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Abstract

Decision trees play a very important role in knowledge representation because of its simplicity and self-
explanatory nature. We study the optimization of the parameters of the decision trees to find a shorter as 
well as more accurate decision tree. Since these two criteria are in conflict, we need to find a decision tree 
with suitable parameters that can be a trade off between two criteria. Hence, we design two algorithms 
to build a decision tree with a given threshold of the number of vertices based on the bi-criteria optimiza-
tion technique. Then, we calculate the local and global misclassification rates for these trees. Our goal 
is to study the effect of changing the threshold for the bi-criteria optimization of the decision trees. We 
apply our algorithms to 13 decision tables from UCI Machine Learning Repository and recommend the 
suitable threshold that can give us more accurate decision trees with a reasonable number of vertices.

Keywords: Decision trees; Directed acyclic graph; Knowledge representation; Pareto optimal points; 
Misclassification; Bi-criteria optimization

1. Introduction

Decision trees are a very common and accepted model for the classifier (Azad et al., 2015, 2018; Breiman 
et al., 1984). They can also be used to find the patterns and represent knowledge from the data (Alsolami 
et al., 2020; Azad et al., 2019; Breiman et al., 1984). Furthermore, it can be used as algorithms to solve 
problems (Moshkov, 2005; Rokach and Maimon, 2008). The problems considered in this paper are 
similar to the problems in medical diagnosis (Podgorelec et al., 2002), image analysis (Mehmood et al., 
2018; Sarwar et al., 2018), pattern recognition (Yahyaoui et al., 2020) etc. We choose decision tree in 
this paper because of its easy to use nature and easily comprehensible and explainable by humans as 
well as directly exchangeable to production rules (Almuallim et al., 2002). Optimizing the parameters 
of decision tree can be extremely useful based on the context: minimizing depth or average depth can 
be equivalent to minimizing the time complexity of decision trees, minimizing number of vertices or 
number of leaf/non-leaf vertices can be equivalent to minimizing the space complexity of decision trees 
and minimizing the number of misclassification can be equivalent to maximizing the accuracy of decision 
trees etc. In this paper, we consider optimizing three parameters of decision trees: number of vertices 
and misclassification rates (global and local).
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It is important to consider not only optimizing single criteria but also optimizing two criteria at the 
same time which is popularly known as the bi-criteria optimization (BCO). BCO is a part of a broader 
class of optimization problems named as multi-criteria optimization (MCO). In the literature, we can find 
it in various names e.g., multiple objective discrete optimization, vector optimization, multiple objective 
combinatorial optimization, multi-attribute optimization, multiple criteria decision making, Pareto opti-
mization (Chang, 2015; Ehrgott and Gandibleux, 2000; Kouvelis and Sayın, 2006), etc. Let us see some 
examples in which MCO has been applied successfully in many real world scientific and engineering 
problems where we choose optimal solutions as a trade-offs between two or more conflicting objectives. 
One of the examples is the maximizing performance while minimizing fuel consumption and emission 
of pollutants of a vehicle (Chang, 2015). Another example is the searching for new remedial drugs in 
the medical field: maximizing strength of the drug while minimizing synthesis costs and unwanted side 
effects (Emmerich Michael T. M., 2018; Rosenthal and Borschbach, 2017; van der Horst et al., 2012). 
There are many other examples that brought the attention of the research community: the minimization 
of different types of error rates in machine learning (false positives, false negatives) (Wang et al., 2015; 
Yevseyeva et al., 2013), the optimization of delivery costs and inventory costs in logistics (Geiger and 
Sevaux, 2011), the optimization of building designs with respect to health, energy efficiency, and cost 
criteria (Hopfe et al., 2012). In this paper, we consider BCO relative to the number of vertices and 
misclassification rate (either global or local).

