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Abstract 

 
For complex simple Lie algebras, the article provides the classification of all automorphisms of 
order 3. The method is an extension of Dynkin diagrams so that the classification is a listing of 
diagrams that represent automorphisms of order 3. This work extends an earlier result on 
automorphisms of order 2. As an application, it shows that for automorphisms of orders 2 and 3 

only, the invariant subalgebra determines the automorphism. 
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1.  Introduction 
 
Let g be a finite-dimensional complex simple Lie algebra (Humphreys, 1973). Let h be a Cartan 
subalgebra of g, and let Δ ⸦ h* be its root system. It leads to a root space decomposition 

g = h + . 

  Let Π ⸦ ∆ be a simple system, with the lowest root φ. Let D1 be the extended Dynkin diagram 
of g so that its vertices are members of П ∪ {φ}. The roots П ∪ {φ} are linearly dependent, and 

there are unique relatively prime positive integers such that 	∑ 𝑎!𝛼"! = 0 (Kac, 1990). 

Here relatively excellent means that they have no common factor other than 1. 

  A Kac diagram c is an assignment of relatively prime nonnegative integers . Given a Kac 

diagram c, we let  and let = exp(2πi/ ) ∈ C. We say that c represents a g-

automorphism θ: g → g if 
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. 
In this case, θ has order because it is the smallest positive integer such that θ n = 1. 

Two g-automorphisms θ, θ ' are said to be equivalent if there is a g-automorphism σ such that 
θ ' = σθσ-1. The list of all g-automorphisms of order two up to equivalence has been given (Chuah, 
2012, Figure 1-3). Automorphisms of order 2 play essential roles in the study of real semisimple 
Lie algebras and symmetric spaces. This method is extended here to apply automorphisms of order 
3 for generalized symmetric spaces, thereby establishing the importance of automorphisms of 
order 3 (Wolf & Gray, 1968). In this article, we provide a diagrammatic classification of all g-
automorphisms of order 3. 

The group of all g-automorphisms, denoted by aut(g), has a natural topology structure. We 
say that θ ∈ aut(g) is inner if it lies in the connected component, which contains the identity map. 
Otherwise, we say that θ is outer. 
 
Theorem 1.1.  Up to equivalence, all inner g-automorphisms of order three are represented by 
the Kac diagrams in Figure 1 for classical Lie algebras and Figure 2 for exceptional Lie algebras. 

In these Kac diagrams, we make the convention that the vertices α such that cα = 0 are drawn 
without indicating the integer 0. For example, in the first diagram of Figure 2, two vertices satisfy 
cα = 1, and five vertices satisfy cα = 0. 

The complex simple Lie algebras are classified by their Dynkin diagrams, which are An, Bn, 
Cn, Dn, E6, E7, E8, F4, G2 (see Section 11.4 of Humphreys, 1973). In particular, the Lie algebras of 
An, Bn, Cn, Dn are constructed (see Section 1.2 of Humphreys, 1973). 

There are more complicated diagrams, known as twisted diagrams. For the Lie algebra D4, 
there is a twisted diagram D3, which we will explain later in (3). 
 
Theorem 1.2.  Up to equivalence, there are only two outer g-automorphisms of order 3. They 
occur when g = D4 and are represented by the twisted diagrams in Figure 3. 

The fixed points of mappings are studied in many areas of mathematics, see for example (Pant, 
Chauhan, Cho & Gordji, 2015). We also study the fixed points here. Given a g-automorphism θ, 
we let gθdenote its fixed point set, also known as invariant subalgebra, namely 
 
 gθ= {X ∈ g; θ(X) = X}.               (1) 
   As an application of the lists of diagrams, we study to what extent gθ determine θ. It is known 
that for automorphisms of order 2, the isomorphic class of gθ determines the equivalence class of 
θ. The following theorem says that this is also true for automorphisms of order 3, but not higher 
order automorphisms. The theorem ≅ denotes Lie algebra isomorphism. 
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Theorem 1.3.  Let θ, σ be g-automorphisms of order . 
(a) For = 2, 3, θ and σ are equivalent if and only if gθ≅ gσ. 
(b) For the condition, gθ≅ gσ does not imply that θ and σ are equivalent. 

 
We shall prove Theorems 1.1 and 1.2 in Section 2 and prove Theorem 1.3 in Section 3. 
 
