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Abstract

A Distributed Denial of Service (DDoS) attack is one of the lethal threats that can cripple down the
computing and communication resources of a web server hosting Internet-based services and applica-
tions. It has motivated the researchers over the years to find diversified and robust solutions to combat
against DDoS attacks and characterization of flash events (a sudden surge in the legitimate traffic)
from HR-DDoS (High-Rate DDoS) attacks. In recent times, the volume of legitimate traffic has also
magnified manifolds. It results in behavioral similarities of attack traffic and legitimate traffic that make
it very difficult and crucial to differentiate between the two. Predominantly, Netflow-based techniques
are in use for detecting and differentiating legitimate and attack traffic flows. Over the last decade,
fellow researchers have extensively used distinct information theory metrics for Netflow-based DDoS
defense solutions. However, a comprehensive analysis and comparison of these diversified information
theory metrics used for particularly DDoS attack detection are needed for a better understanding of the
defense systems based on information theory. This paper elucidates the efficacy and effectiveness of
information theory-based various entropy and divergence measures in the field of DDoS attack detection.
As part of the work, a generalized NetFlow-based methodology has been proposed. The proposed
detection methodology has been validated using the traffic traces of various real benchmarked datasets
on a set of detection system evaluation metrics such as Detection rate (Recall), Precision, F-Measure,
FPR, Classification rate, and Receiver-Operating Characteristics (ROC) curves. It has concluded that
generalized divergence-based information theory metrics produce more accuracy in detecting different
types of attack flows in contrast to entropy-based information theory metrics.
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1. Introduction

Over the years, the Internet has witnessed the 
exponential growth of online services and 
applications. The current statistics show that 
around 57% of World’s population is the user of 
the Internet Clicks (2019). The increasing usage 
of these interactive web-based services and 
applications have also en-couraged an exponential 
increase in risks and pos-sibilities of misuse of the 
Internet. The researchers are developing 
sophisticated and robust solutions to design better 
networks of the future, such as HTTP as the 
narrow waist Popa et al. (2010), Named Data 
Networking (NDN) Zhang et al. (2010), 
programmable networks Campbell et al. (1999) and

Software-Defined Networking Fundation (2012). 
However, the Internet is still vulnerable and open 
to various security threats arise due to worms, port 
scans, Trojans, and DDoS attacks, etc. Among 
several security threats, DoS (Denial of service) 
and DDoS (Distributed-Denial of service) 
attacks are the most ruthless security threats.

A DoS attack characterizes as an explicit attempt 
by an attacker to prevent legitimate users from 
accessing a website, web service, or a computer 
system. Such an attack is launched using 
millions of computer systems (if online) in a 
coordinated manner, called a distributed denial of 
service (DDoS) 
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attack. DDoS attacks deny the target service 
bysending the redundant stream of packets to a 
victim rendering it unavailable to legitimate users. 
Fur-ther, attackers also send these requests at a low 
rate to elude the defense system Zhijun et al. 
(2020). The DDoS attacks can be mainly divided 
into two categories as
• Network DDoS attacks (Layer 3/4): These

attacks target the network and transport layers.
Such attacks occur when the network traffic
overwhelms a network and consumes all the
available resources of the network.

• Application DDoS attacks (Layer 7): These
DDoS attacks target the application layer of
the OSI model. In such types of DDoS
attacks, the attacker exploits seemingly
legitimate HTTP GET or POST requests to
attack a web server or application.

As per the latest global DDoS threat landscape 
Q4 report of 2019 Global Threat landscape Report 
(2019), the trend has shifted from network layer 
DDoS attacks, which were based on spoofing, to 
application-layer DDoS attacks which are based on 
legitimate TCP connections. These attacks send 
multiple HTTP GET requests to over-whelm either 
victim resources such as CPU cycles, memory, 
buffers, and file descriptors or network resources 
such as bandwidth. Under such situa-tions, the web 
server spends most of its CPU time in processing 
useless attack packets instead of le-gitimate 
packets leading to a denial of service to normal 
users. Even the 2019 annual worldwide 
infrastructure security report (WISR) from 
Netscout has reported the volume of such attacks 
touched to 1.7 Tbps Netscout WISR Report (2019).

While DDoS attack traffic targets to bring the 
service down intentionally, there is a type of 
legitimate traffic that can also bring the target 
service down, such type of traffic is known as a 
Flash Event (FE) Jung et al. (2002). An FE cause 
surge in traf-fic volume likely to a DDoS attack 
when hundreds of legitimate users try to access the 
same website simultaneously Bhandari et al. 
(2016), Sachdeva et al. (2016). Sometimes because 
of the occurrence of some sudden events such as 
the launching of a sale, death of some celebrity, 
budgetary sessions, new product launch, etc. lead 
to an immense the volume of network traffic 
toward web servers host-ing that news. It causes 
delays in the web server’s responses and thus, 

do not intend to bring the service down. Instead, 
these events are the result of overuse of service for 
which the service provider may or may not be ready 
before the occurrence of these events. However, 
there is a high risk of misinterpreting a FE as a 
DDoS attack or vice versa, if the proper mechanism 
of discrimination is not in place and hence, leading 
to blacklisting of legitimate IP addresses. So, it is 
very crucial to detect DDoS attacks and 
discriminate them from behaviorally similar flash 
events in-time to the making timely available 
services and applications based on the Internet.

Through the extensive survey of existing 
literature, we observed that the majority of the 
DDoS defence solutions use the concept of flow-
similarity and have used information theory-based 
metrics as the underlying detection logic. There are 
several salient features of using information theory 
metrics such as (1) they usually have a small 
complexity in term of space, time, and computation 
as only header fields are used for calculation, (2) 
they have lesser need of storage, so there is no need 
to accumulate a large number of network traces, (3) 
they require lesser packet header features to 
differentiate various network traffic types, (4) high 
scalability,(5) low false-positive rates, and (6) high 
sensitivity towards capturing meek deviations 
Xiang et al.(2011).

In recent times, researchers have used diversified 
information theory-based entropy and divergence 
measures. Information entropy metrics such as 
Shannon entropy Sachdeva et al. (2016), Be-hal & 
Kumar (2017a), Singh et al. (2020), Renyi’s 
generalized entropy Xiang et al. (2011), Behal & 
Kumar (2017a,b), Bereziński et al. (2015) - Sa-hoo 
et al. (2018), Tsallis entropy Bereziński et al.
(2015), Ma & Chen (2013), Basicevic et al. (2015), 
φ-entropy Behal & Kumar (2017b), Basicevic & 
Ocovaj (2019) and divergence based metrics such 
as KL divergence Behal & Kumar (2017a,b), Sa-
hoo et al. (2018), Li et al. (2009), Hellinger dis-
tance Jeyanthi & Iyengar (2012), Yu et al. (2009) - 
Saravanan et al. (2016), generalized information 
divergence Xiang et al. (2011), Behal & Kumar 
(2017a,b), Bhuyan et al. (2016), Li et al. (2009), 
Total variation distance Li et al. (2009), Rahmani et 
al. (2012a,b) and Jeffrey distance Behal & Kumar 
(2017a), Yu et al. (2009), Yu et al. (2011) have been 
used extensively in the literature to detect the 
network anomalies. In this paper, we have presented a 
comprehensive and exhaustive empirical
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analysis of predominantly used five distinct entropy
measures and ten divergence measures.

The major contributions of this paper can be
summarized as:

• A Netflow-based generalized detection
methodology is proposed. It uses various
mathematical models to classify network
traffic into different types of Netflows such as
normal, HR-DDoS attack, LR-DDoS attack
and FEs.

• A scalable emulation-based DDoSTB testbed
has been used to validate the proposed
generalized detection algorithm by replaying
the traffic traces of benchmarked datasets of
MIT Lincoln (for Normal traffic), FIFA (for
FE traffic), CAIDA (for LR-DDoS and HR-
DDoS traffic), and DDoSTB (Normal, HR-
DDoS and FE traffic) to generate various
types of normal and attack Netflows. A
scalable emulation-based DDoSTB represents
near to real high-speed network traffic for the
validation purpose.

• The efficiency and effectiveness of various
en-tropy and divergence measures are
measured using detection systems evaluation
parameters such as detection rate (recall),
precision, false positive rate (FPR), F-
measure, and classification rate.

• A comprehensive evaluation of the detection
efficiency of each entropy and divergence
metric is performed by visualizing the tradeoff
between detection rate and FPR in terms of
ROC (receiver operating characteristic)
curves.

The Rest of the paper is organized in the following 
way. The background of information theory metrics as 
well as related work, is given in Section 2. Section 3 
explains generalized proposed detection 
methodology, and experimental setup details are 
given in Section 4. In Section 5, the results are 
compared and discussed, and finally, Section 6 
concluded the work by highlighting future directions.

