
A Bi-criteria Optimization Model for Adjusting the Decision Tree Parameters

Mohammad Azad1,∗, Mikhail Moshkov2

1 Jouf University
Department of Computer Science,College of Computer and Information Sciences

Sakaka 72441, Saudi Arabia
2 King Abdullah University of Science and Technology Computer,

Electrical and Mathematical Sciences & Engineering Division
Thuwal 23955-6900, Saudi Arabia

*Corresponding author: mikhail.moshkov@kaust.edu.sa

Abstract

Decision trees play a very important role in knowledge representation because of its simplicity and self-
explanatory nature. We study the optimization of the parameters of the decision trees to find a shorter as
well as more accurate decision tree. Since these two criteria are in conflict, we need to find a decision tree
with suitable parameters that can be a trade off between two criteria. Hence, we design two algorithms
to build a decision tree with a given threshold of the number of vertices based on the bi-criteria optimiza-
tion technique. Then, we calculate the local and global misclassification rates for these trees. Our goal
is to study the effect of changing the threshold for the bi-criteria optimization of the decision trees. We
apply our algorithms to 13 decision tables from UCI Machine Learning Repository and recommend the
suitable threshold that can give us more accurate decision trees with a reasonable number of vertices.

Keywords: Decision trees; Directed acyclic graph; Knowledge representation; Pareto optimal points;
Misclassification; Bi-criteria optimization

1. Introduction

Decision trees are a very common and accepted model for the classifier (Azad et al., 2015, 2018; Breiman
et al., 1984). They can also be used to find the patterns and represent knowledge from the data (Alsolami
et al., 2020; Azad et al., 2019; Breiman et al., 1984). Furthermore, it can be used as algorithms to solve
problems (Moshkov, 2005; Rokach and Maimon, 2008). The problems considered in this paper are
similar to the problems in medical diagnosis (Podgorelec et al., 2002), image analysis (Mehmood et al.,
2018; Sarwar et al., 2018), pattern recognition (Yahyaoui et al., 2020) etc. We choose decision tree in
this paper because of its easy to use nature and easily comprehensible and explainable by humans as
well as directly exchangeable to production rules (Almuallim et al., 2002). Optimizing the parameters
of decision tree can be extremely useful based on the context: minimizing depth or average depth can
be equivalent to minimizing the time complexity of decision trees, minimizing number of vertices or
number of leaf/non-leaf vertices can be equivalent to minimizing the space complexity of decision trees
and minimizing the number of misclassification can be equivalent to maximizing the accuracy of decision
trees etc. In this paper, we consider optimizing three parameters of decision trees: number of vertices
and misclassification rates (global and local).

Kuwait J.Sci., Vol.49, No.(2),April.2022,pp(1-14)

1

It is important to consider not only optimizing single criteria but also optimizing two criteria at the
same time which is popularly known as the bi-criteria optimization (BCO). BCO is a part of a broader
class of optimization problems named as multi-criteria optimization (MCO). In the literature, we can find
it in various names e.g., multiple objective discrete optimization, vector optimization, multiple objective
combinatorial optimization, multi-attribute optimization, multiple criteria decision making, Pareto opti-
mization (Chang, 2015; Ehrgott and Gandibleux, 2000; Kouvelis and Sayın, 2006), etc. Let us see some
examples in which MCO has been applied successfully in many real world scientific and engineering
problems where we choose optimal solutions as a trade-offs between two or more conflicting objectives.
One of the examples is the maximizing performance while minimizing fuel consumption and emission
of pollutants of a vehicle (Chang, 2015). Another example is the searching for new remedial drugs in
the medical field: maximizing strength of the drug while minimizing synthesis costs and unwanted side
effects (Emmerich Michael T. M., 2018; Rosenthal and Borschbach, 2017; van der Horst et al., 2012).
There are many other examples that brought the attention of the research community: the minimization
of different types of error rates in machine learning (false positives, false negatives) (Wang et al., 2015;
Yevseyeva et al., 2013), the optimization of delivery costs and inventory costs in logistics (Geiger and
Sevaux, 2011), the optimization of building designs with respect to health, energy efficiency, and cost
criteria (Hopfe et al., 2012). In this paper, we consider BCO relative to the number of vertices and
misclassification rate (either global or local).

In BCO and MCO, the objective functions are said to be in conflict and the goal is to find a solution
that is optimal in some sense. The solutions that can not be improved in one objective without deterio-
rating the performance in any other objective are called Pareto optimal or nondominated solutions. They
are named after Italian economist Vilfredo Pareto (de Weck, 2004).

In this paper, we build the set of Pareto optimal points (POPs) for BCO relative to the number of
vertices and misclassification r ate (either g lobal or l ocal). I t i s important t o find a decision tr ee with
a reasonable number of vertices to make it understandable and with a reasonable misclassification rate
(either global or local) to extract accurate knowledge from it. In (Azad et al., 2019), we mentioned that
we should focus not only on the global misclassification rate but also on the local misclassification rate
because the misclassifications may not be equally distributed among the leaf v ertices. Besides, i t may
happen that the fraction of misclassifications can be high for some of the leaf vertices.