 
2.  Automorphisms of order 3 
Recall that g is a finite-dimensional complex simple Lie algebra, h is a Cartan subalgebra of g, Δ 
⸦ h* is its root system, and 

g = h +  

is the root space decomposition. 
 We recall a result of Kac on finite order g-automorphisms. Let П ⸦Δ be a simple system. 
Let σ ∈ aut(Δ) be a root automorphism of order k which stabilizes П, namely σ(П) =П. Clearly, σ 
can be the identity. Otherwise, the list of Dynkin diagrams show that σ ≠ 1 occurs only in the 
following cases, 
 
   k = 1: any g,                    
        k = 2: g = An ( 2), Dn, E6,               (2) 
     k = 3: g = D4.                    
 
Let Zk denote the group of integers modulo k. There exists a Lie algebra automorphism of order k, 
still denoted by σ, such that 

σgα = gσα 

for all α	∈Δ. It leads to a Zk-grading g = gr, where gr has the eigenvalue exp(2rπi/ k) with 

respect to σ. Then g0 is a subalgebra of g, and it acts on gr for all r ∈ Zk. We construct a diagram. 
 
Dk = set of vertices representing П0 ∪ {φ},           (3) 
 
where П0 is a simple system of g0, and φ	is the lowest weight of the g0-representation on g1. Also, 
the edges of Dk are drawn according to the usual rule of Dynkin diagrams. Note that if σ is the 
identity, so that k = 1, then g = g0 = g1, so φ is just the lowest root of П = П0. In this case, D1 is 
just the extension of the Dynkin diagram of g. 
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Having added φ to П0, it follows that the roots represented by the vertices of Dk are linearly 

dependent, so there are unique relatively prime positive integers  such that 

. 

These integers are presented in Chapter 4, Tables Aff 1, Aff 2, and Aff 3 (Kac, 1990). 
A Kac diagram c an assignment of relatively prime nonnegative integers to Dk, namely 𝑐# is 

a nonnegative integer for each α ∈ Dk, and {𝑐#}$" 	is a set of relatively prime integers. Two Kac 
diagrams on Dk are said to be equivalent if they are related by a diagram symmetry of Dk. If  is a 
positive integer, we let = exp(2πi/ )	∈ C be the primitive th root of unity. 
 
Theorem 2.1. (Kac) (Helgason, 2001, Chapter X; Kac, 1990, Chapter 8) There is a bijective 
correspondence between the equivalence classes of Kac diagrams and finite order g-
automorphisms. In this correspondence, if c is a Kac diagram, it represents a g-automorphism θ 

of order , where there exist root vectors such that . Here gθ 

is reductive, its semisimple part has a Dynkin diagram , and its center has 
dimension.  
# . 

The case where n = 2 has been classified in (Chuah, 2012, Figures 1-3). In this article, we 
classify the Kac diagrams corresponding to all g-automorphisms of order 3. By Theorem 
2.1, we look for all Kac diagrams c such that 

 

.                         (4) 

Recall that k can be 1,2,3 as discussed in (2). The condition (4) excludes k = 2, so we deal with 
two cases, 
 
(a)  k = 1 for any ,           
(b)  k = 3 for g = D4.                     (5)   

         

We start with (5)(a). Here (4) becomes , which leads to the following four cases: 

 
(a) aα = cα = aβ = cβ = aγ = cγ = 1,  

c = 0 on D1\{α, β, γ}, 
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(b) aα = aβ = 1, cα = 1, cβ = 2, c = 0 on D1\{α, β}, 
(c) aα = 1, aβ = 2, cα = cβ = 1,                       (6) 

c = 0 on D1\{α, β}, 
(d) aα = 3, cα = 1, c = 0 on D1\{α}. 

 
We make the convention that for the Kac diagrams c in Figures 1-3, the vertices α without 

indicated integer refer to cα = 0. Figures 1-2 provide all Kac diagrams which satisfy one of the 
conditions of (6). For example: 
the first Kac diagram of An satisfies (6)(a), 
the second Kac diagram of An satisfies (6)(b), 
the first Kac diagram of Bn satisfies (6)(c), 
the second Kac diagram of G2 satisfies (6)(d). 

We conclude that Figures 1-2 classifies all Kac diagrams with k = 1. Figure 1 deals with the 
classical Lie algebras An, Bn, Cn, Dn, and Figure 2 deals with the exceptional Lie algebras E6, E7, 
E8, F4, G2. 

Next, we consider (5)(b). In this case, g = D4 and (4) becomes So there is exactly 

one vertex , and c assigns 0 to the remaining vertices of D3. Such Kac diagrams are 
classified by Figure 3. 

We conclude that, by Theorem 2.1, Figures 1-3 classify all the Kac diagrams for g-
automorphisms of order 3. 