2. Background of information theory and re-
lated work

DDoS attacks cause significant deviations in the 
packet header features of network traffic. Recently, 
information theory-based metrics such as entropy 
and divergence measures, have been used 
progressively in detecting DDoS attacks.

2.1 Background of information theory

Information theory is based on probability 
theory and statistics. Information theory often 
concerns itself with the measure of information of 
probability distributions associated with random 
variables. This section briefly explains the present 
prominently used information theory-based 
entropy and divergence measures.

2.1.1 Information entropy measures

Information entropy is a measure of the 
uncertainty associated with a random variable—the 
more random the information variable, the bigger 
the en-tropy. In contrast, the greater certainty of the 
infor-mation variable, the smaller the entropy. 
Initially, in 1948, Claude Shannon defined 
information en-tropy metric to calculate the 
uncertainty, random-ness or disorder in the 
physical system. Mathematically, Shannon 
entropy Shannon (2001) is given by:

H(x) = −
n∑
i=1

pilog2pi (1)

where pi denotes the probability of the occurrence 
of an event x. Further, Alfred Renyi, in 1961, 
defined a more general form of Shannon entropy to 
quantify the arbitrariness in a system. Renyi 
entropy has many applications in statistical and 
coding theory statistics and is known as an index of 
diversity. The generalized information entropy 
(GE) of order α is defined as:

Hα

(
x
)

=
1

1− α
log2

(
n∑
i=1

pαi

)
(2)

where α is an entropic index. Using different order 
of α values, GE can compute different 
contributions of the numerous proportions of 
probability distributions. When α < 0, generalized 
entropy is more sensitive to the events which are 
having lesser frequency whereas when α ≥ 0, GE 
is more sensitive to occur events frequently. It 
means when α ≥ 0, events with high probability 
contribute more to GE and when α < 0 events with 
low probability contribute more in GE Rényi 
(1965). For exam-ple, when α = 0, Hartley entropy 
can be obtained which gives the maximum value of 
information and is defined as

H0

(
x
)

= log2n (3)

When α→ 1, GE tends to Shannon entropy.
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Plastino in 1993 defined Tsallis entropy as 
another generalized form of entropy Plastino & 
Plastino (1993). It is also called non-extensive 
entropy Tsallis (1988) and is a one-parameter 
generalization of traditional Shannon entropy. 
When α → 1, Tsallis entropy tends to Shannon 
entropy. Like GE, on different values of α Tsallis 
entropy gives diverse contributions of a probability 
distribution.

H ′
(
x
)

=
1

1− α

(
1−

n∑
i=1

pαi

)
(4)

In 2009, Ubriaco (2009) proposed a new 
fractional entropy having similar properties as of 
Shannon entropy but it does not follow the 
additivity property like Shannon entropy Machado 
(2010). Ubriaco entropy is defined as:

H
(
x
)

=
n∑
i=1

(
− log

(
p
(
zi
)))q

p
(
zi
)

(5)

Further, Bhatia et al. (2012) in 2012 proposed
a new set of metrics based on information theory.
Authors claimed that their given metrics have better
differentiation power than existing Renyi’s GE and
GID. They defined a new generalized entropy as φ-
entropy:

φ− entropy = − 1

sinh
(
α
)( n∑

i=1

(
pisinh

(
αlog2pi

)))
(6)

φ-entropy is an improved version of Shannon 
entropy and Renyi’s GE. It’s adjustable behavior is 
more acceptable to discover attack behavior and 
pattern in the early stage.

2.1.2 Divergence measures

A plethora of divergence measures is available 
in the literature which can be used to measure the 
quantitative difference among two different 
probability distributions. Initially, Pearson in 1900 
de-fined a Pearson divergence, also known as Chi-
square, χ2-divergence, Quadratic divergence, 
Kagen divergence, least-squares Pearson (1900) as:

Pearson(P ||Q) =
1

2

n∑
i=1

(
pi − qi

)2
qi

(7)

where P and Q are probability distributions. χ2 

divergence can range from 0 to ∞. χ2 is 0 iff P and 
Q are equal. It increases as distributions become 
dis-similar and reach to ∞ when P 6= Q. For normal 
traffic, χ2 function must be close to 0 and shows

large deviation when distributions change. Then,
Ernst Hellinger introduced the concept of Hellinger
distance in 1909 in terms of the Hellinger integral
Hellinger (1909). It is defined as:

HD(P ||Q
)

=

(
n∑
i=1

(√
pi −

√
qi

)2)1/2

(8)

where Hellinger Distance (HD) satisfies the 
inequality 0≤ HD(P ||Q) ≤ 1, and HD(P ||Q) = 
0 iff P = Q. HD is a symmetric distance i.e. HD(P 
||Q) = HD(Q||P ). Further, in 1943, 
Bhattacharyya measures the similarity of two 
proba-bility distributions called a Bhattacharyya 
distance (BD). For probability distributions P and 
Q over the same domain X, BD is defined as:

BD = −log2
[ n∑√

P
(
x
)
Q
(
x
)]

(9)
i=1

It is used to determine the relative closeness of the 
two probability density functions being considered. 
In 1946, H. Jeffreys gave the concept of divergence 
as a measure of the divergence between two 
probability distributions. Jeffreys distance (JD) is 
defined as:

JD =
1

2

[
D
(
P,Q

)
+D

(
Q,P

)]
(10)

Further, Solomon Kullback and Richard Leibler in 
1951 extended the concept of Bhattacharyya 
distance as the directed divergence between two 
probability distribution, known as Kullback Leibler 
(KL) divergence. Though it is not a true 
detection metric since it is not symmetric, nor does 
it obey the triangle inequality. For computing KL 
divergence both the probability distributions must 
have the same sample space. For any two discrete
probability distributions P = (p1,p2,......,pn) and Q
= (q1,q2,......,qn) with

∑n
i=1 pi =

∑n
i=1 qi = 1, i =

1,2,....,n, KL divergence is defined as:

D
(
P ||Q

)
=

n∑
i=1

pilog2

(pi
qi

)
(11)

KL metric is always non-negative. i.e. D
(
P ||Q

)
≥

0 and is also known as Relative entropy.
Further, Alford Renyi in 1961 gave more general 

definition of information divergence, know as 
generalized information divergence (GID) defined 
as:

Dα(P ‖ Q) =
1

1− αlog2

(
n∑
i=1

pαi q
1−α
i

)
, α ≥ 0.    (12)
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Here, the range of α values can be used to get 
different useful formulas. When α → 1 then, GID 
is reduced to KL divergence. Total Variational 
Distance is also a kind of divergence measure 
between two probability distributions defined in 
1966 and is given as:

V (P,Q) =
1

2

n∑
i=1

|pi − qi| (13)

where P =
(
p1, p2, p3...pn

)
and Q =(

q1, q2, q3...qn
)

and 1 ≥ pi ≥ 0, 1 ≥ qi ≥ 0,
i =

(
1, 2, 3, ..., n

)
. It is a symmetric measure

because V
(
P,Q

)
= V

(
Q,P

)
. It tends to give

the maximum distance between two distributions as 
claimed by the authors. In 1991, Lin et al. gave a 
new measure derived from Jensen’s inequality and 
the Shannon entropy called Jensen-Shannon 
divergence (JSD) Lin (1991). Its importance is that 
different weights can be assigned to each 
probability distribution. With this property, it 
became best suited for the study of decision 
problems. JSD is defined as:

JSD
(
P ||Q

)
=

1

2

[
n∑

i=1

pilog

(
pi
mi

)
+

n∑
i=1

qilog

(
qi
mi

)]
(14)

where mi = pi+qi
2 . Sometimes, the probability

distribution is treated as a vector in Euclidean 
vector space and distance Crooks (2017) between 
these distributions, known as Euclidean Distance 
(ED), can be defined as

E(P ||Q) =

√√√√ n∑
i=1

|
(
qi
)
−
(
pi
)
|2 (15)

.
In 2013, Bhatia et. al. Bhatia & Singh

(2013) proposed a new divergence metric based
on Csiszar’s f-divergence measure called a φ-
divergence, defined as

φ− div
(
P ||Q

)
=

n∑
i=1

pisinh
(
αlog2

(pi
qi

))
sinh

(
α
) , α→ 1

(16)

2.2 Related work

In recent times, the information theory-based
metrics have been used increasingly for detection

of network anomalies. The idea behind information 
theory is to identify the deviations in the 
probability distribution of packet header fields of 
network flows. This section briefly explains the 
existing work done for detection of DDoS attacks 
using information theory-based entropy and 
divergence metrics.