Previously, we created a dynamic programming (Bellman, 1954; Tian et al., 2018) approach to BCO
of decision trees for decision tables relative to two parameters (AbouEisha et al., 2019). The idea is to first
build a directed acyclic graph (DAG) then, from DAG (using special algorithm mentioned in (AbouEisha
et al., 2019)) build the set of POPs. After that, we can derive decision trees which parameter values will
be in accordance with the desired POP. Note that, the time complexity of such process depends on the
size of the considered table and, in the worst case, it is exponential. Therefore, from the practical point
of view, we can work from small to medium sized decision tables.

In (Azad et al., 2019), the designed algorithms based on BCO are pertinent to medium-sized decision
tables with categorical features only and, sometimes, the number of vertices in the trees is very large. In
(Azad, 2020b), instead of conventional decision trees, we study trees based on binary splits similar to
CART (Classification and Regression Tree) (Breiman et al., 1984). We call such trees as BS-trees. BS-
trees use binary splits instead of the initial features. The standard CART tree uses in each internal vertex
the best split among all features. A BS-tree can use in each internal vertex the best split for an arbitrary
feature. It extends essentially the set of decision trees under consideration. In (Azad, 2020a), two
algorithms (G − 19 and L − 19) have been designed that build decision trees with at most 19 vertices (at
most 10 leaves and at most nine internal vertices). The choice of 19 vertices was inspired by (AbouEisha
et al., 2019).

In this paper, we try to understand the behavior of the parameters of the extracted decision trees if
we change the value of the threshold from 19 to some other values like 21, 23, etc. Furthermore, we
extend the algorithms G − 19 and L − 19 to algorithms Gα and Lα where α is a threshold that can take
values 13, . . . , 35 with step 2. We apply the considered algorithms to 13 data sets from the UCI Machine
Learning Repository (Dua and Graff, 2017), and study three parameters of the created trees (number of

2

Mohammad Azad1, Mikhail Moshkov

Table 1. Example of a decision table S0

S0 =

f1 f2
0 0 2
0 1 2
1 0 3
1 1 1

nodes, global misclassification rates, local misclassification rates). For each threshold value, we took the
average value of three parameters based on the 13 tables. Based on the achieved results, we can easily
adjust the number of vertices and misclassification error rates of decision trees based on the considered
bi-criteria optimization model. Moreover, we recommend the range of threshold values between 15 to 21
with step 2 which can be valuable for significant analysis of decision trees for knowledge representation.

The main contribution of the paper are (i) creation of two algorithms (Gα and Lα), (ii) performing the
experiments on the state-of-art data sets from UCI ML Repository, and (iii) understanding the trade-off
between two conflicting objective of number of nodes vs. misclassification rates when we fix the number
of nodes to a threshold.

We arrange the remaining of the manuscript as follows. First, we explain the detailed methodology
in Section 2. Then, we discuss the output of the experiments with data sets from the UCI Machine
Learning Repository (Dua and Graff, 2017) in Sect. 3. Finally, Sect. 4 contains concise conclusion.

2. Detailed Methodology

Many researchers have spent a great amount of research of greedy algorithms (Azad et al., 2013; Bo-
ryczka and Kozak, 2009; Breiman et al., 1984; Chai et al., 1996; Heath et al., 1993; Quinlan, 2014) for
building non-optimal decision trees. These algorithms are faster but can’t guarantee the optimal param-
eters of decision trees and did not consider BCO. In addition, some other researchers have studied the
exhaustive algorithms for building optimal decision trees (Garey, 1972; Schumacher and Sevcik, 1976).
But they did not consider BCO problem of the optimal decision tree parameters. However, only few
have concentrated the study on dynamic programming for bi-criteria (and multi-criteria) optimization of
decision trees (AbouEisha et al., 2019; Alsolami et al., 2020; Azad, 2018).

In this section, we describe an expansion of dynamic programming, which gives all possible decision
trees under consideration. The sequence we follow is first, we describe the preliminary ideas of decision
tables, decision trees and building of directed acyclic graph (DAG) then we demonstrate the properties
of BS-trees, later we explain the BCO, and finally, we explain two algorithms Gα and Lα.

2.1 Preliminaries of Decision Tables and Decision Trees
There are various types of decision tables: usual decision tables (AbouEisha et al., 2019), decision

tables with multiple decisions (Alsolami et al., 2020; Azad, 2018) etc. In this paper, we consider usual
decision table i.e., conventional single decision table where each row is attached with a single decision.
We represent such decisions as nonnegative integers. Columns of this table are labeled with conditional
attributes. Rows of the table are distinct. An example of a decision table S0 is presented in Table 1. The
table S0 consists of 4 rows and 2 attributes (f1 and f2). We attach decisions 2, 2, 3, 1 corresponding to
the row numbers 1, 2, 3 and 4 respectively.

A decision tree for a decision table is a finite rooted directed tree. In such trees, there are two types of
vertices: non-leaf vertices and leaf vertices. We label the non-leaf vertices with the conditional attributes
from the decision tables and the leaf vertices with nonnegative integers (e.g., decisions attached with
rows). We label outgoing edges in each non-leaf vertex with pairwise nonnegative integers (attribute
values). We depict an example of an exact decision tree for the decision table S0 in Fig. 1.

Now, we will describe how to create decision trees for the given decision table using an expansion
of dynamic programming. Previously, we described such a process in many publications (AbouEisha
et al., 2019; Aldilaijan et al., 2019; Alsolami et al., 2020; Azad, 2018; Azad and Moshkov, 2017). The

3

A Bi-criteria Optimization Model for Adjusting the Decision Tree Parameters

Fig. 1. A decision tree for the table S0

Fig. 2. The directed acyclic graph for the decision table S0

idea is to build a directed acyclic graph (DAG) based on the expansion of dynamic programming. For
example, a decision table S0 is shown in Table 1 and corresponding DAG in Fig. 2.

