery report. The pseudocode in

7

Aditi Zear, Virender Ranga

Fig. 6. Operational and Detection Phase

Figure 8 explains the recovery procedure. Lines 1-
7 demonstrate the working of the sink node sending
UAV to the location of failed cut-vertex and waiting
for UPDATE message from failure reporting nodes.
If the sink receives a recovery report, then it stores
the recovery reporting node’s ID in RRNN and
calls procedure Rec conf (FRNN, RRNN) in line
number 6. Line 8-23 explains the process of
comparison between FRNN and RRNN to check
whether FRNN is entirely present in RRNN. Based
on the results, it decides whether the network is
recovered or not. It updates Adj if the network is
recovered in line number 20.

5. Algorithm analysis of DPDRU

The brief algorithmic analysis of the detection
and recovery processes of the proposed DPDRU
algorithm is illustrated below:

Lemma 1: DPDRU connects partitions
successfully and aborts successfully.
Proof: The sink node keeps a record of the failure
reporting nodes and stores their ID in a separate
array. When these nodes receive HEARTBEAT
messages from deployed UAV node, they include

them in the OHN list and send a recovery report to
the sink node. Sink stores the node IDs of recovery
reporting nodes in a separate array and compares
it with that failure reporting nodes array. If all
failure reporting nodes are present in the recovery
reporting array, then the sink confirms that UAV
has recovered the network partition.

Lemma 2: The utmost distance traveled by
UAV during recovery in DPDRU is equivalent to√

d2

2 , where d×d are the dimensions of the area
where nodes are deployed.
Proof: The UAV is present at the center of the
network. In the worst case, when cut-vertex is
at the corner of the region fails, then it moves
from its location to that corner, and that distance
is equivalent to half the length of the diagonal of
squared area.
Length of diagonal =

√
d2 + d2 =

√
2d2

And distance traveled by UAV = Length of

diagonal/2 =
√
2d2

2 =
√

2d2

4 =
√

d2

2

8

Distributed partition detection and recovery using UAV in wireless sensor and actor networks

Fig. 7. UAV Restoring Network Partition

Fig. 8. Recovery Phase

9

Aditi Zear, Virender Ranga

Lemma 3: DPDRU takes total (2(Tdelay +
Tvar)+ x/v) recovery time, where Tdelay is the time
interval between sending the heartbeat messages,
Tvar is the time between which HEARTBEAT
messages are transmitted, x is the distance traveled
by UAV with velocity v.
Proof: The nodes in the network wait for the
Tdelay period before sending HEARTBEAT
messages to the neighboring nodes, and they send
between the time intervals Tvar. DPDRU waits for
two missing HEARTBEAT messages to detect the
failed node. Therefore the average time required
for the detection is 2(Tdelay + Tvar). After the
failure detection, they immediately send a failure
report to the sink. If the sink detects network
partition, then it sends UAV at the location of
failed cut-vertex to deploy a stationary node for
recovery. Therefore, the time required for the
recovery (NRT) directly depends on the distance
traveled by UAV to reach the site of the failed
node, and it is indirectly proportional to the
velocity of UAV, i.e., NRT is proportional to x/v.
Therefore the total time required by the algorithm
for recovery after failure is equivalent to (2(Tdelay

+ Tvar)+ x/v).

Lemma 4: The best case and the worst case
message complexity of DPDRU are O(1) and
O(N), respectively.
Proof: In the best case, the failed cut vertex has
two 1-hop neighbors (OHN), and one of them is
present in the sink node’s partition. Therefore, sink
receives a failure report from only one node, and
when the network recovers, it gets two recovery
nodes, which is equivalent to three messages.
If each node sends recovery and failure reports
twice, then in the best case, the total number of
messages will be six, a constant number. Therefore
the best case message complexity is O(1). In the
worst case, the failed cut-vertex can have N-1
one-hop neighbors, where N is the total number
of deployed network nodes, and N-2 nodes are
present in the sink node’s partition. If failure and
recovery reports are sent twice, then the sink will
receive 2(N-2) failure reports and 2(N-1) recovery
reports. Therefore total messages are equivalent
to 2((N-2) + (N-1)) = 4N-6. Thus, the worst case
message complexity for the recovery process is
O(N).