In BCO and MCO, the objective functions are said to be in conflict and the goal is to find a solution 
that is optimal in some sense. The solutions that can not be improved in one objective without deterio-
rating the performance in any other objective are called Pareto optimal or nondominated solutions. They 
are named after Italian economist Vilfredo Pareto (de Weck, 2004).

In this paper, we build the set of Pareto optimal points (POPs) for BCO relative to the number of 
vertices and misclassification r ate ( either g lobal or l ocal). I t i s important t o find a decision tr ee with 
a reasonable number of vertices to make it understandable and with a reasonable misclassification rate 
(either global or local) to extract accurate knowledge from it. In (Azad et al., 2019), we mentioned that 
we should focus not only on the global misclassification rate but also on the local misclassification rate 
because the misclassifications may not be equally distributed among the leaf v ertices. Besides, i t may 
happen that the fraction of misclassifications can be high for some of the leaf vertices.

Previously, we created a dynamic programming (Bellman, 1954; Tian et al., 2018) approach to BCO 
of decision trees for decision tables relative to two parameters (AbouEisha et al., 2019). The idea is to first 
build a directed acyclic graph (DAG) then, from DAG (using special algorithm mentioned in (AbouEisha 
et al., 2019)) build the set of POPs. After that, we can derive decision trees which parameter values will 
be in accordance with the desired POP. Note that, the time complexity of such process depends on the 
size of the considered table and, in the worst case, it is exponential. Therefore, from the practical point 
of view, we can work from small to medium sized decision tables.

In (Azad et al., 2019), the designed algorithms based on BCO are pertinent to medium-sized decision 
tables with categorical features only and, sometimes, the number of vertices in the trees is very large. In 
(Azad, 2020b), instead of conventional decision trees, we study trees based on binary splits similar to 
CART (Classification and Regression Tree) (Breiman et al., 1984). We call such trees as BS-trees. BS-
trees use binary splits instead of the initial features. The standard CART tree uses in each internal vertex 
the best split among all features. A BS-tree can use in each internal vertex the best split for an arbitrary 
feature. It extends essentially the set of decision trees under consideration. In (Azad, 2020a), two 
algorithms (G − 19 and L − 19) have been designed that build decision trees with at most 19 vertices (at 
most 10 leaves and at most nine internal vertices). The choice of 19 vertices was inspired by (AbouEisha 
et al., 2019).

In this paper, we try to understand the behavior of the parameters of the extracted decision trees if 
we change the value of the threshold from 19 to some other values like 21, 23, etc. Furthermore, we 
extend the algorithms G − 19 and L − 19 to algorithms Gα and Lα where α is a threshold that can take 
values 13, . . . , 35 with step 2. We apply the considered algorithms to 13 data sets from the UCI Machine 
Learning Repository (Dua and Graff, 2017), and study three parameters of the created trees (number of
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Table 1. Example of a decision table S0

S0 =

f1 f2
0 0 2
0 1 2
1 0 3
1 1 1

nodes, global misclassification rates, local misclassification rates). For each threshold value, we took the 
average value of three parameters based on the 13 tables. Based on the achieved results, we can easily 
adjust the number of vertices and misclassification error rates of decision trees based on the considered 
bi-criteria optimization model. Moreover, we recommend the range of threshold values between 15 to 21 
with step 2 which can be valuable for significant analysis of decision trees for knowledge representation.

The main contribution of the paper are (i) creation of two algorithms (Gα and Lα), (ii) performing the 
experiments on the state-of-art data sets from UCI ML Repository, and (iii) understanding the trade-off 
between two conflicting objective of number of nodes vs. misclassification rates when we fix the number 
of nodes to a threshold.

We arrange the remaining of the manuscript as follows. First, we explain the detailed methodology 
in Section 2. Then, we discuss the output of the experiments with data sets from the UCI Machine 
Learning Repository (Dua and Graff, 2017) in Sect. 3. Finally, Sect. 4 contains concise conclusion.