After building the DAG, we can extract all decision trees for the decision table under consideration.
The DAG in Fig. 2 describes two decision trees (illustrated in Fig. 3) for the decision table S0. Even
though the time complexity of the building of the DAG is exponential in the worst case subject to the size
of the table, it is still possible to use this method for small to medium sized decision tables (AbouEisha
et al., 2019; Alsolami et al., 2020; Azad, 2018).

There are many ways to split or partition the tables into subtables. The splits based on each value are
considered in paper (Azad et al., 2019) which are applicable for categorical attributes only. In this paper,
we consider the binary split similar to (Azad et al., 2015, 2018; Breiman et al., 1984). The advantage of
binary split in comparison to each value split is that it can be applied for both categorical and numerical
attributes.

2.2 Binary Split Trees (BS-Trees)
Being motivated by CART algorithm, we consider BS-trees similar to trees in CART. The difference

is that a BS-tree uses in each non-leaf vertex the optimal partition for an arbitrary attribute, whereas, the

4

Mohammad Azad1, Mikhail Moshkov

Fig. 3. Two possible decision trees for the table S0

standard CART tree uses in each non-leaf vertex the optimal partition among all attributes.
Given a decision table S containing f1, . . . , fn attributes (either numerical or categorical), we convert

each attribute fi (1 ≤ i ≤ n) into binary attribute (as in CART) using the following procedure (we have
two scenarios depending on the type of attributes):

1. Categorical attribute: LetA be the set of values of the categorical attribute fi. ThenA is partitioned
into two nonempty subsets A1 and A0. If the value of attribute fi belongs to A0 then we make the
binary split bs equal to 0. Similarly, if the value of attribute fi belongs to A1 then we make the
binary split bs equal to 1. We need to take splits for all possible partitions of A.

2. Numerical attribute: Let us compare the values of the numerical attribute fi with a real-value
threshold ψ. The split bs is considered as 0 if fi’s value is smaller than ψ, and 1 otherwise. We
consider splits for all possible thresholds ψ.

As a result of the partition bs, two subtables S(bs=0) and S(bs=1) are obtained. This is the main idea
behind the binary partitioning.

In literature, “entropy” (Quinlan, 1986, 2014), “gini index” (AbouEisha et al., 2019) and “abs” (Al-
solami et al., 2020; Azad, 2020b; Azad et al., 2015, 2018) were used as uncertainty measures. In this
paper, we apply “abs” as the uncertainty measure. We get two subtables S(bs=0) and S(bs=1) by the
partition bs for the table S. We define the notion of impurity function I(S, bs) as the weighted sum of
uncertainties of these subtables i.e., S(bs=0) and S(bs=1) (the weights are based on the proportion of the
total objects (rows) in the corresponding subtables). Now, we need to find the partition bs for which the
value of I(S, bs) is minimum after applying the partition bs for the attribute fi in S. Then we call such
partition as the best partition for the attribute fi.

We consider BS-trees where every leaf vertex is labeled by a non-negative integer. We label every
non-leaf vertex by a partition based on one of the attributes. Also, two arcs are going out from this non-
leaf vertex (one is labeled with 0 and another with 1). Let us consider a decision tree δ and any vertex v
of it. Then, we can map a subtable S(δ, v) for the given table S for each vertex v. This subtable S(δ, v)
consists of all objects (rows) of the given table S for which the action of the decision tree proceeds
through the vertex v. We build our tree based on the following assumptions:

1. For each non-leaf vertex v, S(δ, v) contains the objects (rows) that have different decisions. Fur-
thermore, the vertex v is labeled by an optimal split for a non-constant attribute fi on S(δ, v).

2. For each leaf vertex v, the vertex is labeled with a most frequent decision e.g., a decision which is
bound with the largest amount of objects (rows) from S(δ, v).

We examine the following three parameters of the tree δ (Azad et al., 2019):

5

A Bi-criteria Optimization Model for Adjusting the Decision Tree Parameters

Fig. 4. Example of POPs. The black points are POPs and the red point is not POP

1. The number of vertices: we denote it by N . It is the total number of vertices including leaf and
non-leaf vertices.

2. The global misclassification rate: we denote it by meG. We calculate the number of misclassifica-
tions of δ on S and divide it by the number of rows in S.

3. The local misclassification rate: we denote it by meL. For each leaf vertex of δ, we calculate the
ratio of the number of misclassifications among rows accepted by this vertex to the number of all
rows accepted by the vertex. Then, we take the maximum of the obtained values among all leaf
vertices of δ.

One can show that the global misclassification rate is at most the local misclassification rate.

2.3 Bi-criteria Optimization (BCO) and Pareto Fronts
When we consider BCO in the presence of trade-offs between two objectives that may be in conflict,

we need to find optimal solutions (pair of values of two o bjectives) (Chang, 2 015). For example, if we
increase the number of vertices in the trees then the misclassification rate (either global or local) decreases
and vice versa. A solution is called nondominated if one objective functions can not be improved in value
without degrading another objective function value. We call such solutions as Pareto optimal points
(POPs) (Chang, 2015).