Table 1. Simulation parameters

Parameter Value
Simulation Area 400m×400m -

1000m×1000m
Nodes 10 - 100
Transmission
Range

80m - 200m

Packet Size 512bytes
Mobility model of
nodes

On-demand mobility

Mobility model of
UAV

Linear mobility

UAV speed 2ms−1 - 30ms−1

UAV altitude 10m
Simulation Time 1000s
Data rate 54 Mbps

6. Simulation results and analysis

OMNeT++ 5.4.1 is used to implement and test the
working of our proposed algorithm. The algorithm
is implemented in the application layer of the
INET 4.0 project. Table 1 describes the parameters
used in the simulations. The algorithm is tested for
different node topologies containing 10-100 nodes.
These topologies include articulation points and
deployed in an area ranging from 400m×400m to
1000m×1000m randomly. The communication
range of deployed nodes varies between
80m-200m. UAV is present at the center of the area
near the sink node, where all nodes are deployed.

Initially, all the nodes send update messages,
including their one-hop neighbors and location
information to the sink node. The Sink stores all
this information and find out the cut-vertices in
the graph. If nodes detect some failure, it sends
the failure report (FR) to the sink node. The
Sink node finds out whether it is a simple node
failure or cut-vertex failure. If cut-vertex fails, it
commands UAV to reach the location of the failed
node to deploy the node for recovery. After getting
a message from a deployed node, failure reporting
nodes send recovery reports to the sink node.
We have proposed a distributed failure detection
algorithm and partition recovery using UAV. In
the proposed algorithm, we have tried to reduce
the messages overhead during the detection and
the recovery process compared with state-of-the-art
approaches. This message overhead is compared

10

Distributed partition detection and recovery using UAV in wireless sensor and actor networks

with other similar approaches for network partition
recovery from the single cut vertex failure such as
LeDir (Abbasi et al., 2010), DARA (Abbasi et al.,
2007), PADRA (Akkaya et al., 2010), DPCRA
(Ranga et al., 2014). These approaches recover
partitioned segments by relocating the nodes that
survived after failure. Most of the parameters used
for testing these approaches are based on this node
relocation process such as total distance traveled
by nodes, energy consumed due to relocation
process, coverage reduction, messages transmitted,
and the number of relocated nodes. Therefore,
we performed the comparative analysis based on
message overhead only. The recovery is performed
with the help of UAV, which also reduces the
recovery time. The details of parameters used for
the analysis and the experimental results based on
them are described below:

1. Partition Detection Time (PDT): Detecting
the network partition is an essential step
for the recovery. Many approaches in the
literature assume the number of partitions
formed after the failure and start the recovery
process. Our proposed algorithm is not based
on this assumption. Therefore we also tested
the algorithm for the partition detection time
(PDT), which is not present in other proposed
solutions. It is the time interval between
the failures of the cut-vertex node and sink
determining network partition after receiving
the failure report from other network nodes.
Figure 9 refers to the results of PDT w.r.t
number of nodes; it is almost the same for
10 and 20 nodes. After that, it increases
with the growth in network size. However,
some deviation is also present in results, e.g.,
detection time of 50 nodes and 100 nodes
are less than the detection time of 40 nodes
and 90 nodes, respectively. These deviations
are because of various factors such as Tvar,
Tdelay, and the total number of one-hop
neighbors (OHN) of a failed cut-vertex. The
increasing number of nodes increases Tvar

because of more variations in starting time
when nodes start sending. The delay time
Tdelay varies from application to application.
It should be less for real-time applications. If
the node fails after sending the HEARTBEAT
message, then its failure can be detected
after waiting for the whole Tdelay period. If
the node fails before Tdelay then its failure

can be detected immediately by neighboring
nodes. PDT is directly related to OHN
because if one-hop neighbors of failed cut-
vertex are more, then the sink node receives
failure report from many nodes, which takes
time because of the previously discussed
parameters. Figure 10 describes the detection
time performance of the proposed algorithm
for Tdelay. The detection time grows with an
increase in the value of Tdelay. There are some
slight variations in the graph where detection
time reduces with an increase in Tdelay. These
variations depend on the time when the node
is failed, i.e., before Tdelay or after Tdelay.