2.2.1 Entropy based methods

In 2003, Feinstein et al. (2003) proposed a 
method to detect DDoS attacks using Shannon 
entropy and Chi-square test. They calculated the 
randomness of source IP address using these 
statistical metrics and compared them with the 
baseline val-ues to determine the abnormal 
behavior. They used NZIX, Bell Labs, University, 
and Small Company, four real traffic traces to 
validate their approach. Further, Chen & Yonezawa 
(2005) improved the idea of Feinstein and 
improved the accuracy with the use of destination 
IP and source IP as a key to filter out the legitimate 
traffic. They used the protocol packet header 
feature to devise a better strategy to create better 
filter rule for attack traffic. Kumar et al. (2007) 
proposed a distributed approach using Shannon 
entropy to detect HR-DDoS attacks in the ISP 
domain. Li et al. (2007) made improvements in the 
entropy-based detection systems by taking the 
cumulative sum of entropy to enhance accuracy. 
They used the source IP feature for entropy 
calculation and the Winpcap system for 
capturing and analyzing packets.

Further, Lee et al. (2008) used Shannon entropy 
at the first phase to observe the distributions and 
then, Euclidean distance is used to analyze the 
clusters to detect DDoS attacks. Tritilanunt et al.
(2010) used Shannon entropy of input traffic as 
well as output traffic for the same. Wen et al.(2010) 
detect various application-layer DDoS attacks 
using entropy value of source IP and page access 
order. Xiang et al. (2011) used a novel generalized 
entropy metric called Renyi entropy to detect low 
rate DDoS attacks. They calculated entropy value 
at a different order of α to get optimal values of 
information distance for detection of DDoS attacks 
which look similar to legitimate traffic flows. 
Further, Tao & Yu (2013) used Shannon entropy of 
flow similarity to detect DDoS attacks in the local 
area network. Moreover, Ma & Chen (2013) used 
Tsallis entropy of the volume of network traffic to 
determine anomaly in the network. Basicevic 
et al. (2015) also used Tsallis entropy to
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detect SYN flood DDoS attacks. In another work 
Basicevic & Ocovaj (2019), authors also applied 
Shannon, Renyi, Tsallis, Ubriaco, and φ-entropy 
formulas to detect DDoS attacks. Saleh & Abdul 
Manaf (2015) detect HTTP based DDoS attacks 
using Shannon entropy formula. They calculate the 
entropy of incoming requests and clicks’ average 
of the web page. Patil et al. (2019) used Shannon 
entropy to detect anomalies in the Hadoop-based 
clusters. Wang & Liu (2020) used Shannon entropy 
and deep learning for the detection of DDoS 
attacks in SDN-based networks. They use 
information theory for inspection of malicious 
traffic and then used the convolutional neural 
network (CNN) model to differentiate attack traffic 
from the legitimate one. Bhuyan Bhuyan et al. 
(2016) developed a lightweight detection system 
for DDoS flood at-tacks using extended Shannon 
entropy. They calculate different entropies 
(Hartley, Shannon, Renyi) within a time interval 
and add all to develop the extended entropy. Then 
this entropy value is compared with the threshold 
value to find the anomaly in the network. They 
simulate the MIT Lincoln and CAIDA data sets for 
validation of their approach.

2.2.2 Divergence based methods

Various diversified divergence and distance 
metrics are used by fellow researchers to detect 
DDoS attacks. In 2008, Yu et al. (2008) developed 
a dis-tance algorithm to detect suspicious flow. 
They used KL-distance (Relative entropy) to 
calculate the distance of probability distributions at 
the ag-gregate router and then compared this 
distance with a small number called threshold to 
determine anomalous behavior. Further, Hellinger 
distance is used by Sengar et al. (2009) to detect 
anomaly in the network. They used source IP, 
source port, destination IP, destination port as 
parameters and validate their approach using traffic 
traces of Abilene OC48c backbone link. MANETs 
are also vul-nerable to many cyber-attacks because 
of dynamic topology and lack of centralized 
control Nadeem & Howarth (2013). Nadeem & 
Howarth (2009) use chi-square test and control 
chart to detect the intrusion in MANETs. Authors 
use GloMoSim to validate their approach. Li et al. 
(2009) calcu-late information distance using KL-
divergence and GID (Generalized Information 
Divergence) to de-tect DDoS attacks. They used 
MIT Lincoln DDoS 2.0.2 dataset for validation of 
their approach.

Xiang et al. (2011) used GID to detect low rate 
DDoS attacks and observed GID outperforms KL 
divergence. They take MIT Lincoln data set for 
normal traffic and CAIDA for low rate attack traffic 
traces for validation of their approach. Salem et al.
(2012) used dynamic threshold with chi-square to 
increase the accuracy and compare the results with 
Hellinger distance and JSD (Jensen-Shannon Di-
vergence). They used traffic trace from MAWI 
repository to validate their claims. Rahmani et al.
(2012a) used the Total Variation Distance (TVD) 
metric to calculate the distance of the number of 
packets per connection to find the abnormal 
behavior. They measured the degree of similarity 
of traffic traces from the CAIDA dataset and 
MAWI repository to validate their approach. 
Bhuyan & Elmroth (2018) also used generalized 
Total Varia-tion Distance to detect multi-scale low 
rate DDoS attacks.

2.2.3 Discrimination of DDoS attacks from FE
traffic

Researchers have made many efforts to detect 
low rate and high rate DDoS attacks. Still, similar 
efforts are needed to characterize flash events from 
similar-looking DDoS attacks to enhance the 
reliability of the system. Information theory 
metrics are also used by many researchers to 
distinguish flash events from DDoS attacks. Yu et 
al.(2009) used JSD (Jensen-Shannon Distance) to 
dif-ferentiate the flash crowd from a DDoS attack. 
In their scheme, two routers calculate probability 
distribution and then applied JSD to these 
distributions. Further, it was compared with the 
thresh-old to classify network flow as FE or DDoS 
at-tack. They used NLANR PMA Aukland VIII 
data set for the flash crowd and MIT Lincoln DDoS 
1.0 data set for DDoS attacks to validate their 
approach. Li et al. (2009) take two probability 
metrics such as TVD and Bhattacharyya distance to 
differentiate flash event and DDoS attacks. 
Jeyanthi & Iyengar (2012) use Hellinger distance 
to dis-tinguish the DDoS attack and FE in the VoIP 
network. Prasad et al. (2013) used variation in 
entropy value for the discrimination of DDoS 
attack and flash events. Sachdeva et al. (2016) 
calculate the entropy of small clusters to 
discriminate both. They take FIFA98 data set for 
the flash crowd and CAIDA dataset for attack 
traffic to validate their approach. Saravanan et al. 
(2016) used Hellinger distance to capture the flow 
similarity, client legitimacy, and page reference
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 for discrimination of two. Behal & Kumar (2017b) 
proposed novel information theory metrics called 
φ-entropy and φ-divergence to detect and 
discriminate DDoS attacks and flash events. They 
compared their results with GE and GID and 
claimed better accuracy. They validate their claims 
using FIFACup98 data set for the flash crowd, MIT 
Lincoln for normal traffic, and CAIDA data set for 
DDoS attacks.

2.3 Discussion

DDoS attacks are an austere menace to the 
network security that can cripple down a business 
in no time. Though enormous DDoS defense 
solutions have been proposed as mentioned above 
but still the problem of combatting against DDoS 
attacks is obstinate. After the extensive review of 
existing prominent research in the previous 
section, the following observations are made:

• The majority of the recent work has used a
distinct set of entropy such as Shannon
entropy, Renyi entropy, φ-entropy, Tsallis
entropy; and divergence based measures such
as Bhattacharyya distance, Sibson distance,
Hellinger distance, Total variation distance,
Renyi divergence, φ-divergence, etc. to detect
various DDoS attacks.

• Both FEs and DDoS attacks share many
behavioral characteristics which make the
distinction very difficult between the two
traffic types. During the severe DDoS attacks,
the legitimate traffic has to be dropped by the
defense solutions. So, it is very crucial to
discriminate such traffic from attack traffic so
that only attack traffic could be dropped out.

• The majority of the proposed methods have
used the real dataset of MIT Lincoln to
represent normal traffic, CAIDA dataset to
represent HR-DDoS and LR-DDoS traffic and
FIFA dataset to represent FE traffic.

• Most of the existing research has proposed
isolated methods for detection of low rate
DDoS attacks, high rate DDoS attacks and FE
traffic. There is a need to introduce a
collective generalized approach that is capable
of detecting these types of traffic.

• Although information theory-based metrics
are used mostly in the detection of DDoS,

Table 1. Notations and Symbols used

Notation Definition

T Sampling period
Tw Time Window
∆ size of Tw
j initialized to 1 and increment after each Tw
flowidi Unique flow id of ith network flow
nC number of packets per Tw in current traffic
nN number of packets per Tw in baseline traffic
σ1 threshold based on nN computed from baseline traf-

fic
σ2 threshold based on IDN computed from baseline

traffic
IDC Information distance between current and normal

traffic flows
IDN Information distance between normal traffic flows
P (x), Q(x) Probability distributions of network flows in differ-

ent Tw base on x packet header feature
E′ Information Theory Metric such as Shannon en-

tropy, Ubriaco entropy, Renyi entropy, Tsallis en-
tropy, φ-entropy, Divergence Metric such as KL di-
vergence, Jeffrey Distance, Bhattacharyya Distance,
JSD, Hellinger Distance, Pearson Distance, Total
Variation Distance, Euclidean Distance, GID, φ-
divergence

E′C Metric value of current netflow
E′N Metric value of baseline netflow

however, the choice of the appropriate value
of the generalized parameter α for a particular
network is still very challenging.