Let us consider a point (i1, j1) in D (where D is a finite set of points in a two-dimensional space).
This point is called a Pareto optimal point (POP) for D if we do not find any other point (i2, j2) in D
where i2 ≤ i1 and j2 ≤ j1 such that (i1, j1) ̸= (i2, j2) (AbouEisha et al., 2019; Alsolami et al., 2020;
Azad, 2018). We can see a simple example in Fig. 4 where the black points are POPs and the red point
is not POP. The collection of POPs for a particular problem is called the Pareto front of the problem.

In this paper, our goal is to minimize both number of vertices and misclassification rate (either global
or local) of the trees at the same time and they are in conflict. The algorithm APOPs (AbouEisha et al.,
2019; Alsolami et al., 2020; Azad, 2018) will be used to find all POPs for this BCO relative to the number
of vertices and misclassification rate (either global or local).

2.4 Two Algorithms for the building of BS-Trees
In this section, we describe how to build the BS-Trees.
The first s tep i s t o c reate a d irected acyclic graph (DAG) for t he g iven decision t able, vertices of

which are some subtables of the considered decision table. For this purpose, we use the algorithm A1
from (AbouEisha et al., 2019; Alsolami et al., 2020; Azad, 2018; Azad et al., 2015). The algorithm A1
works as follows: it first partitions the main table into subtables based on the all possible combination of
non-constant attributes and their values. This process of partitioning will continue to the newly generated

6

Mohammad Azad1, Mikhail Moshkov

0 20 40 60 80 100 120

0

0.1

0.2

0.3

N

meG

0 20 40 60 80 100 120

0

0.1

0.2

0.3

N

meL

(a) S2, N and meG (b) S2, N and meL

0 5 10 15 20 25 30

0

0.2

0.4

0.6

N

meG

0 5 10 15 20 25 30

0

0.2

0.4

0.6

N

meL

(c) S4, N and meG (d) S4, N and meL

0 20 40 60 80

0

0.1

0.2

0.3

N

meG

0 20 40 60 80

0

0.1

0.2

0.3

N

meL

(e) S6, N and meG (f) S6, N and meL

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

N

meG

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

N

meL

(g) S8, N and meG (h) S8, N and meL

Fig. 5. Sets of Pareto optimal points for decision tables S2, S4, S6, and S8 (see Table 2) for pairs of
parameters N , meG and N , meL

7

A Bi-criteria Optimization Model for Adjusting the Decision Tree Parameters

subtables until the newly generated subtables contain the same decision for each row. Also note that we
generate a single instance of the subtables in the graph to maintain the property of the DAG. As an
example, we can find the DAG for the decision table S0 in Fig. 2.

As the next step, we use the algorithm APOPs from (AbouEisha et al., 2019; Alsolami et al., 2020;
Azad, 2018; Azad et al., 2015). The output of this algorithm is the Pareto front – the set of all POPs
(Pareto optimal points) for BCO of BS-trees relative to two criteria for each vertex (subtable) of the
created DAG. The algorithm APOPs works as follows: it traverses through smaller subtables to bigger
subtables using the created DAG in a bottom up fashion. It begins with nodes that are labeled with
subtables containing the same decision for each row until it reaches the root node which is labeled with
the main table. At each node, it creates the set of POPs for that node based on the specific formula to
combine POPs from the child nodes and remove those points which are not POPs due to this combination.
This process continues and at the end, we will get the set of POPs at the root node for the main table.
Next, for each POP, we can extract a tree with parameter values equal to the coordinates of this point.

In this paper, we use the algorithm APOPs to solve two BCO problems: relative to the parameters
N and meG (see examples in Fig. 5 (a), (c), (e), (g)) and relative to the parameters N and meL (see
examples in Fig. 5 (b), (d), (f), (h)).

We now describe two algorithms to design decision trees using the algorithm APOPs. We assume
that the DAG for the considered decision table is already created by the algorithm A1. Note that the
time complexity of the algorithms A1 and APOPs is exponential in the worst case subject to the size of
the decision tables. Therefore, in the worst case, the following two algorithms have exponential time
complexity as well.

Algorithm 1 Gα-algorithm
Input: A DAG for the given decision table S, threshold α
Output: Decision tree δ
Build the set of POPs using APOPs algorithm to the DAG for the given table S based on the parameters
N and meG

Points = the set of POPs build in the previous step, (by default, the points are sorted based on the first
parameter N)
P = (0, 0) /* Save the desired POP in variable P */
for each point (a, b) from Points do

if a ≤ α then
P = (a, b) // save the point which first coordinate is at most the
threshold

else
break the loop // leave the loop since we found the maximum N which
is at most α (this is true since the points are sorted based on
N)

Derive a decision tree δ from the DAG for the point P
Return δ

2.4.1 Gα-algorithm
We apply the algorithm APOPs to the DAG for the decision table S. The algorithm’s output is the set

of POPs for the BCO of BS-trees for parametersN andmeG. We choose a POP with the maximum value
of the parameter N which is at most α. After that, we extract a decision tree δ, for which the parameters
N and meG are equal to the coordinates of this POP. The tree δ is the output of Gα-algorithm. We
describe the pseudo code of Gα-algorithm in Algorithm 1.