Fig. 9. PDT w.r.t number of nodes

Fig. 10. PDT w.r.t Tdelay

2. Messages Transmitted during Recovery
(MTR): This parameter is used to analyze
message overhead during the partition
recovery process. In the proposed approach,
we reduced the messages exchanged between
the nodes and the sink. After two missed
HEARTBEAT messages, nodes send the
failure report to the sink node. The Sink
after receiving these updates, examines the
network condition. In the case of partitioning,
it commands UAV to reach the location of the
failed node. When UAV reaches that location,

11

Aditi Zear, Virender Ranga

it sends HEARTBEAT messages similar to
the normal working of network nodes. When
failure reporting nodes add UAV to their OHN
list, they send a recovery report to the sink
node. Figure 11 illustrates the comparative
analysis of the proposed algorithm based on
MTR with other similar approaches such as
LeDir (Abbasi et al., 2010), DARA (Abbasi
et al., 2007), PADRA (Akkaya et al., 2010),
DPCRA (Ranga et al., 2014). In these
approaches, there is a sudden increase in
the MTR with the growth in network size.
However, such an increase in the MTR is
not present in our approach. The maximum
numbers of messages transmitted are 24
for 100 nodes which is a very less number.
Therefore our proposed algorithm recovers
the network with less message overhead.
From the figure, i t c an b e d etermined that
MTR increases when the network grows.
However, MTR also remains the same in
some cases, such as it is equal for (20, 30),
(40, 50, 60), and (80, 90). Because this
parameter also depends on the number of
OHN of failed cut-vertex. E.g., if OHN of
failed cut-vertex is the same for 80 nodes and
90 nodes, then the value for MTR will be
equal in both the cases.

Fig. 11. MTR w.r.t number of nodes

3. Distance Travelled by UAV for Recovery
(DTUR): Limited energy of UAV is an
important constraint that limits deploying
UAVs in various applications. More energy
gets dissipated when UAV moves at a
particular altitude. Therefore this DTUR
parameter also signifies the energy dissipation
of UAV during the recovery process. In
this approach, distance traveled by UAV
grows with more number of nodes, as shown

in Figure 12. However, this parameter
depends on the gap between the UAV and
the failed node. Therefore, in some cases in
Figure 12 distance traveled by UAV for 10
nodes and 90 nodes is less than the distance
traveled by UAV for 20 nodes and 100 nodes,
respectively. The velocity of UAV used for
collecting these results is 10m/s.

Fig. 12. DTUR w.r.t number of nodes

4. Network Recovery Time (NRT): NRT
is an essential parameter for testing the
performance, and it is equal to the time during
which the network recovers. It is the time
during which the sink node determines the
failure of cut-vertex, commands UAV to reach
the location of cut-vertex, and when it receives
a recovery report from failure reporting nodes.
All the periods involved in these steps are
essential; however, the maximum time is
utilized during the movement of UAV to
the location of failed cut-vertex. Therefore
NRT is directly proportional to the DTUR,
as shown in Figure 13. This recovery time
also varies with the velocity of UAV, with
which it covers the whole distance after
getting command from the sink. Thus Figure
14 shows the relationship between NRT and
the velocity of UAV. NRT is indirectly
proportional to the velocity of UAV. Figure 15
shows the NRT performance NRT concerning
the network size. NRT grows with an increase
in network size. However, it also depends on
the arrangement of nodes, i.e., the distance
between the failed cut-vertex and UAV, time
taken by network nodes to send recovery
reports. The NRT of 60 nodes and 100 nodes
is less than the NRT of 50 nodes and 90 nodes.
More NRT for fewer nodes can be related to
Figure 12 where distance traveled by UAV is

12

Distributed partition detection and recovery using UAV in wireless sensor and actor networks

Fig. 13. NRT w.r.t distance traveled by UAV

Fig. 14. NRT w.r.t Velocity of UAV

less for 60 nodes and 100 nodes as compared
to 50 nodes and 90 nodes. The velocity of
UAV used to collect the results of Fig 13 and
Figure 15 is 10 m/s.