2. Detailed Methodology

Many researchers have spent a great amount of research of greedy algorithms (Azad et al., 2013; Bo-
ryczka and Kozak, 2009; Breiman et al., 1984; Chai et al., 1996; Heath et al., 1993; Quinlan, 2014) for 
building non-optimal decision trees. These algorithms are faster but can’t guarantee the optimal param-
eters of decision trees and did not consider BCO. In addition, some other researchers have studied the 
exhaustive algorithms for building optimal decision trees (Garey, 1972; Schumacher and Sevcik, 1976). 
But they did not consider BCO problem of the optimal decision tree parameters. However, only few 
have concentrated the study on dynamic programming for bi-criteria (and multi-criteria) optimization of 
decision trees (AbouEisha et al., 2019; Alsolami et al., 2020; Azad, 2018).

In this section, we describe an expansion of dynamic programming, which gives all possible decision 
trees under consideration. The sequence we follow is first, we describe the preliminary ideas of decision 
tables, decision trees and building of directed acyclic graph (DAG) then we demonstrate the properties 
of BS-trees, later we explain the BCO, and finally, we explain two algorithms Gα and Lα.

2.1 Preliminaries of Decision Tables and Decision Trees
There are various types of decision tables: usual decision tables (AbouEisha et al., 2019), decision 

tables with multiple decisions (Alsolami et al., 2020; Azad, 2018) etc. In this paper, we consider usual 
decision table i.e., conventional single decision table where each row is attached with a single decision. 
We represent such decisions as nonnegative integers. Columns of this table are labeled with conditional 
attributes. Rows of the table are distinct. An example of a decision table S0 is presented in Table 1. The 
table S0 consists of 4 rows and 2 attributes (f1 and f2). We attach decisions 2, 2, 3, 1 corresponding to 
the row numbers 1, 2, 3 and 4 respectively.

A decision tree for a decision table is a finite rooted directed tree. In such trees, there are two types of 
vertices: non-leaf vertices and leaf vertices. We label the non-leaf vertices with the conditional attributes 
from the decision tables and the leaf vertices with nonnegative integers (e.g., decisions attached with 
rows). We label outgoing edges in each non-leaf vertex with pairwise nonnegative integers (attribute 
values). We depict an example of an exact decision tree for the decision table S0 in Fig. 1.

Now, we will describe how to create decision trees for the given decision table using an expansion
of dynamic programming. Previously, we described such a process in many publications (AbouEisha 
et al., 2019; Aldilaijan et al., 2019; Alsolami et al., 2020; Azad, 2018; Azad and Moshkov, 2017). The
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Fig. 1. A decision tree for the table S0

Fig. 2. The directed acyclic graph for the decision table S0

idea is to build a directed acyclic graph (DAG) based on the expansion of dynamic programming. For 
example, a decision table S0 is shown in Table 1 and corresponding DAG in Fig. 2.

After building the DAG, we can extract all decision trees for the decision table under consideration. 
The DAG in Fig. 2 describes two decision trees (illustrated in Fig. 3) for the decision table S0. Even 
though the time complexity of the building of the DAG is exponential in the worst case subject to the size 
of the table, it is still possible to use this method for small to medium sized decision tables (AbouEisha 
et al., 2019; Alsolami et al., 2020; Azad, 2018).

There are many ways to split or partition the tables into subtables. The splits based on each value are 
considered in paper (Azad et al., 2019) which are applicable for categorical attributes only. In this paper, 
we consider the binary split similar to (Azad et al., 2015, 2018; Breiman et al., 1984). The advantage of 
binary split in comparison to each value split is that it can be applied for both categorical and numerical 
attributes.