Recall that a g-automorphism is called inner if it lies in the connected component of aut(g) 
which contains the identity mapping and is called outer otherwise. In this diagrammatic 
classification, the automorphism is inner if and only if the diagram is D1 (Chuah, 2012, (4.4)). 
Therefore, the automorphisms represented by Figures 1-2 are inner, and the automorphisms 
represented by Figure 3 are outer. This completes the proof for Theorems 1.1 and 1.2. 

 
3.  Invariant subalgebras 
Given a Kac diagram 𝑐 on Dk, we define its kernel as the subdiagram of Dk provided by  
 

ker c = {α ∈ Dk ; 𝑐!= 0}. 
 
In the following proposition, isomorphism of diagrams is understood as bijection of vertices which 
preserves edge relations. Let ≇	denote diagrams that are not isomorphic. 
 
Proposition 3.1.  Let c, c' be Kac diagrams on Dk, which represent g-automorphisms of order 3. 
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If c, c' are not equivalent, then ker c ≇ ker c'. 
 
Proof. This is proved by checking through the list of Kac diagrams in Figures 1-3. For example, 
consider the five Kac diagrams of g = E6 in Figure 2. Their kernels are respectively the Dynkin 
diagrams of A5, A1 + A4, D5, A2 + A2 + A2, D4, so these kernels are not isomorphic to one another. 
Similarly, for g = E7, Figure 2 provides five Kac diagrams whose kernels are respectively the 
Dynkin diagrams of D6, A1 +D5, A6, A2 + A5, E6, so these kernels are not isomorphic to one another. 

By checking through all the Kac diagrams in Figures 1-3, Proposition 3.1 follows.        ■ 

 
We shall see that Proposition 3.1 fails for automorphisms of order ≥ 4, as Figure 4 provides a 

counterexample. 
Recall that, for a g-automorphism θ, we let gθ denote its invariant subalgebra (1). We now 

prove Theorem 1.3(a). Let θ, σ be g-automorphisms. If they are equivalent, then there exists a g-
automorphism µ such that σ =μθμ-1. It implies that μ(gθ) = gσ, hence gθ ≅ gσ. So the remaining 
issue is to prove the“if” part of the statement. The g-automorphisms of order 2 are also known 
as involutions. The result for involutions is known in the literature nevertheless, we elaborate the 
argument here. There is a bijective correspondence between the equivalence classes of g-
involutions θ and isomorphic classes of real forms gR of g, given by θ stabilizes gR and is a Cartan 
involution of gR. See, for instance (Chuah, 2012, §2). Let θ, σ be g-involutions. They correspond 
to some real forms gR, g′R of g. If gθ ≅ gσ, then gR ≅ g′R (Helgason, 2001, Chapter X-6, Theorem 
6.2) and hence θ, σ are equivalent. This proves Theorem 1.3(a) for involutions.  

Next, we prove Theorem 1.3(a) for 𝔤-automorphisms θ, σ of order 3. Theorems 1.1 and 1.2 
are represented by Kac diagrams c, c' in Figures 1, 2, or 3. Suppose that θ, σ are not equivalent to 
each other. By Theorem 2.1, c, c' are not equivalent. By Proposition 3.1, ker c ≇ ker c '. By 
Theorem 2.1, ker c, ker c' are the Dynkin diagrams of the semisimple parts of gθ, gσ, so we have 
gθ	≇	gσ . This proves Theorem 1.3(a) for automorphisms of order 3. 

Next, we prove Theorem 1.3(b). Let  ≥ 4. It suffices to construct counterexamples of 
non-equivalent g-automorphisms θ, σ of order n such that gθ ≅	gσ. Let g = Am, where m≥ 3. 
Consider the two Kac diagrams in Figure 4. They are not equivalent, but their kernels are the same, 
namely the Dynkin diagram of Am−2. 

Suppose that θ, σ is represented by the Kac diagrams in Figure 4. By Theorem 2.1, θ and σ 
are not equivalent because their Kac diagrams are not equivalent, but both their invariant 
subalgebras are gθ = gσ = 𝛢m−2 + C2. With this counterexample, we have proved Theorem 1.3(b). 

 

 n

6

Ching-I Hsin



 
 

 
Fig. 1. Inner classical Kac diagrams of order 3 

 
 

 
Fig. 2. Exceptional Kac diagrams of order 3. 

 
 

 
Fig. 3. Outer Kac diagrams of order 3. 

 

 

Fig. 4. Non-equivalent Kac diagrams with the same kernel. 
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