Fig. 15. NRT w.r.t number of nodes

7. Conclusion

This paper describes the proposed work on the
detection and recovery of portioned WSANs. Our
proposed approach Distributed Partition Detection
and Recovery using UAV consist of three phases:
Initialization, Operation and Detection phase,
and Recovery phase. The algorithm focuses on
reducing the computation and message overhead
on the sink node by distributed detection of failure
and sending sink node only important update

messages (network information, failure report,
and recovery report). The network recovery
is performed with the help of UAV; thus, the
energy of another network nodes remain conserved
from additional movements of these nodes for
network reconnection. The algorithmic analysis
of the algorithm is done to analyze its efficacy.
Experimental results are collected based on
parameters such as Detection time, Network
Recovery Time, distance traveled by UAV, and the
number of messages transmitted. The message
overhead is also compared with other similar
approaches. In future work, we will try to
improve the path traveled by UAV and improve
the proposed algorithm to handle multiple node
failures. We will also focus on the placement
of UAVs in the 3-D environment in our research
work, which is yet not seen in any literature. The
security aspect is another area of exploration in the
future which can halt the dispatch of the UAV for
recovery.

ACKNOWLEDGMENTS
We are grateful to the Science and Engineering
Research Board (SERB) - Department of Science
and Technology (DST), Government of India, for
sponsoring this research project.

References
Abbasi, A. A., Akkaya, K. & Younis, M. (2007),
A Distributed Connectivity Restoration Algorithm
in Wireless Sensor and Actor Networks, in ‘32nd
IEEE Conference on Local Computer Networks
(LCN 2007)’, IEEE, pp. 496–503.

Abbasi, A., Younis, M. & Baroudi, U. (2010),
‘Restoring connectivity in wireless sensor-actor
networks with minimal topology changes’, IEEE
International Conference on Communications
pp. 1–5.

Afzaal, H., Zafar, N. A. & Alhumaidan, F.
(2017), ‘Hybrid subnet-based node failure recovery
formal procedure in wireless sensor and actor
networks’, International Journal of Distributed
Sensor Networks 13(4) 155014771770441.

Akkaya, K. & Senel, F. (2009), ‘Detecting and
connecting disjoint sub-networks in wireless sensor
and actor networks’, Ad Hoc Networks 7(7) 1330–
1346.

13

Aditi Zear, Virender Ranga

Akkaya, K., Senel, F., Thimmapuram, A.,
Uludag, S., Hwang, S., Chao, W., Wu, C. & Dow,
C. (2010), ‘Distributed Recovery from Network
Partitioning in Movable Sensor/Actor Networks
via Controlled Mobility’, IEEE Transactions on
Computers 59(2) 258–271.

Alfadhly, A., Baroudi, U. & Younis, M.
(2011), ‘Least Distance Movement Recovery
approach for large scale wireless sensor and
actor networks’, IWCMC 2011 - 7th International
Wireless Communications and Mobile Computing
Conference pp. 2058–2063.

Bayrakdar, M. E. (2020a), ‘Cooperative
communication based access technique for sensor
networks’, International Journal of Electronics
107(2) 212–225.

Bayrakdar, M. E. (2020b), ‘Employing
sensor network based opportunistic spectrum
utilization for agricultural monitoring’, Sustainable
Computing: Informatics and Systems 27, 100404.

Bayrakdar, M. E. (2020c), ‘Energy-efficient
technique for monitoring of agricultural areas with
terrestrial wireless sensor networks’, Journal of
Circuits, Systems and Computers 29(09) 2050141.

Bayrakdar, M. E. (2020d), ‘Enhancing sensor
network sustainability with fuzzy logic based node
placement approach for agricultural monitoring’,
Computers and Electronics in Agriculture
174, 105461.

Bayrakdar, M. E. (2020e), ‘Exploiting
cognitive wireless nodes for priority-based data
communication in terrestrial sensor networks’,
ETRI Journal 42(1) 36–45.

Cheng, M. X., Ling, Y. & Sadler, B. M.
(2017), ‘Network connectivity assessment and
improvement through relay node deployment’,
Theoretical Computer Science 660, 86–101.