2.2 Binary Split Trees (BS-Trees)
Being motivated by CART algorithm, we consider BS-trees similar to trees in CART. The difference 

is that a BS-tree uses in each non-leaf vertex the optimal partition for an arbitrary attribute, whereas, the
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Fig. 3. Two possible decision trees for the table S0

standard CART tree uses in each non-leaf vertex the optimal partition among all attributes.
Given a decision table S containing f1, . . . , fn attributes (either numerical or categorical), we convert

each attribute fi (1 ≤ i ≤ n) into binary attribute (as in CART) using the following procedure (we have
two scenarios depending on the type of attributes):

1. Categorical attribute: LetA be the set of values of the categorical attribute fi. ThenA is partitioned
into two nonempty subsets A1 and A0. If the value of attribute fi belongs to A0 then we make the
binary split bs equal to 0. Similarly, if the value of attribute fi belongs to A1 then we make the
binary split bs equal to 1. We need to take splits for all possible partitions of A.

2. Numerical attribute: Let us compare the values of the numerical attribute fi with a real-value
threshold ψ. The split bs is considered as 0 if fi’s value is smaller than ψ, and 1 otherwise. We
consider splits for all possible thresholds ψ.

As a result of the partition bs, two subtables S(bs=0) and S(bs=1) are obtained. This is the main idea 
behind the binary partitioning.

In literature, “entropy” (Quinlan, 1986, 2014), “gini index” (AbouEisha et al., 2019) and “abs” (Al-
solami et al., 2020; Azad, 2020b; Azad et al., 2015, 2018) were used as uncertainty measures. In this 
paper, we apply “abs” as the uncertainty measure. We get two subtables S(bs=0) and S(bs=1) by the 
partition bs for the table S. We define the notion of impurity function I(S, bs) as the weighted sum of 
uncertainties of these subtables i.e., S(bs=0) and S(bs=1) (the weights are based on the proportion of the 
total objects (rows) in the corresponding subtables). Now, we need to find the partition bs for which the 
value of I(S, bs) is minimum after applying the partition bs for the attribute fi in S. Then we call such 
partition as the best partition for the attribute fi.

We consider BS-trees where every leaf vertex is labeled by a non-negative integer. We label every 
non-leaf vertex by a partition based on one of the attributes. Also, two arcs are going out from this non-
leaf vertex (one is labeled with 0 and another with 1). Let us consider a decision tree δ and any vertex v 
of it. Then, we can map a subtable S(δ, v) for the given table S for each vertex v. This subtable S(δ, v) 
consists of all objects (rows) of the given table S for which the action of the decision tree proceeds 
through the vertex v. We build our tree based on the following assumptions:

1. For each non-leaf vertex v, S(δ, v) contains the objects (rows) that have different decisions. Fur-
thermore, the vertex v is labeled by an optimal split for a non-constant attribute fi on S(δ, v).

2. For each leaf vertex v, the vertex is labeled with a most frequent decision e.g., a decision which is
bound with the largest amount of objects (rows) from S(δ, v).

We examine the following three parameters of the tree δ (Azad et al., 2019):
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Fig. 4. Example of POPs. The black points are POPs and the red point is not POP

1. The number of vertices: we denote it by N . It is the total number of vertices including leaf and
non-leaf vertices.

2. The global misclassification rate: we denote it by meG. We calculate the number of misclassifica-
tions of δ on S and divide it by the number of rows in S.

3. The local misclassification rate: we denote it by meL. For each leaf vertex of δ, we calculate the
ratio of the number of misclassifications among rows accepted by this vertex to the number of all
rows accepted by the vertex. Then, we take the maximum of the obtained values among all leaf
vertices of δ.

One can show that the global misclassification rate is at most the local misclassification rate.

2.3 Bi-criteria Optimization (BCO) and Pareto Fronts
When we consider BCO in the presence of trade-offs between two objectives that may be in conflict, 

we need to find optimal solutions (pair of values of two o bjectives) (Chang, 2 015). For example, if we 
increase the number of vertices in the trees then the misclassification rate (either global or local) decreases 
and vice versa. A solution is called nondominated if one objective functions can not be improved in value 
without degrading another objective function value. We call such solutions as Pareto optimal points 
(POPs) (Chang, 2015).