3. Proposed methodology

The proposed detection approach works on the 
knowledge of flow similarity. Attack traffic flows 
are generated through the common shared logic. 
So, there are more chances that there is a similarity 
in traffic flows when there will be attack traffic. On 
the other hand, normal traffic is highly dynamic, 
which causes a significant deviation in the packet 
header features of normal traffic and attack traffic. 
The various notations used in the subsequent 
sections are explained in Table 1.

We use the generalized detection methodology 
as given in Algorithm 1. We use this common 
methodology for all information theory-based 
metrics and different datasets for evaluation of the 
results based on standard criteria for better 
comparisons, so called generalized detection 
methodology. In this, the detection process starts 
by sampling the network traffic in each time 
window Tw = 1 seconds, sampling period = 120 
seconds. We extract the appropriate packet header 
features and classify the traffic into particular 
traffic type. A Netflow is defined as a 5-tuple 
destination IP, source IP, source port, protocol, and 
destination port. We use the packet header features 
of the protocol, destination IP, source IP, and 
incoming packet rate to represent a Netflow. The 
destination IP field of the packet
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Table 2. Effect of network anomalies on traffic 
header features

S.No. Netflow type Nature of Netflow Traffic Feature Distribution

1. DoS/DDoS Anomaly Source IP Dispersed
Destination IP Skewed

2. Port Scan Anomaly Destination IP Skewed
Destination Ports Dispersed

3. Network Scan Anomaly Destination IP Dispersed
Destination Ports Skewed

4. FE Legitimate Source IP Dispersed
Destination IP, Ports Skewed

5. Normal Legitimate Source IP Dispersed
Destination IP, Ports Skewed

header classifies the network traffic flow, which is 
destining towards a specific target IP and protocol 
field is used to find the type of network traffic. 
There are other packet header features which can 
be used to detect the anomaly of the network. How-
ever, we used only those features which are enough 
to detect flash events and DDoS attacks in current 
experiments. Even, the pattern of attack traffic 
remains hidden in the collected data, and it can be 
anticipated using packet header fields Bhandari et 
al.(2016)-Xiang et al. (2011), Bhuyan et al. (2016), 
Yu et al. (2009), Wang et al. (2012).

The prominent existing research has extensively 
used flow similarity of Netflow in the network 
anomaly detection domain. There are wide 
varieties of network anomalies present in a 
network, as shown in Table 2. Despite the type, 
every traffic anomaly exhibit a common behavioral 
characteristic, i.e. they all cause significant 
deviations in the packet header feature distributions 
such as changes in source/destination IP addresses, 
source/destination port numbers, protocol, etc. For 
example, when there is DDoS attack, the 
distribution of destination IPs will be concentrated 
towards a specific victim address. In contrast, the 
distribution of source IPs will be more dispersed. 
Similarly, during a network scan for a particularly 
vulnerable port, there would be a skewed 
distribution. So, by examining the deviations in the 
probability distribution of packet header features, 
we can detect and classify a broad set of network 
anomalies. Both types of traffic, such as DDoS 
attack traffic and flash event, cause noticeable 
differences in packet header features of these traffic 
types. How-ever, high-rate DDoS attacks are easy 
to detect as their traffic profiles significantly 
deviate from nor-mal traffic profiles.

We use the concept of information distance (ID) 
to find the quantitative difference between attack 
traffic and normal traffic. ID is defined as the 

Algorithm 1 A Proposed Generalized Detection
Algorithm

1: Set T=120 seconds, Tw =1 second σ1, σ2 ←
standard thresholds

2: while Tw <= T do
3: Extract packet header features
{srcIP, dstIP, proto, nc} ∈ Tw.

4: Calculate P (srcIP ) ∈ Tw.
5: Compute E′ using P (srcIP )
6: Calculate the average information distance
ID = |E′C − E′N |.

7: if nc >σ1 then
8: ID>σ2 ? HR-DDoS Attack : Flash

Event
9: else

10: ID>σ2 ? LR-DDoS Attack : Normal
traffic.

11: end if
12: Tw + +
13: end while

C N

C N

diference between metric values of attack and 
normal traffic. For the set E’ i.e. set of different 
entropy metrics, it is computed as ID= |E′ − E′ |. 
Here, E′ , E′ represent entropy values of current 
Netflows and normal Netflows, respectively. How-
ever, there is no need to compute the ID, i.e. 
difference of divergence metrics, because 
divergence is already computed concerning two 
probability distributions of Netflows. More is the 
value of ID between two Netflows; higher is the 
detection efficiency. As we defined the ID, the 
mathematical models of different types of Netflow 
are defined as follows.

• Definition 1: Normal Netflow: For a given
sampled Netflow (si) if the incoming rate of
packets in a time window is less than the
incoming rate of packets in a baseline
behavior of the network, and the value of the
ID, i.e. information distance is also less than
equal to ID values between baseline behavior
Net-flows, then, it is termed as Normal
Netflow. Mathematically, it can be represented
as:

nC <= nN ± a ∗ sdn ∧ IDC <= IDN ± b ∗ sdIDN (17)

• Definition 2: LR-DDoS Attack: For a given
sampled Netflow (si) if the incoming rate of
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packets in a time window is less than the 
incoming rate of packets in a baseline behavior 
of the network, but the value of ID, i.e. 
information distance is more than the ID 
values between baseline behavior Netflows, 
then, it is termed as LR-DDoS attack Netflow. 
Math-ematically, it can be represented as:

      nC < nN ± a ∗ sdn ∧ IDC > IDN ± b ∗ sdIDN            
(18)

• Definition 3: HR-DDoS Attack: For a given
sampled Netflow (si) if the incoming rate of
packets in a time window is more than the
incoming rate of packets in a baseline
behavior of the network, and the value of ID,
i.e. information distance is more than the ID
values between baseline behavior Netflows,
then, it is termed as HR-DDoS attack Netflow.
Math-ematically, it can be represented as:

nC > nN ± a ∗ sdn ∧ IDC > IDN ± b ∗ sdIDN                
(19)

• Definition 4: FE Traffic: For a given sampled
Netflow (si) if the incoming rate of packets in
a time window is more than the incoming rate
of packets in a baseline behavior of the
network, but the value of ID, i.e. information
distance is less than the ID values between
base-line behavior Netflows, then, it is termed
as FE Netflow. Mathematically, it can be
repre-sented as:

nC > nN ± a ∗ sdn ∧ IDC <= IDN ± b ∗ sdIDN (20)

Here a, b are known as Tolerance factors. sdn
is the standard deviation of the incoming number
of packets. sdIDN is the standard deviation in ID
values between normal Netflow. Accordingly,

σ1 = nN ± a ∗ sdn (21)

σ2 = IDN ± b ∗ sdIDN (22)

These two threshold values are calculated by 
analyzing the Netflows during the baseline 
behavior of the network. We compute FPR and 
FNR values

from the normal Netflows to compute the threshold 
values (details in section 5.3.1). We choose the 
values of tolerance factors a and b where FNR and 
FPR curves intersect each other. The detection 
process analyzes incoming Netflows, and it 
separates low-rate, and high-rate Netflows by 
comparing the current number of incoming packets 
in each TW , i.e. nC is compared with threshold σ1. 
Af-ter that, ID values from the entropy metrics 
mentioned in the set E’ are calculated. Whenever 
there is a significant deviation of IDC from σ2, the 
LR-DDoS or HR-DDoS attack is said to be 
detected. The high-rate Netflows may also be 
declared as legitimate traffic (FE). Flash events 
cause a gradual increase and decrease in traffic rate 
over a period. This change in traffic happens when 
thousands of legitimate users start accessing the 
same web re-sources at the same time. Since high 
rate DDoS attacks and flash events, in a short time, 
lead to a sudden change in network traffic volume, 
so both impact almost in the same way on their 
entropy values which results in minimal 
information distance between these two types of 
traffic, it makes the char-acterization of these 
traffics types very challenging. In the case of 
generalized entropy, the larger value of the entropic 
index parameter magnifies the information distance 
between these two types of traffics, resultantly 
there are better chances of their characterizing.