Chouikhi, S., Korbi, I. E., Ghamri-Doudane,
Y. & Azouz Saidane, L. (2017), ‘Centralized
connectivity restoration in multichannel wireless
sensor networks’, Journal of Network and
Computer Applications 83(November 2016), 111–
123.

Chriki, A., Touati, H., Snoussi, H. & Kamoun,
F. (2019), ‘FANET: Communication, mobility
models and security issues’, Computer Networks
163, 106877.

Devi, E. A. & Manickam, J. M. L. (2014),
Detecting and repairing network partition in
wireless sensor networks, in ‘2014 International
Conference on Circuits, Power and Computing
Technologies [ICCPCT-2014]’, IEEE, pp. 1338–
1343.

Han, X., Cao, X., Lloyd, E. L. & Shen, C.-
C. (2009), ‘Fault-tolerant relay node placement
in heterogeneous wireless sensor networks’, IEEE
Transactions on Mobile computing 9(5) 643–656.

Hashim, H. A., Ayinde, B. O. & Abido, M. A.
(2016), ‘Optimal placement of relay nodes in
wireless sensor network using artificial bee colony
algorithm’, Journal of Network and Computer
Applications 64 239–248.

Hwang, S., Chao, W., Wu, C. & Dow, C.
(2014), 2-Connected relay node placement scheme
in disjoint wireless sensor networks, in ‘2014
IEEE 5th International Conference on Software
Engineering and Service Science’, pp. 1039–1043.

Imran, M., Younis, M., Said, A. M. & Hasbullah,
H. (2010), Partitioning detection and connectivity
restoration algorithm for wireless sensor and
actor networks, in ‘2010 IEEE/IFIP International
Conference on Embedded and Ubiquitous
Computing’, IEEE, pp. 200–207.

Jha, V., Prakash, N. & Mohapatra, A. K.
(2019), ‘Energy Efficient Model for Recovery
from Multiple Nodes Failure in Wireless Sensor
Networks’, Wireless Personal Communications
108(3) 1459–1479.

Joshi, Y. K. & Younis, M. (2014), Mobility-based
internetworking of disjoint segments, in ‘2014
27th Biennial Symposium on Communications
(QBSC)’, IEEE, pp. 193–197.

Joshi, Y. K. & Younis, M. (2016), ‘Exploiting
skeletonization to restore connectivity in a wireless
sensor network’, Computer communications
75, 97–107.

Kumar, R. & Amgoth, T. (2019), ‘Adaptive
cluster-based relay-node placement for disjoint
wireless sensor networks’, Wireless Networks 8.

Lalouani, W., Younis, M. & Badache, N.
(2017), ‘Optimized repair of a partitioned network
topology’, Computer Networks 128, 63–77.

14

Distributed partition detection and recovery using UAV in wireless sensor and actor networks

Lee, S. & Younis, M. (2010a), ‘Optimized relay
placement to federate segments in wireless sensor
networks’, IEEE Journal on Selected Areas in
Communications 28(5) 742–752.

Lee, S. & Younis, M. (2010b), ‘Recovery from
multiple simultaneous failures in wireless sensor
networks using minimum Steiner tree’, Journal of
Parallel and Distributed Computing 70(5) 525–
536.

Lee, S., Younis, M. & Lee, M. (2015),
‘Connectivity restoration in a partitioned wireless
sensor network with assured fault tolerance’, Ad
Hoc Networks 24(PA), 1–19.

Lee, S., Younis, M. & Lee, M. (2016), ‘Optimized
bi-connected federation of multiple sensor network
segments’, Ad Hoc Networks 38, 1–18.

Liu, S., Steinert, R. & Kostic, D. (2018),
Control under Intermittent Network Partitions,
in ‘2018 IEEE International Conference on
Communications (ICC)’, Vol. 2018-May, IEEE,
pp. 1–7.

Ma, G., Yang, Y., Qiu, X. & Gao, Z. (2016),
‘Obstacle Aware Connectivity Restoration
for Disjoint Wireless Sensor Networks Using
a Mix of Stationary and Mobile Nodes’,
International Journal of Distributed Sensor
Networks 12(5) 6469341.