Let us consider a point (i1, j1) in D (where D is a finite set of points in a two-dimensional space). 
This point is called a Pareto optimal point (POP) for D if we do not find any other point (i2, j2) in D 
where i2 ≤ i1 and j2 ≤ j1 such that (i1, j1) ̸= (i2, j2) (AbouEisha et al., 2019; Alsolami et al., 2020; 
Azad, 2018). We can see a simple example in Fig. 4 where the black points are POPs and the red point 
is not POP. The collection of POPs for a particular problem is called the Pareto front of the problem.

In this paper, our goal is to minimize both number of vertices and misclassification rate (either global 
or local) of the trees at the same time and they are in conflict. The algorithm APOPs (AbouEisha et al., 
2019; Alsolami et al., 2020; Azad, 2018) will be used to find all POPs for this BCO relative to the number 
of vertices and misclassification rate (either global or local).

2.4 Two Algorithms for the building of BS-Trees
In this section, we describe how to build the BS-Trees.
The first s tep i s t o c reate a  d irected acyclic graph (DAG) for t he g iven decision t able, vertices of 

which are some subtables of the considered decision table. For this purpose, we use the algorithm A1 
from (AbouEisha et al., 2019; Alsolami et al., 2020; Azad, 2018; Azad et al., 2015). The algorithm A1 
works as follows: it first partitions the main table into subtables based on the all possible combination of 
non-constant attributes and their values. This process of partitioning will continue to the newly generated
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Fig. 5. Sets of Pareto optimal points for decision tables S2, S4, S6, and S8 (see Table 2) for pairs of
parameters N , meG and N , meL
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subtables until the newly generated subtables contain the same decision for each row. Also note that we 
generate a single instance of the subtables in the graph to maintain the property of the DAG. As an 
example, we can find the DAG for the decision table S0 in Fig. 2.

As the next step, we use the algorithm APOPs from (AbouEisha et al., 2019; Alsolami et al., 2020; 
Azad, 2018; Azad et al., 2015). The output of this algorithm is the Pareto front – the set of all POPs 
(Pareto optimal points) for BCO of BS-trees relative to two criteria for each vertex (subtable) of the 
created DAG. The algorithm APOPs works as follows: it traverses through smaller subtables to bigger 
subtables using the created DAG in a bottom up fashion. It begins with nodes that are labeled with 
subtables containing the same decision for each row until it reaches the root node which is labeled with 
the main table. At each node, it creates the set of POPs for that node based on the specific formula to 
combine POPs from the child nodes and remove those points which are not POPs due to this combination. 
This process continues and at the end, we will get the set of POPs at the root node for the main table. 
Next, for each POP, we can extract a tree with parameter values equal to the coordinates of this point.

In this paper, we use the algorithm APOPs to solve two BCO problems: relative to the parameters 
N and meG (see examples in Fig. 5 (a), (c), (e), (g)) and relative to the parameters N and meL (see 
examples in Fig. 5 (b), (d), (f), (h)).

We now describe two algorithms to design decision trees using the algorithm APOPs. We assume 
that the DAG for the considered decision table is already created by the algorithm A1. Note that the 
time complexity of the algorithms A1 and APOPs is exponential in the worst case subject to the size of 
the decision tables. Therefore, in the worst case, the following two algorithms have exponential time 
complexity as well.

Algorithm 1 Gα-algorithm
Input: A DAG for the given decision table S, threshold α
Output: Decision tree δ
Build the set of POPs using APOPs algorithm to the DAG for the given table S based on the parameters
N and meG

Points = the set of POPs build in the previous step, (by default, the points are sorted based on the first
parameter N )
P = (0, 0) /* Save the desired POP in variable P */
for each point (a, b) from Points do

if a ≤ α then
P = (a, b) // save the point which first coordinate is at most the
threshold

else
break the loop // leave the loop since we found the maximum N which
is at most α (this is true since the points are sorted based on
N)

Derive a decision tree δ from the DAG for the point P
Return δ

2.4.1 Gα-algorithm
We apply the algorithm APOPs to the DAG for the decision table S. The algorithm’s output is the set

of POPs for the BCO of BS-trees for parametersN andmeG. We choose a POP with the maximum value
of the parameter N which is at most α. After that, we extract a decision tree δ, for which the parameters
N and meG are equal to the coordinates of this POP. The tree δ is the output of Gα-algorithm. We
describe the pseudo code of Gα-algorithm in Algorithm 1.