4. Experimental setup and datasets used

Real network testing, simulation, and emulation are 
three experimental schemes to validate new and 
existing ideas. Every technique has its benefits over 
the other. Testing in the real network is challenging 
in the case of DDoS attacks Sachdeva & Kumar 
(2014). On the other hand, simulation gives the 
controlled environment and opportunities to 
perform repeated experiments. However, all the 
devices, network operating systems, links 
between devices are virtual in simulation, which 
affect the results drastically as compared to the 
real environment. An emulation is a hybrid 
approach that combines the real elements with 
synthetic or abstracted elements to design the test 
environment White et al.(2002), Fall (1999).

We used an emulation-based DDoSTB testbed 
developed by Behal & Kumar (2017a) to validate 
our approach. The scaled architecture of DDoSTB 
is shown in Figure 1. DDoSTB testbed is 
composed of 75 physical nodes organized into 
three different clusters of 25 nodes each, 3 D-Link 
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Fig. 1. Distributed denial of service testbed (DDoSTB)

physical routers, 3 Layer2 switches (1Gbps 
bandwidth), 3 Layer3 switches (1 Gbps 
bandwidth), two dual-processor 8-core Linux 
servers that act as the victims.

The nodes run ubuntu and 
windows OS instances. In this 
testbed, CORE emulator The vCORE 
Emulator, http://www.nrl.navy.mil/itd/ncs/
products/core(2016) is used to escalation the 
number of virtual nodes. One CORE node was 
made up of sixteen virtual clients and four soft 
routers to generate real network traffic. We 
extended the configuration of CORE node from 20 
nodes to 48 nodes. It increases the capacity of 
DDoSTB testbed from 2250 nodes to around 5000 
nodes with randomly distributed normal clients (C) 
and attackers (A). The BONESi Alcorn & Chow 
(2014) botnet simulator is used to generate high-
rate DDoS Netflow.

We used MIT Lincoln Laboratory lincoln 
laboratory LLSDDos0.2.2 dataset (n.d.) dataset to 
represent normal traffic, CAIDA The CAIDA DDoS 
Attack Dataset, ”Coop-erative Analysis for 
Internet Data Analy-sis”, https://www.caida.org/
data/passive/ddos-20070804-dataset.xml (2010) 
dataset to represent HR-DDoS and LR-DDoS 
traffic, and the FIFA World Cup ITA (1998) dataset 
represents the flash event. It is  important  to  note 

that the FE scenario is taken from the 66th day of 
the FIFA dataset because it contains the maximum 
number of GET-requests to the webserver. Further, 
the novel DDoSTB is used to represent HR-DDoS 
and FE traffic scenarios.

5. Results and discussion

We compute different entropy and divergence 
metrics on entropic index parameter α from 0.1 to 
15. The different ID (Information Distance) values
computed using these metrics are shown in Table
3 and Table 4. In these Tables, ID1 represents the
ID values between normal traffic profile taken from
MIT Lincoln dataset and HR-DDoS attack traffic
profile taken from CAIDA dataset. ID2 represents
the ID values between normal traffic profile which
is taken from MIT Lincoln dataset and LR-DDoS
attack traffic profile taken from CAIDA dataset.
ID3 represents the ID values between normal
traffic profile taken from MIT Lincoln dataset and
flash event traffic profile taken from FIFA dataset.
ID4 represents the ID values between normal
traffic profile taken from DDoSTB dataset and HR-
DDoS attack traffic profile taken from DDoSTB
dataset. ID5 represents the ID values between
normal traffic profile taken from DDoSTB dataset
and FE traffic profile taken from DDoSTB dataset.
ID6 represents the ID values between HR-DDoS
attack traffic profile taken from CAIDA dataset and
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Table 3. Temporal variation of entropy metrics and ID values

Entropy α-order MIT Lincoln CAIDA CAIDA FIFA DDoSTB DDoSTB ID1 ID2 ID3 ID4 ID5 ID6

Type Normal HR-DDoS LR-DDoS FE FE HR-DDoS

Shannon - 1.791 0.369 1.795 2.590 0.532 2.490 1.422 0.550 0.825 1.259 0.784 2.220

Ubriaco - 0.384 0.188 0.387 0.758 0.286 0.712 0.218 0.126 0.377 0.1593 0.335 0.570

Renyi

2 1.599 11.138 3.226 3.615 10.572 3.419 9.539 1.771 2.015 8.973 1.820 7.524
4 1.435 8.107 2.695 3.092 7.914 2.657 6.671 1.405 1.662 6.479 1.230 5.014
6 1.362 7.445 2.560 2.916 7.310 2.438 6.083 1.346 1.561 5.948 1.088 4.529
8 1.321 7.150 2.496 2.824 7.031 2.340 5.829 1.322 1.510 5.710 1.034 4.326
10 1.295 6.982 2.459 2.767 6.869 2.284 5.687 1.310 1.479 5.573 1.005 4.215
12 1.278 6.874 2.435 2.728 6.763 2.248 5.596 1.302 1.458 5.485 0.988 4.146
14 1.265 6.799 2.418 2.700 6.689 2.223 5.534 1.297 1.442 5.423 0.976 4.099

φ-entropy

1 6.523 26.451 6.139 15.648 38.938 25.908 19.928 0.384 9.125 32.415 18.779 10.820
1.1 9.022 48.139 7.914 21.601 71.040 37.579 39.117 1.108 12.579 62.017 27.513 26.538
1.2 13.033 88.383 10.524 30.371 130.830 55.311 75.350 2.509 17.339 117.797 40.706 58.012
1.3 19.630 163.467 14.502 43.447 242.918 82.498 143.838 5.128 23.818 223.289 61.369 120.020
1.4 30.741 304.226 20.801 63.180 454.322 124.556 273.485 9.940 32.439 423.581 93.898 241.046
1.5 49.872 569.219 31.162 93.312 855.319 190.192 519.347 18.710 43.440 805.448 146.907 475.907
1.6 83.471 1069.953 48.825 139.839 1620.098 293.506 986.482 34.646 56.367 1536.626 233.782 930.114

T-Sallis

0.1 3.439 3.523 3.434 7.293 5.662 10.271 1.520 0.946 3.881 2.481 6.832 3.770
0.5 2.014 0.817 1.643 3.208 0.299 4.214 2.831 0.989 1.244 1.714 2.210 4.025
0.6 1.804 1.587 1.334 2.546 1.179 3.358 3.391 1.063 0.834 0.730 1.569 4.133
0.7 1.628 2.580 1.157 1.903 2.246 2.598 4.208 1.126 0.572 0.689 1.043 4.483
0.8 1.479 4.299 1.429 1.140 3.991 1.807 5.778 1.053 0.640 2.513 0.685 5.439
2 0.654 0.999 0.857 0.915 0.999 0.899 0.346 0.244 0.261 0.346 0.245 0.085
3 0.425 0.500 0.476 0.493 0.500 0.489 0.075 0.069 0.069 0.075 0.064 0.007

Table 4. Temporal variation of ID values of Divergence metrics

Divergence type α-order ID1 ID2 ID3 ID4 ID5 ID6

KL Divergence - 4.915 1.019 1.166 4.390 0.423 2.426
Jeffrey Distance - 2.372 0.490 0.437 2.106 0.176 1.121
Bhattacharyya Distance - 2.446 0.490 0.540 2.354 3.623 2.504
JSD - 0.411 0.153 0.214 0.383 0.037 0.274
Hellinger Distance - 0.822 0.464 0.589 0.819 0.437 0.668
Pearson Divergence - 0.460 0.463 0.266 0.071 0.139 0.328
T. Variational Distance - 0.486 0.339 0.402 0.491 0.153 0.353
Euclidean Distance - 0.563 0.369 0.370 0.561 0.102 0.268

GID

2 5.063 1.224 1.279 4.900 0.925 3.191
4 5.197 1.443 1.397 5.016 2.436 3.747
6 5.264 1.533 1.461 5.074 2.812 3.913
8 5.304 1.583 1.500 5.110 2.995 4.002
10 5.330 1.615 1.527 5.134 3.104 4.059
12 5.349 1.636 1.546 5.151 3.176 4.099
14 5.362 1.652 1.561 5.163 3.228 4.129

φ-Divergence

0.5 1.524 0.300 0.341 1.467 0.210 0.738
0.9 1.735 0.284 0.319 1.647 0.208 0.766
1.5 2.317 0.251 0.272 2.134 0.205 0.839
1.8 2.755 0.233 0.246 2.494 0.204 0.888
2 3.114 0.221 0.229 2.786 0.203 0.926
2.5 4.313 0.196 0.188 3.742 0.202 1.040
2.6 4.616 0.192 0.180 3.979 0.202 1.066
4 12.787 0.169 0.098 10.077 0.211 1.600
6 64.586 0.317 0.040 45.219 0.261 3.374
8 374.081 1.002 0.020 238.006 0.393 8.520
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FE traffic profile taken from the FIFA dataset. 
Further, the entropic index parameter α in the case 
of General-ized entropy and Generalized 
divergence measures can be adjusted by calculating 
the coefficients of correlation as done by Berezi
ński et al. (2015). Xi-ang et al. (2011) also 
proposed a method based on reduced FPR to select 
appropriate entropic index parameter.