Mahmood, K., Khan, M. A., Hassan,
M. U., Shah, A. M., Ali, S. & Saeed, M. K.
(2018), ‘Intelligent On-Demand Connectivity
Restoration for Wireless Sensor Networks’,
Wireless Communications and Mobile Computing
2018, 1–10.

Nikolov, M. & Haas, Z. J. (2016), ‘Relay
placement in wireless networks: Minimizing
communication cost’, IEEE Transactions on
Wireless Communications 15(5) 3587–3602.

Ranga, V., Dave, M. & Verma, A. K. (2013),
‘Network partitioning recovery mechanisms
in WSANs: A survey’, Wireless Personal
Communications 72(2) 857–917.

Ranga, V., Dave, M. & Verma, A. K.
(2014), ‘A hybrid timer based single node failure
recovery approach for wsans’, Wireless personal
communications 77(3) 2155–2182.

Ranga, V., Dave, M. & Verma, A. K. (2016a),
‘Optimal nodes selection in wireless sensor
and actor networks based on prioritized mutual
exclusion approach’, Kuwait Journal of Science
43(1) 150–173.

Ranga, V., Dave, M. & Verma, A. K. (2016b),
‘Restoration of lost connectivity of partitioned
wireless sensor networks’, Cogent Engineering
3(1) 1–22.

Senel, F. & Younis, M. (2011a), Optimized
connectivity restoration in a partitioned
wireless sensor network, in ‘2011 IEEE global
telecommunications conference-GLOBECOM
2011’, pp. 1–5.

Senel, F. & Younis, M. (2011b), ‘Relay node
placement in structurally damaged wireless sensor
networks via triangular steiner tree approximation’,
Computer Communications 34(16) 1932–1941.

Senturk, I. F., Akkaya, K. & Yilmaz, S. (2014),
‘Relay placement for restoring connectivity in
partitioned wireless sensor networks under limited
information’, Ad Hoc Networks 13(PART B), 487–
503.

Senturk, I. F., Yilmaz, S. & Akkaya, K. (2012),
‘A game-theoretic approach to connectivity
restoration in wireless sensor and actor
networks’, IEEE International Conference on
Communications pp. 7110–7114.

Shriwastav, S. & Ghose, D. (2018), ‘Round-
table negotiation for fast restoration of connectivity
in partitioned wireless sensor networks’, Ad Hoc
Networks 77, 11–27.

Srinivasaperumal, M., Raja, K. B., Balaji, G. N.
& Dally, E. C. (2017), ‘Concurrent Node Recovery
From Failure In Wireless Sensor-Actor Networks’,
(February).

Stojmenovic, I., Simplot-Ryl, D. & Nayak, A.
(2011), ‘Toward scalable cut vertex and link
detection with applications in wireless ad hoc
networks’, IEEE Network 25(1) 44–48.

Verma, G. K. & Ranga, V. (2018), ‘Whale
optimizer to repair partitioned heterogeneous
wireless sensor networks’, International Journal of
Grid and Distributed Computing 11(5) 11–28.

15

Aditi Zear, Virender Ranga

16

Younis, M., Senturk, I. F., Akkaya, K., Lee,
S. & Senel, F. (2014), ‘Topology management
techniques for tolerating node failures in wireless
sensor networks: A survey’, Computer Networks
58(1) 254–283.

Zahid, S., Abid, S. A., Shah, N., Abbas Naqvi,
S. H. & Mehmood, W. (2018), ‘Distributed
Partition Detection With Dynamic Replication
Management in a DHT-Based MANET’, IEEE
Access 6, 18731–18746.

Zhang, J. & Liu, K. (2019), ‘Survey of Ad-Hoc
network technology for UAV’, International
Conference on Communication Technology
Proceedings, ICCT 2019-Oct. (1) 260–265.

Zhang, Y., Wang, J. & Hao, G. (2018), ‘An
Autonomous Connectivity Restoration Algorithm
Based on Finite State Machine for Wireless Sensor-
Actor Networks’, Sensors 18(2) 153.

Submitted: 24/10/2020
Revised: 16/12/2020
Accepted: 24/12/2020
DOI: 10.48129/kjs.v48i4.10819

Distributed partition detection and recovery using UAV in wireless sensor and actor networks