8

Mohammad Azad1, Mikhail Moshkov

Table 2. Description of the decision tables used in the experiments

Table Name Rows Attributes

S1 BALANCE-SCALE 625 5
S2 BREAST-CANCER 266 10
S3 CARS 1728 7
S4 HAYES-ROTH-DATA 69 5
S5 HOUSE-VOTES-84 279 17
S6 MONKS-2-TEST 432 6
S7 MONKS-2-TRAIN 169 5
S8 MONKS-3-TRAIN 122 6
S9 LYMPHOGRAPHY 148 19
S10 NURSERY 12960 9
S11 SPECT-TEST 169 23
S12 TIC-TAC-TOE 958 10
S13 ZOO-DATA 59 17

2.4.2 Lα-algorithm
This algorithm is same as Gα except that we create the set of POPs for the BCO of BS-trees for

parameters N and meL. We choose a POP with the maximum value of the parameter N which is at
most α. After that, we extract a decision tree δ, for which the parameters N and meL are equal to the
coordinates of this POP. The tree δ is the output of Lα-algorithm.

3. Results of Experiments

We have used 13 decision tables from the UCI Machine Learning Repository (Dua and Graff, 2017) for
the experiments (described in Table 2).

We applied Gα and Lα algorithms to each of these tables for the threshold α = 13, . . . , 35 with step
2 and found values of the parameters N , meG, and meL for the created decision trees. Table 3 describes
the experimental results for the four thresholds 21, 23, 31 and 33 (‘Avg’ means average values of the
parameters).

We can see from the results that the Lα-algorithm in comparison to Gα-algorithm gives us smaller
values of the parameter meL. Similarly, the Gα-algorithm in comparison to Lα-algorithm gives us
the smaller values of the parameter meG. Furthermore, the general pattern is that the N parameter is
decreasing, whereas, meG and meL parameters are increasing with the decrease of the value of the
threshold. Hence, we can easily adjust the number of vertices to get the desired misclassification rates
using this optimization model.

We took the averages of the parameters over the 12 thresholds which are shown in Table 4. Here,
NA denotes the average of the parameter N , meGA denotes the average of the parameter meG and meLA
denotes the average of the parameter meL. Below, we analyze the changes of the average values of the
parameters for the decrease of the threshold.

We can see the changes of the average values of N , meG and meL with the decrease of the threshold
from 35 to 13 (by step 2) for both Gα and Lα algorithms in Table 5. If we investigate the changes, we
do not find any threshold which is much better than others. In general, if we decrease the threshold, the
average value of the parameter N decreases and the average values of the parameters meL and meG

increase step by step. Rather than finding a single threshold, we may consider a range of thresholds
which can be enough interesting.

– Let us first consider the meGA parameter of the Gα-algorithm. If we decrease the threshold, initially
the average value is increasing slowly and at the threshold 15, it greatly increases compared to the
previous threshold 17.

– Next let us consider the meLA parameter of the Gα-algorithm. If we decrease the threshold, the
behavior of the average value is not stable. Sometimes it is increasing then it decreases, again it is

9

A Bi-criteria Optimization Model for Adjusting the Decision Tree Parameters

Table 3. Different thresholds and corresponding results

Table G21 algorithm L21 algorithm
N meG meL N meG meL

S1 21 0.18 0.46 21 0.20 0.31
S2 21 0.15 0.28 21 0.17 0.18
S3 21 0.09 0.39 21 0.12 0.22
S4 21 0.04 0.17 17 0.06 0.17
S5 19 0.02 0.02 19 0.02 0.02
S6 21 0.05 0.20 21 0.06 0.10
S7 21 0.20 0.33 21 0.25 0.28
S8 21 0.18 0.29 19 0.21 0.25
S9 19 0.02 0.25 21 0.02 0.04
S10 21 0.10 0.32 21 0.11 0.20
S11 21 0.01 0.06 21 0.02 0.02
S12 21 0.16 0.39 21 0.19 0.24
S13 17 0.00 0.00 17 0.00 0.0

Avg 20.38 0.09 0.24 20.08 0.11 0.16

Table G23 algorithm L23 algorithm
N meG meL N meG meL

S1 23.00 0.17 0.33 23.00 0.22 0.25
S2 23.00 0.15 0.28 23.00 0.17 0.18
S3 23.00 0.08 0.40 21.00 0.12 0.22
S4 23.00 0.03 0.17 23.00 0.04 0.14
S5 19.00 0.02 0.03 19.00 0.02 0.02
S6 23.00 0.04 0.20 23.00 0.07 0.09
S7 23.00 0.19 0.33 21.00 0.25 0.28
S8 23.00 0.16 0.32 23.00 0.21 0.24
S9 23.00 0.02 0.08 23.00 0.02 0.03
S10 23.00 0.10 0.34 21.00 0.11 0.20
S11 21.00 0.01 0.13 23.00 0.01 0.02
S12 23.00 0.15 0.39 23.00 0.19 0.23
S13 17.00 0.00 0.00 17.00 0.00 0.00

Avg 22.08 0.09 0.23 21.77 0.11 0.15

Threshold 21 Threshold 23

Table G31 algorithm L31 algorithm
N meG meL N meG meL

S1 31.00 0.15 0.50 23.00 0.22 0.25
S2 31.00 0.12 0.25 31.00 0.14 0.15
S3 31.00 0.06 0.34 29.00 0.14 0.21
S4 31.00 0.00 0.00 31.00 0.00 0.00
S5 31.00 0.01 0.04 27.00 0.01 0.02
S6 31.00 0.01 0.20 31.00 0.02 0.04
S7 31.00 0.15 0.33 31.00 0.22 0.25
S8 31.00 0.11 0.32 25.00 0.18 0.23
S9 31.00 0.00 0.00 31.00 0.00 0.00
S10 31.00 0.09 0.34 31.00 0.11 0.18
S11 29.00 0.00 0.00 29.00 0.00 0.00
S12 31.00 0.10 0.39 31.00 0.15 0.22
S13 17.00 0.00 0.00 17.00 0.00 0.00