5.1 Empirical analysis of entropy metrics

This section empirically investigates the perfor-
mance of each entropy metrics defined in Section 
2. For the validation purpose, these entropy metrics
are computed on the datasets mentioned in Section
4. The temporal variation in the entropy values and
corresponding ID values are shown in Table 3.

The proposed generalized detection methodol-
ogy works based on Netflow similarity. More the 
value of ID more will be detection accuracy. It 
has observed from Table 3, that φ-entropy gives 
the maximum value of ID as compared to Shannon, 
Ubriaco, Renyi, and Tsallis entropy metrics. So, 
the detection accuracy of φ-entropy shall be more 
to detect these different types of Netflow. Further, 
as per the concept of reduced FPR given by Xi-
ang et al. (2011) to select the optimal value of α 
(entropic index parameter), we chose the value of 
α=2 for Renyi entropy, α=1.5 for φ-entropy and 
α=0.7 for Tsallis entropy. It has observed from Ta-
ble 3 that ID values for Renyi generalized entropy 
keep on decreasing with the increase in entropic in-
dex parameter α whereas ID values of generalized 
Tsallis entropy keep on increasing up to entropic 
index parameter α =0.8. For φ-entropy, ID values 
keep on increasing with the increase in entropic in-
dex parameter α. It means φ-entropy comes out to 
be more appropriate as compared to other entropy 
metrics for detecting different types of attack Net-
flow.

Further, it has observed that the incoming rate of 
both HR-DDoS Netflows and FE Netflows are al-
most equal. So, the ID values for both types of traf-
fic are almost the same as evident from ID1, ID3

and ID6 values of Table 3, which makes the dis-
tinction between HR-DDoS and FE Netflows very 
difficult.

Further, we found (Figure 2 and Figure 3) that φ-
entropy is capable of correctly predicting the type 
of pattern of ongoing attack traffic. Figure 2(a) 
to 2(f) and 3(a) to 3(f) represent the ID1 to ID6

values using φ-entropy and Renyi entropy respec-

tively. It has been observed that as the value of the
entropic index parameter increases, the value of ID
also increases in the case of φ-entropy leading to
more detection accuracy. Further, the type of attack
pattern is more predictable in the case of φ-entropy
as compared to Renyi entropy.

5.2 Empirical analysis of divergence metrics

This section empirically investigates the perfor-
mance of various divergence metrics defined in
Section 2. For the validation purpose, all of these
divergence metrics are computed on the datasets
mentioned in Section 4. The temporal variation in
ID values of all these metrics are shown in Table 4.

Since all attack nodes operate in a distributed
manner and in a coordinated way to direct attack
traffic toward the victim using a common program
logic, their probability distributions are of a simi-
lar kind. It results in ID value near to 0 between
attack Netflows as compared to normal Netflow.
Further, the number of packets in the probability
distributions need to be normalized within a par-
ticular Tw (time window) for computing ID values
using a divergence metric. As ID is the difference
of divergence value of current Netflows and nor-
mal baseline Netflows, more the value of ID, more
will be detection accuracy. We found (Table 4), that
φ-divergence metric gives the maximum value of
ID as compared to other metrics. We choose the
value of α=14 for GID, α=8 for φ-divergence for
all types of Netflow.

We observed that GID metric is more capable of
differentiating between normal and FE traffic but
this type of distinction is not much relevant to a
network administrator as both represent legitimate
traffic. The only difference is the frequency of
Netflow. Divergence metrics are more susceptible
to find such minor differences as compared to en-
tropy metrics. It leads to more detection accuracy
of divergence metrics in contrast to entropy met-
rics. Further, apart from the generalized divergence
measure, KL metric is best suited to detect differ-
ent types of Netflows in a network. Also, as the
incoming rate of both HR-DDoS Netflows and FE
Netflows are almost equal, the divergence based ID
values for both types of traffic shows the consider-
able difference as clear from ID1, ID3, and ID6

values of Table 4. It means divergence based met-
rics are more appropriate and useful for discrimi-
nating HR-DDoS and FE Netflows as compared to
entropy metrics.
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(a) ID between HR-DDoS and legitimate traffic (b) ID between LR-DDoS and legitimate traffic

(c) ID between FE and Legitimate traffic (d) ID between HR-DDoS and FE traffic

(e) ID between FE DDoSTB and legitimate traffic (f) ID between HR-DDoS DDoSTB and legitimate traffic

Fig. 2. Information distance (ID) between various types of traffics using φ-entropy

In contrast to entropy ID values which keeps on 
decreasing with increase in entropic index param-
eter α, the divergence based ID values keep on in-
creasing with the entropic index parameter α value. 
It results in more differentiation power of diver-
gence metrics, hence, lead to more detection ac-
curacy.

It is worth mentioning that in the case general-
ized information theory metric, the selection of op-
timal value entropic index parameter α is very cru-
cial. More the value of this parameter more will be 
the computational complexity of the detection 
metric, hence would lead to enforce more delay in 
the detection process. Most of the traditional di-

vergence measures (except JSD) compares at most 
two probability distributions at a time. In the case 
of a large-scale ISP where many edge routers are 
working in parallel, it would be computationally 
expensive to use these divergence measures. In 
such cases, JSD divergence is best suited, which 
is capable of comparing N parallel probability dis-
tributions at the same time. We empirically inves-
tigate the same by mathematically and experimen-
tally.

Suppose, in an ISP domain, there are n1, n2, 
n3......N edge routers that forward the traffic 
towards the particular target IP (victim webserver). 
There will be N different traffic
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(a) ID between HR-DDoS and legitimate traffic (b) ID between LR-DDoS and legitimate traffic

(c) ID between FE and legitimate traffic (d) ID between HR-DDoS and FE

(e) ID between FE DDoSTB and legitimate traffic (f) ID between HR-DDoS DDoSTB and legitimate traffic

Fig. 3. Information distance (ID) between various network traffics using Renyi entropy

distributions that are to be monitored at the victim
end. If the server uses the old-style of calculations
for comparison of two probability distributions,
for example, KL divergence method. Then for
comparison of total N traffic distributions, there
will exist NC2 combinations to compare all the
traffic distributions with one another. Suppose
it takes t seconds to compare two distributions
then the overall time for comparison will be
NC2 ∗ t seconds. However, JSD divergence metric
compares all different probability distributions in
one phase, resultantly reducing time complexity.

So, if there are N edge routers and k distributions
for different edge routers, there shall be a total of

nCk = n!
k!(n−k)! combinations that are too complex

to calculate using the old style of computation. On
the other hand, JSD measure can compute the value
of metric between all these possible combinations
in only N x O(k), where k is the number of differ-
ent probability distributions and N is the number
of edge routers. We empirically investigated that
for N=14, JSD took 0.003921 seconds for compu-
tation, whereas it took 0.08421 seconds to compute
KL divergence.

5.3 Performance evaluation

This section focuses on the performance evalu-
ation of various information theory-based entropy
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and divergence metrics. For evaluating the efficacy
of any network traffic-based defense system, ini-
tially, there is a need to understand some basic ter-
minologies.

Table 5. Confusion Matrix

Predicted class

Normal Attack

Actual Class
Normal TN FP

Attack FN TP

A DDoS defence system classifies events into
the attack and normal events. With the perspective
of a defence system, a positive event is considered
to be an attack event, while a negative event is con-
sidered to be a normal event. There are four combi-
nations of these two decision variables, as shown in
Table 5. The value of TP (True Positive) increases
when the defence system correctly classifies it as an
attack event. In contrast, FP (false positive) value
increases when a legitimate event incorrectly clas-
sified as an attack event. In the same way, TN
(true negative) increases when a normal event is
correctly categories as a legitimate event, and FN
(false negative) increases when the defence system
does not detect abnormal behavior. To evaluate the
performance of information theory metrics, we use
the detection system evaluation parameters as de-
fined by Ghorbani et al. (2010) such as detection
rate (Dr) also known as True Positive Rate (TPR)
or Recall, Precision, F-Measure (Fm), False Neg-
ative Rate (FNR), False Positive Rate (FPR), and
Classification Rate (Cr). The mathematical formu-
lae of these detection metrics are shown in Table
8.

A detection rate parameter is used to measure
the fraction of attack events which are detected cor-
rectly, and on the other hand, the classification rate
represents the ratio of genuinely classified events
to the total occurred events. A FPR represents the
effectiveness of the defense system, and FNR mea-
sures the reliability of the detection system.

5.3.1 Design parameters

There are several detection system design pa-
rameters that also need to tune optimally for the
efficient working of a DDoS defense system. The
performance of a DDoS defense system depends
on how well these design parameters are selected.