8

Mohammad Azad1, Mikhail Moshkov



Table 2. Description of the decision tables used in the experiments

Table Name Rows Attributes

S1 BALANCE-SCALE 625 5
S2 BREAST-CANCER 266 10
S3 CARS 1728 7
S4 HAYES-ROTH-DATA 69 5
S5 HOUSE-VOTES-84 279 17
S6 MONKS-2-TEST 432 6
S7 MONKS-2-TRAIN 169 5
S8 MONKS-3-TRAIN 122 6
S9 LYMPHOGRAPHY 148 19
S10 NURSERY 12960 9
S11 SPECT-TEST 169 23
S12 TIC-TAC-TOE 958 10
S13 ZOO-DATA 59 17

2.4.2 Lα-algorithm
This algorithm is same as Gα except that we create the set of POPs for the BCO of BS-trees for

parameters N and meL. We choose a POP with the maximum value of the parameter N which is at
most α. After that, we extract a decision tree δ, for which the parameters N and meL are equal to the
coordinates of this POP. The tree δ is the output of Lα-algorithm.

3. Results of Experiments

We have used 13 decision tables from the UCI Machine Learning Repository (Dua and Graff, 2017) for
the experiments (described in Table 2).

We applied Gα and Lα algorithms to each of these tables for the threshold α = 13, . . . , 35 with step
2 and found values of the parameters N , meG, and meL for the created decision trees. Table 3 describes
the experimental results for the four thresholds 21, 23, 31 and 33 (‘Avg’ means average values of the
parameters).

We can see from the results that the Lα-algorithm in comparison to Gα-algorithm gives us smaller
values of the parameter meL. Similarly, the Gα-algorithm in comparison to Lα-algorithm gives us
the smaller values of the parameter meG. Furthermore, the general pattern is that the N parameter is
decreasing, whereas, meG and meL parameters are increasing with the decrease of the value of the
threshold. Hence, we can easily adjust the number of vertices to get the desired misclassification rates
using this optimization model.

We took the averages of the parameters over the 12 thresholds which are shown in Table 4. Here,
NA denotes the average of the parameter N , meGA denotes the average of the parameter meG and meLA
denotes the average of the parameter meL. Below, we analyze the changes of the average values of the
parameters for the decrease of the threshold.

We can see the changes of the average values of N , meG and meL with the decrease of the threshold
from 35 to 13 (by step 2) for both Gα and Lα algorithms in Table 5. If we investigate the changes, we
do not find any threshold which is much better than others. In general, if we decrease the threshold, the
average value of the parameter N decreases and the average values of the parameters meL and meG

increase step by step. Rather than finding a single threshold, we may consider a range of thresholds
which can be enough interesting.

– Let us first consider the meGA parameter of the Gα-algorithm. If we decrease the threshold, initially
the average value is increasing slowly and at the threshold 15, it greatly increases compared to the
previous threshold 17.