Avg 29.77 0.06 0.21 28.23 0.09 0.12

Table G33 algorithm L33 algorithm
N meG meL N meG meL

S1 33.00 0.15 0.50 23.00 0.22 0.25
S2 33.00 0.12 0.33 31.00 0.14 0.15
S3 33.00 0.06 0.34 29.00 0.14 0.21
S4 31.00 0.00 0.00 31.00 0.00 0.00
S5 31.00 0.01 0.02 33.00 0.01 0.01
S6 33.00 0.01 0.08 33.00 0.01 0.03
S7 33.00 0.13 0.33 31.00 0.22 0.25
S8 33.00 0.10 0.32 33.00 0.16 0.22
S9 31.00 0.00 0.00 31.00 0.00 0.00
S10 33.00 0.08 0.29 33.00 0.10 0.18
S11 29.00 0.00 0.00 29.00 0.00 0.00
S12 33.00 0.09 0.39 33.00 0.16 0.21
S13 17.00 0.00 0.00 17.00 0.00 0.00

Avg 31.00 0.06 0.20 29.77 0.09 0.12

Threshold 31 Threshold 33

Table 4. Average results for 13 decision tables

Threshold Gα-algorithm Lα-algorithm
α NA meGA meLA NA meGA meLA

13 12.7500 0.1325 0.2326 12.7500 0.1457 0.1883
15 14.5000 0.1195 0.2467 14.2500 0.1357 0.1811
17 17.0000 0.1091 0.2730 16.2308 0.1267 0.1734
19 18.5385 0.1017 0.2402 17.6154 0.1222 0.1669
21 20.3846 0.0937 0.2438 20.0769 0.1106 0.1555
23 22.0769 0.0859 0.2309 21.7692 0.1093 0.1452
25 24.2308 0.0791 0.2219 23.0000 0.1037 0.1414
27 25.9231 0.0730 0.2192 23.9231 0.1005 0.1393
29 27.3077 0.0685 0.2019 25.7692 0.0970 0.1338
31 29.7692 0.0622 0.2089 28.2308 0.0915 0.1184
33 31.0000 0.0576 0.1998 29.7692 0.0887 0.1168
35 32.2308 0.0541 0.1851 30.8462 0.0762 0.1087

10

Mohammad Azad1, Mikhail Moshkov

Table 5. Changes of the average values of the parameters for the decrease of the threshold (‘-’ means
decrease, otherwise increase)

Threshold Gα-algorithm Lα-algorithm
α NA meGA meLA NA meGA meLA

13 -1.7500 0.0130 -0.0140 -1.5000 0.0100 0.0072
15 -2.5000 0.0104 -0.0264 -1.9808 0.0091 0.0077
17 -1.5385 0.0074 0.0329 -1.3846 0.0044 0.0065
19 -1.8462 0.0080 -0.0037 -2.4615 0.0116 0.0114
21 -1.6923 0.0078 0.0129 -1.6923 0.0013 0.0103
23 -2.1538 0.0068 0.0091 -1.2308 0.0056 0.0038
25 -1.6923 0.0061 0.0027 -0.9231 0.0032 0.0021
27 -1.3846 0.0045 0.0172 -1.8462 0.0035 0.0055
29 -2.4615 0.0063 -0.0069 -2.4615 0.0056 0.0154
31 -1.2308 0.0046 0.0091 -1.5385 0.0027 0.0016
33 -1.2308 0.0035 0.0146 -1.0769 0.0125 0.0081
35 – – – – – –

increasing then again decreases.
– Let us consider the meGA parameter of the Lα-algorithm. If we decrease the threshold, the average

value in general is increasing and at the threshold 19, it seriously increases compared to the threshold 21.
– Let us consider the meL parameter of the Lα-algorithm. If we decrease the threshold, the averageA

value in general increasing and at the thresholds 21 and 19 it seriously increases from the threshold 23.
The average values really depend on the nature of the considered decision tables as well as the size

of the tables. Therefore it may be difficult to find a single threshold which can be considered as optimal
one. But based on the above analysis, we may recommend the range 15 to 21 of thresholds that can be
useful for building of decision trees for knowledge representation.

4. Conclusions

The goal of this paper is to understand which threshold of number of nodes should be chosen if we would
like to minimize the number of nodes and misclassification of the decision trees at the same time. In this
way, it is possible to obtain an understandable decision tree. For this, we designed two algorithms Gα and
Lα to build binary split decision trees (BS-trees) having at most α vertices (where α varies between 13
to 35 with step 2). These algorithms are based on the bi-criteria optimization of N and misclassification
rate (either meG or meL). We found an optimization model to adjust the parameters of decision trees
and recommend a range of threshold 15 to 21 which can give us acceptable values of the parameters
meG and meL. In the future, it is possible to extend these algorithms to multi-label decision tables using
BCO as explained in (Alsolami et al., 2020; Azad, 2018). Furthermore, we are also trying to invent new
algorithms to restrict the number of branches in the DAG to reduce the time complexity of the algorithms.
Moreover, in future, we are planning to extend bi-criteria optimization to the case of decision trees with
hypothesis (Azad et al., 2021a,b,c,d).