However, the optimal tuning of these parameters
depends on the network conditions, which can be
different for different networks, situations, or ap-
plications. As the network traffic behavior is highly
dynamic nowadays, we need to choose the value of
these parameters very carefully.

• Analysis of Time window size: The time se-
ries analysis of Netflows can be performed in
two ways (1) time window analysis, or (2)
packet window analysis. In this work, we
opted for time window analysis because for
detecting DDoS attacks, it is very crucial to
identify the periodicity of the incoming traffic
patterns, which is not possible with the packet
counting approach. The size of the time win-
dow plays a vital role in the efficient working
of the detection systems. If it is not adjusted
appropriately, then the system may detect hap-
pening of the event but may not detect the type
of the event effectively. A larger window size
would lead to a high false-negative rate as well
as a low false-positive rate and vice-versa.

We monitor the baseline behavior of the net-
work using diverse window sizes of t = 0.1,
0.3, 0.5, 1, 1.2, 1.5, and 2 seconds for com-
putation of standard deviation of entropy (or
divergence) metric values. When standard de-
viation having the least value, it indicates the
stable behavior of the network. So the size
of the time window should be chosen at that
value where standard deviation has the lowest
value. In our case, we choose Tw=1 second.

• Setting up of generalized parameter α: The
value of α plays a vital role in the accuracy
of the detection system based on generalized
information theory metrics because the net-
work has a very dynamic nature. Accord-
ing to Xiang et al. (2011), each α value dis-
closes different facets of probability distribu-
tions which are used for categorization of the
network. The value of α depends on the par-
ticular type of anomalies present in the net-
work traffic Bereziński et al. (2015); authors
used the concept of correlation to set the opti-
mal range of generalized α parameter. How-
ever, we used the concept (reduced FPR) of
Xiang et al. (2011) to identify the appropri-
ate value of α parameter for both types of the
metrics. We empirically investigated and ana-
lyzed the normal baseline behavior of the net-
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Table 6. Comparison of entropy metrics on various detection system evaluation parameters

Metric High-Rate Attack Flash Event Low-Rate Attack
Dr P Fm Cr FNR FPR Dr P Fm Cr FNR FPR Dr P Fm Cr FNR FPR

Shannon Entropy 0.513 0.976 0.672 0.667 0.488 0.042 0.163 0.929 0.277 0.433 0.838 0.042 0.050 0.667 0.093 0.513 0.950 0.042
Tsallis Entropy 0.100 0.615 0.172 0.358 0.900 0.125 0.100 0.615 0.172 0.358 0.900 0.125 0.125 0.500 0.200 0.500 0.875 0.125
Ubriaco Entropy 0.067 0.762 0.123 0.364 0.933 0.025 0.225 0.915 0.361 0.469 0.775 0.025 0.033 0.444 0.062 0.496 0.967 0.025
Renyi Entropy 1.000 0.984 0.992 0.989 0.000 0.033 0.483 0.967 0.644 0.644 0.517 0.033 0.558 0.944 0.702 0.763 0.442 0.033
φ-Entropy 1.000 0.885 0.937 0.911 0.004 0.258 0.863 0.870 0.866 0.822 0.138 0.258 0.158 0.380 0.224 0.450 0.842 0.258

Table 7. Comparison of divergence metrics on various detection system evaluation parameters

Metric High-Rate Attack Flash Event Low-Rate Attack
Dr P Fm Cr FNR FPR Dr P Fm Cr FNR FPR Dr P Fm Cr FNR FPR

KL Divergence 1.000 0.984 0.992 0.989 0.000 0.033 0.379 0.958 0.543 0.575 0.621 0.033 0.592 0.947 0.728 0.779 0.408 0.033
Jeffrey Distance 1.000 0.960 0.980 0.972 0.000 0.083 0.097 0.697 0.170 0.373 0.903 0.083 0.258 0.756 0.385 0.588 0.742 0.083
Bhattacharayya 1.000 0.980 0.990 0.986 0.000 0.042 0.892 0.977 0.932 0.914 0.108 0.042 0.750 0.947 0.837 0.854 0.250 0.042
Hellinger 0.975 1.000 0.987 0.983 0.025 0.000 0.096 1.000 0.175 0.397 0.904 0.000 0.075 1.000 0.140 0.538 0.925 0.000
JSD 0.996 0.984 0.990 0.986 0.004 0.033 0.181 0.915 0.303 0.445 0.819 0.033 0.150 0.818 0.254 0.558 0.850 0.033
Pearson Divergence 0.625 0.955 0.756 0.731 0.375 0.058 0.200 0.873 0.325 0.447 0.800 0.058 0.167 0.741 0.272 0.554 0.833 0.058
Total Variation 1.000 0.992 0.996 0.994 0.000 0.017 0.346 0.976 0.511 0.558 0.654 0.017 0.475 0.966 0.637 0.729 0.525 0.017
Euclidian Distance 0.875 0.972 0.921 0.900 0.125 0.050 0.142 0.850 0.243 0.411 0.858 0.050 0.250 0.833 0.385 0.600 0.750 0.050
φ-Divergence 1.000 0.984 0.992 0.989 0.000 0.033 0.871 0.981 0.923 0.903 0.129 0.033 0.775 0.959 0.857 0.871 0.225 0.033
GID 1.000 0.976 0.988 0.983 0.000 0.050 0.563 0.957 0.709 0.692 0.438 0.050 0.142 0.739 0.238 0.546 0.858 0.050

Table 8. Detection Metrics

Sr. No. Detection Metric Formulae

1 Precision
TP

TP + FP

2 Detection Rate
TP

TP + FN

3 False Positive Rate
FP

TN + FP

4 F-Measure
2 ∗ P ∗R
P +R

5 Classification Rate
TP + TN

TP + TN + FP + FN

6 False Negative Rate
FN

TP + FN

work (without attack) as published in Behal &
Kumar (2017b) and choose the value of α=0.5
for the current network under analysis.

• Threshold calibration: The dynamics of the
network under consideration should be con-
sidered whenever we are choosing the range
of threshold limits. A complete analysis of
the existing network has been done done to se-
lect the appropriate limits of thresholds. A low
tolerance factor value always results in a high
detection rate and FPR, and minimum FNR.
So, if our goal is to detect all types of attacks,
then the detection system may signal some of
the normal states as attack states, which leads
to an increase in FPR. On the contrary, if the
threshold value is set to high, then it leads to
low FPR as well as low detection rate. Conse-
quently, the DDoS defence system may miss
some attack events to detect. So, to get the

system with balanced FPR and FNR, the value of 
the tolerance factor is must be in between low and 
high bounds. FPR signifies the effi-cacy of a 
detection system, whereas FNR (1-Recall) signifies 
the reliability of a detection system. We have used 
the temporal variation of tolerance factor (k) to 
select a threshold value. The point where both FNR 
and FPR curves intersect can be selected as the 
optimal threshold value. Alternatively, where the 
point where Precision-Recall (PR) curves intersect 
can also be used to select the optimal thresh-old 
value.

We compute the values of various detection sys-
tem evaluation parameters, as shown in Table 8.
For generalized Renyi and Tsallis entropy metrics,
we compute the results on the entropic index pa-
rameter α=15, and for generalized φ-entropy, we
use α=1.2 as per the reduced FPR value computed
using the method adopted by Xiang et al. (2011).
For generalized information divergence metric, we
use α=15 and for generalized φ-divergence, we use
α=0.5. The results of various divergence and en-
tropy metrics are shown in Table 6 and Table 7 re-
spectively. We compute separate detection system
evaluation parameters for each type of Netflow, i.e.
HR-DDoS attack, FE traffic, and LR-DDoS attack.