– Next let us consider the meLA parameter of the Gα-algorithm. If we decrease the threshold, the
behavior of the average value is not stable. Sometimes it is increasing then it decreases, again it is
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Table 3. Different thresholds and corresponding results

Table G21 algorithm L21 algorithm
N meG meL N meG meL

S1 21 0.18 0.46 21 0.20 0.31
S2 21 0.15 0.28 21 0.17 0.18
S3 21 0.09 0.39 21 0.12 0.22
S4 21 0.04 0.17 17 0.06 0.17
S5 19 0.02 0.02 19 0.02 0.02
S6 21 0.05 0.20 21 0.06 0.10
S7 21 0.20 0.33 21 0.25 0.28
S8 21 0.18 0.29 19 0.21 0.25
S9 19 0.02 0.25 21 0.02 0.04
S10 21 0.10 0.32 21 0.11 0.20
S11 21 0.01 0.06 21 0.02 0.02
S12 21 0.16 0.39 21 0.19 0.24
S13 17 0.00 0.00 17 0.00 0.0

Avg 20.38 0.09 0.24 20.08 0.11 0.16

Table G23 algorithm L23 algorithm
N meG meL N meG meL

S1 23.00 0.17 0.33 23.00 0.22 0.25
S2 23.00 0.15 0.28 23.00 0.17 0.18
S3 23.00 0.08 0.40 21.00 0.12 0.22
S4 23.00 0.03 0.17 23.00 0.04 0.14
S5 19.00 0.02 0.03 19.00 0.02 0.02
S6 23.00 0.04 0.20 23.00 0.07 0.09
S7 23.00 0.19 0.33 21.00 0.25 0.28
S8 23.00 0.16 0.32 23.00 0.21 0.24
S9 23.00 0.02 0.08 23.00 0.02 0.03
S10 23.00 0.10 0.34 21.00 0.11 0.20
S11 21.00 0.01 0.13 23.00 0.01 0.02
S12 23.00 0.15 0.39 23.00 0.19 0.23
S13 17.00 0.00 0.00 17.00 0.00 0.00

Avg 22.08 0.09 0.23 21.77 0.11 0.15

Threshold 21 Threshold 23

Table G31 algorithm L31 algorithm
N meG meL N meG meL

S1 31.00 0.15 0.50 23.00 0.22 0.25
S2 31.00 0.12 0.25 31.00 0.14 0.15
S3 31.00 0.06 0.34 29.00 0.14 0.21
S4 31.00 0.00 0.00 31.00 0.00 0.00
S5 31.00 0.01 0.04 27.00 0.01 0.02
S6 31.00 0.01 0.20 31.00 0.02 0.04
S7 31.00 0.15 0.33 31.00 0.22 0.25
S8 31.00 0.11 0.32 25.00 0.18 0.23
S9 31.00 0.00 0.00 31.00 0.00 0.00
S10 31.00 0.09 0.34 31.00 0.11 0.18
S11 29.00 0.00 0.00 29.00 0.00 0.00
S12 31.00 0.10 0.39 31.00 0.15 0.22
S13 17.00 0.00 0.00 17.00 0.00 0.00

Avg 29.77 0.06 0.21 28.23 0.09 0.12

Table G33 algorithm L33 algorithm
N meG meL N meG meL

S1 33.00 0.15 0.50 23.00 0.22 0.25
S2 33.00 0.12 0.33 31.00 0.14 0.15
S3 33.00 0.06 0.34 29.00 0.14 0.21
S4 31.00 0.00 0.00 31.00 0.00 0.00
S5 31.00 0.01 0.02 33.00 0.01 0.01
S6 33.00 0.01 0.08 33.00 0.01 0.03
S7 33.00 0.13 0.33 31.00 0.22 0.25
S8 33.00 0.10 0.32 33.00 0.16 0.22
S9 31.00 0.00 0.00 31.00 0.00 0.00
S10 33.00 0.08 0.29 33.00 0.10 0.18
S11 29.00 0.00 0.00 29.00 0.00 0.00
S12 33.00 0.09 0.39 33.00 0.16 0.21
S13 17.00 0.00 0.00 17.00 0.00 0.00