ACKNOWLEDGMENTS
We are greatly indebted to Jouf University and King Abdullah University of Science & Technology for
the support of this research.

References

AbouEisha, H., Amin, T., Chikalov, I., Hussain, S. and Moshkov, M. (2019), Extensions of Dynamic
Programming for Combinatorial Optimization and Data Mining, Vol. 146 of Intelligent Systems Ref-
erence Library, Springer.

Aldilaijan, A., Azad, M. and Moshkov, M. (2019), ‘Experimental study of totally optimal decision trees’,

11

A Bi-criteria Optimization Model for Adjusting the Decision Tree Parameters

Fundam. Inform. 165(3-4), 245–261. URL:
https://doi.org/10.3233/FI-2019-1784

Almuallim, H., Kaneda, S. and Akiba, Y. (2002), 3 - development and applications of decision trees, in
C. T. Leondes, ed., ‘Expert Systems’, Academic Press, Burlington, pp. 53–77.

Alsolami, F., Azad, M., Chikalov, I. and Moshkov, M. (2020), Decision and Inhibitory Trees and Rules
for Decision Tables with Many-valued Decisions, Vol. 156 of Intelligent Systems Reference Library,
Springer.

Azad, M. (2018), Decision and Inhibitory Trees for Decision Tables with Many-Valued Decisions, PhD
thesis, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia.
URL: http://hdl.handle.net/10754/628023

Azad, M. (2020a), ‘Decision trees with at most 19 vertices for knowledge representation’, Trans. Rough
Sets 22, 1–7.
URL: https://doi.org/10.1007/978-3-662-62798-3 1

Azad, M. (2020b), ‘Knowledge representation using decision trees constructed based on binary splits’,
KSII Transactions on Internet and Information Systems 14(10), 4007–4024.

Azad, M., Chikalov, I., Hussain, S. and Moshkov, M. (2015), Multi-pruning of decision trees for knowl-
edge representation and classification, in ‘3rd IAPR Asian Conference on Pattern Recognition, ACPR
2015, Kuala Lumpur, Malaysia, November 3-6, 2015’, IEEE, pp. 604–608.

Azad, M., Chikalov, I., Hussain, S. and Moshkov, M. (2018), Restricted multi-pruning of decision trees,
in ‘13th International FLINS Conference on Data Science and Knowledge Engineering for Sensing
Decision Support, FLINS’, pp. 371–378.

Azad, M., Chikalov, I., Hussain, S. and Moshkov, M. (2021a), ‘Entropy-based greedy algorithm for
decision trees using hypotheses’, Entropy 23(7).
URL: https://www.mdpi.com/1099-4300/23/7/808

Azad, M., Chikalov, I., Hussain, S. and Moshkov, M. (2021b), Minimizing depth of decision trees
with hypotheses (to appear), in ‘International Joint Conference on Rough Sets (IJCRS 2021), 19–24
September 2021, Bratislava, Slovakia’.

Azad, M., Chikalov, I., Hussain, S. and Moshkov, M. (2021c), Minimizing number of nodes in decision
trees with hypotheses (to appear), in ‘25th International Conference on Knowledge-Based and Intelli-
gent Information & Engineering Systems (KES 2021), 8–10 September 2021, Szczecin, Poland’.

Azad, M., Chikalov, I., Hussain, S. and Moshkov, M. (2021d), ‘Optimization of decision trees with
hypotheses for knowledge representation’, Electronics 10(13).
URL: https://www.mdpi.com/2079-9292/10/13/1580

Azad, M., Chikalov, I. and Moshkov, M. (2019), Decision trees for knowledge representation, in
K. Ropiak, L. Polkowski and P. Artiemjew, eds, ‘28th International Workshop on Concurrency, Spec-
ification and Programming, CS&P 2019, Olsztyn, Poland, September 24–26, 2019’, Vol. 2571 of
CEUR Workshop Proceedings, CEUR-WS.org.
URL: http://ceur-ws.org/Vol-2571/CSP2019 paper 1.pdf

Azad, M., Chikalov, I., Moshkov, M. and Zielosko, B. (2013), ‘A greedy algorithm for construction of
decision trees for tables with many-valued decisions - A comparative study’, Fundam. Inform.
128(1-2), 1–15.
URL: https://doi.org/10.3233/FI-2013-929

12

Mohammad Azad1, Mikhail Moshkov

Azad, M. and Moshkov, M. (2017), ‘Multi-stage optimization of decision and inhibitory trees for decision
tables with many-valued decisions’, Eur. J. Oper. Res. 263(3), 910–921.
URL: https://doi.org/10.1016/j.ejor.2017.06.026

Bellman, R. (1954), ‘The theory of dynamic programming’, Bull. Amer. Math. Soc. 60(6), 503–515.

Boryczka, U. and Kozak, J. (2009), New algorithms for generation decision trees-ant-miner and its mod-
ifications, in A. Abraham, A. E. Hassanien, A. C. P. de Leon Ferreira de Carvalho and V. Snásel,
eds, ‘Foundations of Computational Intelligence - Volume 6: Data Mining’, Vol. 206 of Studies in
Computational Intelligence, Springer, pp. 229–262.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984), Classification and Regression Trees,
Wadsworth and Brooks, Monterey, CA.