As stated in the previous sections, more is the in-
formation distance between different types of Net-
flow, and more will be the detection accuracy. It has
observed that for HR-DDoS attack, Tsallis entropy,
Renyi entropy and φ-entropy produce the best de-
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(a) Shannon Entropy (b) Tsallis Entropy

(c) Ubriaco Entropy (d) φ Entropy

(e) Renyi Entropy (f) Bhattacharya Distance

(g) KL Divergence (h) Hellinger Distance

Fig. 4. ROC curves of various Entropy and Divergence metrics (conti.)
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(i) JSD (j) Pearson Distance

(k) Jeffrey Distance (l) Total Variation Distance

(m) Euclidean Distance (n) GID

(o) φ-Divergence

Fig. 4. ROC curves of various Entropy and Divergence metrics
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Table 9. Comparison of Proposed work with other similar works

Authors Experimental Detection Datasets Type of Netflows Detected
Year Technique Metrics Used LR-DDoS HR-DDoS FE

Yu et al. (2009) Real Datasets Sibson Distance MIT LLSDDOS -
√ √

Hellinger Distance NLANR Auckland VIII
Jeffrey Distance

Xiang et al. (2011) Real Datasets Shannon Entropy MIT Lincoln
√

- -
Renyi Generalized Entropy CAIDA
Renyi Generalized Information Divergence
KL Divergence

Bhuyan et al. (2015) Real Experiment Shannon Entropy MIT Lincoln -
√

-
Renyi Generalized Entropy CAIDA
Renyi Generalized Information Divergence TUIDS
KL Divergence

Berezinski et al. (2015) Simulation Shannon Entropy, Tsallis Entropy Synthetic
√ √

-
Renyi Generalized Entropy

Behal et al. (2017) Emulation Testbed Shannon Entropy,Renyi Generalized Entropy MIT Lincoln
√ √ √

Variation Distance,Sibson Distance CAIDA, FIFA
KL Divergence,Renyi Generalized Information Divergence DDoSTB

Basicevic et al. (2019) Simulation Shannon Entropy,Renyi Generalized Entropy Simulated -
√

-
Tsallis Entropy, Bhatia-Singh Entropy
Ubraico Entropy, Tsallis Divergence
KL Divergence,Renyi Divergence

Proposed Work (2020) Emulation Testbed Shannon Entropy, Ubriaco Entropy MIT Lincoln
√ √ √

Renyi Generalized Entropy, φ-Entropy CAIDA, FIFA
Tsallis Entropy DDoSTB
KL Divergence,Renyi Generalized Information Divergence
Bhattacharyya Distance, Jensen Shannon Distance
Hellinger Distance, Pearson Distance
Total Variation Distance, Euclidean Distance
Jeffrey Distance, φ-Divergence

tection rate of 100% in comparison to Shannon
entropy (51.3%) and Ubriaco entropy (6%). For
all other detection system evaluation parameters,
Renyi entropy produces the best results as com-
pared to other entropy metrics.

For FE traffic, φ-entropy produces the best re-
sults on all detection system evaluation parame-
ters. For LR-DDoS attack traffic, Renyi entropy
produces the best detection accuracy and precision.

For divergence metrics, it has observed that
for HR-DDoS attack, KL divergence, Jeffrey dis-
tance, Bhattacharyya distance, total variation dis-
tance, GID and φ-divergence produces 100% de-
tection accuracy as compared to Hellinger distance
(97.5%), JSD (999.6%) and Euclidean distance
(87.5%). For FE traffic and LR-DDoS attack, both
φ-divergence and Bhattacharyya distance gave the
best results.

Further, Figure-4 shows the trade-off between
detection rate and FPR in terms of receiver operat-
ing characteristic (ROC) curves for all the entropy
and divergence metrics. ROC curves depict that
with an increase in FPR, detection rate increases,
i.e. if we compromise on FPR, a better detection
rate can be achieved and vice-versa.

5.4 Comparison with similar works

Many authors have compared the performance of
information theory-based metrics in the past. How-

ever, the proposed work presented in this paper dif-
fer from existing works in many ways and is sum-
marized in Table 9:

• Xiang et al. (2011) compared the performance
of Shannon entropy, Generalized entropy, KL
divergence, and Generalized information di-
vergence in detecting low-rate DDoS (LR-
DDoS) attacks from legitimate traffic. The
authors used the existing datasets of MIT Lin-
coln to represent legitimate traffic and CAIDA
to represent HR-DDoS traffic. We extended
the idea of this paper to detect LR-DDoS at-
tack, HR-DDoS attack and discriminating the
attack traffic from similar-looking FE traf-
fic. We performed experiments in emulation
based DDoSTB testbed for validating the pro-
posed approach, whereas the authors of Xi-
ang et al. (2011) used real datasets. More-
over, in this paper, we empirically investigated
the performance of five entropy metrics along
with ten divergence measures.

• Behal & Kumar (2017a) also compared the
performance of Shannon entropy, Generalized
entropy (GE), KL divergence and General-
ized information divergence (GID) in detect-
ing HR-DDoS attack, LR-DDoS attack, and
FE traffic from legitimate traffic. The authors
claimed that GE and GID metrics are more
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suitable to identify different types of DDoS
attacks and FEs. In contrast, our contribution
in this paper is that in most of the cases, φ-
generalized entropy and φ-generalized diver-
gence measures are best suited to detect differ-
ent types of Netflow. Moreover, in this paper,
a generalized detection algorithm along with
mathematical models of various Netflows are
proposed.

• Bereziński et al. (2015) proposed a gener-
alized entropy-based anomaly detection sys-
tem. The authors compared the performance
of generalized Tsallis entropy, generalized
Renyi’s entropy and Shannon entropy. They
used an AI-based WEKA tool to validate their
proposed work. They used simulation tools
to create a dataset and synthetically inserted
anomalies in the traffic. The authors claimed
that Tsallis entropy is best suited to detect HR-
DDoS attack traffic, whereas the scope of the
current paper is more as it can detect HR-
DDoS and LR-DDoS attacks along with FEs.

• Bhuyan et al. (2015) in their paper, empiri-
cally investigated the performance of Shan-
non entropy and Renyi’s generalized entropy
in detecting HR-DDoS attacks from legitimate
traffic. Authors used existing CAIDA dataset
and their own created TUIDS dataset for vali-
dating the proposed approach. Whereas, au-
thors in this paper have detected LR-DDoS
attacks, HR-DDoS and FE traffic using real
datasets as well as synthetically generated
datasets using DDoSTB.

• Yu et al. (2009) compared the performance
of information theory-based divergence mea-
sures like Sibson distance, Hellinger distance
and Jeffrey distance for detecting HR-DDoS
attacks and FE traffic based on the idea of
flow similarity. They used real datasets of
NLANR Auckland VIII for representing FE
traffic, MIT Lincoln DDOS dataset for attack
traffic. Authors observed that out of the three
divergence measures, Sibson distance is more
suitable to discriminate DDoS attack traffic
from FE traffic. However, the authors did not
consider differentiating LR-DDoS attack traf-
fic and normal traffic from FE traffic as we
did.

• Basicevic & Ocovaj (2019) compared the per-
formance of Shannon entropy, Tsallis entropy,
Renyi entropy, Bhatia-Singh entropy, Ubriaco
entropy, KL divergence, Tsallis divergence
and Renyi divergence similar to our work.
The authors perform simulation-based exper-
iments to create a synthetic dataset for val-
idation purpose, whereas we have used real
datasets for validating the proposed approach.
Further, the scope of their work is minimal.
Their proposed method is capable of detecting
only network layer SYN flooding, whereas
our proposed approach is more generalized
and has a broader scope. Our proposed ap-
proach can identify different types of LR-
DDoS attack and HR-DDoS attack along with
discriminating them from similar-looking FE
traffic.

6. Conclusion and future directions

The DDoS attack poses a severe threat to online
services and network resources. The impact of
DDoS attacks can be very devastating. So, in-time
detection of such attacks is an essential character-
istic of any network anomaly detection system. In
recent times, information theory-based distinct en-
tropy and divergence metrics have been used in-
creasingly in the domain of network anomaly de-
tection. This paper attempts to empirically investi-
gate the performance of these predominantly used
information theory-based entropy metrics such as
Shannon entropy, Ubriaco entropy, Renyi’s gener-
alized entropy, Tsallis entropy, φ-entropy, and var-
ious divergence metrics such as KL divergence,
Jeffrey distance, Bhattacharyya distance, Jensen
Shannon divergence, Hellinger distance, Pearson
distance, Total variation distance, Euclidean dis-
tance, generalized information divergence and φ-
divergence measures.

As part of the work, a generalized flow-based de-
tection algorithm is used that works based on infor-
mation distance (ID) between the different types of
Netflow. We observed that the divergence metrics
exploit more information distance between differ-
ent Netflows as compared to entropy metrics, hence
lead to more detection accuracy as compared to
entropy metrics. Out of the various entropy met-
rics, for HR-DDoS attack, Tsallis entropy, Renyi
entropy and φ-entropy produce the best detection
accuracy. For all other detection system evalua-
tion parameters, Renyi entropy produces the best
results. For detecting FE traffic, φ-entropy produce
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the best results on all detection system evaluation
parameters. However, for detecting meek varia-
tions in the network traffic such as LR-DDoS attack
traffic, Renyi entropy produce the best results.

Similarly, we observed in the case of divergence
metrics that for HR-DDoS attack, KL divergence,
Jeffrey distance, Bhattacharyya distance, total vari-
ation distance, GID, and φ-divergence produce
100% detection accuracy as compared to Hellinger
distance (97.5%), JSD (99.6%) and Euclidean dis-
tance (87.5%). Whereas for detecting FE traffic
and LR-DDoS attack traffic, both φ-divergence and
Bhattacharyya distance gave the best results.

For future work, the researchers shall 1) propose
an ISP level distributed approach to mitigate the
impact of FEs and DDoS attacks on the network
resources using information theory-based general-
ized divergence metric, and (2) implement and val-
idate the distributed algorithm in Software Defined
Networking (SDN) domain.
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