Avg 31.00 0.06 0.20 29.77 0.09 0.12

Threshold 31 Threshold 33

Table 4. Average results for 13 decision tables

Threshold Gα-algorithm Lα-algorithm
α NA meGA meLA NA meGA meLA

13 12.7500 0.1325 0.2326 12.7500 0.1457 0.1883
15 14.5000 0.1195 0.2467 14.2500 0.1357 0.1811
17 17.0000 0.1091 0.2730 16.2308 0.1267 0.1734
19 18.5385 0.1017 0.2402 17.6154 0.1222 0.1669
21 20.3846 0.0937 0.2438 20.0769 0.1106 0.1555
23 22.0769 0.0859 0.2309 21.7692 0.1093 0.1452
25 24.2308 0.0791 0.2219 23.0000 0.1037 0.1414
27 25.9231 0.0730 0.2192 23.9231 0.1005 0.1393
29 27.3077 0.0685 0.2019 25.7692 0.0970 0.1338
31 29.7692 0.0622 0.2089 28.2308 0.0915 0.1184
33 31.0000 0.0576 0.1998 29.7692 0.0887 0.1168
35 32.2308 0.0541 0.1851 30.8462 0.0762 0.1087
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Table 5. Changes of the average values of the parameters for the decrease of the threshold (‘-’ means
decrease, otherwise increase)

Threshold Gα-algorithm Lα-algorithm
α NA meGA meLA NA meGA meLA

13 -1.7500 0.0130 -0.0140 -1.5000 0.0100 0.0072
15 -2.5000 0.0104 -0.0264 -1.9808 0.0091 0.0077
17 -1.5385 0.0074 0.0329 -1.3846 0.0044 0.0065
19 -1.8462 0.0080 -0.0037 -2.4615 0.0116 0.0114
21 -1.6923 0.0078 0.0129 -1.6923 0.0013 0.0103
23 -2.1538 0.0068 0.0091 -1.2308 0.0056 0.0038
25 -1.6923 0.0061 0.0027 -0.9231 0.0032 0.0021
27 -1.3846 0.0045 0.0172 -1.8462 0.0035 0.0055
29 -2.4615 0.0063 -0.0069 -2.4615 0.0056 0.0154
31 -1.2308 0.0046 0.0091 -1.5385 0.0027 0.0016
33 -1.2308 0.0035 0.0146 -1.0769 0.0125 0.0081
35 – – – – – –

increasing then again decreases.
– Let us consider the meGA parameter of the Lα-algorithm. If we decrease the threshold, the average

value in general is increasing and at the threshold 19, it seriously increases compared to the threshold 21.
– Let us consider the meL parameter of the Lα-algorithm. If we decrease the threshold, the averageA

value in general increasing and at the thresholds 21 and 19 it seriously increases from the threshold 23.
The average values really depend on the nature of the considered decision tables as well as the size 

of the tables. Therefore it may be difficult to find a single threshold which can be considered as optimal 
one. But based on the above analysis, we may recommend the range 15 to 21 of thresholds that can be 
useful for building of decision trees for knowledge representation.

4. Conclusions

The goal of this paper is to understand which threshold of number of nodes should be chosen if we would 
like to minimize the number of nodes and misclassification of the decision trees at the same time. In this 
way, it is possible to obtain an understandable decision tree. For this, we designed two algorithms Gα and 
Lα to build binary split decision trees (BS-trees) having at most α vertices (where α varies between 13 
to 35 with step 2). These algorithms are based on the bi-criteria optimization of N and misclassification 
rate (either meG or meL). We found an optimization model to adjust the parameters of decision trees 
and recommend a range of threshold 15 to 21 which can give us acceptable values of the parameters 
meG and meL. In the future, it is possible to extend these algorithms to multi-label decision tables using 
BCO as explained in (Alsolami et al., 2020; Azad, 2018). Furthermore, we are also trying to invent new 
algorithms to restrict the number of branches in the DAG to reduce the time complexity of the algorithms. 
Moreover, in future, we are planning to extend bi-criteria optimization to the case of decision trees with 
hypothesis (Azad et al., 2021a,b,c,d).
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