Chai, B.-B., Zhuang, X., Zhao, Y. and Sklansky, J. (1996), Binary linear decision tree with genetic
algorithm, in ‘Proceedings - International Conference on Pattern Recognition’, Vol. 4, pp. 530–534.

Chang, K.-H. (2015), Chapter 5 - multiobjective optimization and advanced topics, in K.-H. Chang, ed.,
‘Design Theory and Methods Using CAD/CAE’, Academic Press, Boston, pp. 325–406.

de Weck, O. (2004), ‘Multiobjective optimization: History and promise’, Invited Keynote Paper, GL2-2,
the Third China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems
2.

Dua, D. and Graff, C. (2017), ‘UCI Machine Learning Repository. University of California, Irvine,
School of Information and Computer Sciences’.
URL: http://archive.ics.uci.edu/ml

Ehrgott, M. and Gandibleux, X. (2000), ‘A survey and annotated bibliography of multiobjective combi-
natorial optimization’, OR Spectr. 22(4), 425–460.

Emmerich Michael T. M., D. A. H. (2018), ‘A tutorial on multiobjective optimization: fundamentals and
evolutionary methods’, Natural Computing 17(3), 1585–609.

Garey, M. R. (1972), ‘Optimal binary identification procedures’, SIAM Journal on Applied Mathematics
23, 173–186.

Geiger, M. J. and Sevaux, M. (2011), The biobjective inventory routing problem – problem solution
and decision support, in J. Pahl, T. Reiners and S. Voß, eds, ‘Network Optimization’, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 365–378.

Heath, D., Kasif, S. and Salzberg, S. (1993), ‘Induction of oblique decision trees’, Journal of Artificial
Intelligence Research 2(2), 1–32.

Hopfe, C., Emmerich, M., Marijt, R. and Hensen, J. (2012), Robust multi-criteria design optimization in
building design, in ‘Proceedings of Building Simulation and Optimization’, pp. 118–125.

Kouvelis, P. and Sayın, S. (2006), ‘Algorithm robust for the bicriteria discrete optimization problem’,
Ann. Oper. Res. 147(1), 71–85.

Mehmood, Z., Gul, N., Altaf, M., Mahmood, T., Saba, T., Rehman, A. and Mahmood, M. (2018), ‘Scene
search based on the adapted triangular regions and soft clustering to improve the effectiveness of the
visual-bag-of-words model’, EURASIP Journal on Image and Video Processing 2018.

Moshkov, M. (2005), Time complexity of decision trees, in J. F. Peters and A. Skowron, eds, ‘Trans.
Rough Sets III’, Vol. 3400 of Lecture Notes in Computer Science, Springer, pp. 244–459.

13

A Bi-criteria Optimization Model for Adjusting the Decision Tree Parameters

Podgorelec, V., Kokol, P., Stiglic, B. and Rozman, I. (2002), ‘Decision trees: An overview and their use
in medicine’, Journal of medical systems 26, 445–63.

Quinlan, J. (1986), ‘Induction of decision trees’, Mach Learn 1, 81–106.

Quinlan, J. R. (2014), C4. 5: programs for machine learning, Elsevier.

Rokach, L. and Maimon, O. (2008), Data Mining with Decision Trees: Theory and Applications, World
Scientific Publishing, River Edge, NJ.

Rosenthal, S. and Borschbach, M. (2017), Design perspectives of an evolutionary process for multi-
objective molecular optimization, in ‘9th International Conference on Evolutionary Multi-Criterion
Optimization - Volume 10173’, EMO 2017, Springer-Verlag, Berlin, Heidelberg, pp. 529–544.

Sarwar, A., Mehmood, Z., Saba, T., Qazi, K., Adnan, A. and Jamal, H. (2018), ‘A novel method for
content-based image retrieval to improve the effectiveness of the bag-of-words model using a support
vector machine’, Journal of Information Science 45.

Schumacher, H. and Sevcik, K. C. (1976), ‘The synthetic approach to decision table conversion’, Com-
mun. ACM 19(6), 343–351.

Tian, J., Cheng, J. and Gong, Y. (2018), ‘Optimization of the operating cost of sewage conveyance’,
Kuwait Journal of Science 45(2), 104–115.

van der Horst, E., Marques-Gallego, P., Mulder-Krieger, T., Veldhoven, J., Kruisselbrink, J., Aleman, A.,
Emmerich, M., Brussee, J., Bender, A. and Ijzerman, A. (2012), ‘Multi-objective evolutionary design
of adenosine receptor ligands’, Journal of Chemical Information and Modeling 52(7), 1713–1721.

Wang, P., Emmerich, M., Li, R., Tang, K., Back, T. and Yao, X. (2015), ‘Convex hull-based multi-
objective genetic programming for maximizing receiver operating characteristic performance’, IEEE
Transactions on Evolutionary Computation 19(2), 188–200.

Yahyaoui, H., El-Qurna, J. and Almulla, M. (2020), ‘Specification and recognition of service trust be-
haviors’, Kuwait Journal of Science 47(1), 33–41.

Yevseyeva, I., Basto-Fernandes, V., Ruano-Ordas, D. and Mendez, J. R. (2013), ‘Optimising anti-spam
filters with evolutionary algorithms’, Expert Systems with Applications 40(10), 4010 – 4021.

Submitted
Revised
Accepted
DOI

: 07/11/2020
: 10/07/2021
: 10/07/2021
: 10.48129/kjs.10725

14

Mohammad Azad1, Mikhail Moshkov

