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Abstract

Diseases in plants harm the quantity of the overall food production as well as the quality of the 
yield. Early detection, diagnosis and treatment can greatly reduce losses, both economic and 
ecological. Intuitively, reduction in the use of agrochemicals due to timely detection of the 
disease, would greatly help in mitigating the environmental impact. In this paper, the authors 
have proposed an improved feature computation approach based on Squeeze and Excitation 
(SE) Networks, before processing by the original Capsule networks (CapsNet) for 
classification, for estimating the disease severity in plants. Two SE networks, one based on 
AlexNet and another on ResNet have been combined with Capsule networks. Leaf images for 
the devastating Late Blight disease occurring in the Tomato crop have been utilized from the 
PlantVillage dataset. The images, divided into four severity stages i.e. healthy, early, middle and 
end, are downscaled, enhanced and given as input to the SE networks. The feature maps 
generated from the two networks are separately given as input to the Capsule Network for 
classification and their performances are compared with the original CapsNet, on two image 
sizes 32X32 and 64X64. SE-Alex-CapsNet achieves the highest accuracy of 92.1% and SE-Res 
CapsNet achieves the highest accuracy of 93.75% with 64X64 image size, as compared to 
CapsNet that results in 85.53% accuracy. The classification accuracies of six state-of-the-art 
CNN models namely AlexNet, SqueezeNet, ResNet50, VGG16, VGG19 and Inception V3 are 
also presented for comparison purposes. Accuracy as well as precision, recall, F1-score, 
validation loss etc. measures have been recorded and compared. The findings have been 
validated by implementing the proposed approaches with another dataset, achieving similar 
resultant accuracy measures. The implementation was also accomplished with datasets after 
noise addition in six different variations, to verify the robustness of the proposed model. Based 
on the performances, the proposed techniques can be exploited for disease severity 
assessment in other crops as well and can be extended to other areas of applications such as



plant species classification, weed identification etc. In addition to improved performance, with 
reduced image size, the proposed methodology can be utilized to create a mobile application 
requiring low processing capabilities, to be installed on reasonably priced smartphones for 
practical usage by farmers.

Keywords: Capsule networks; convolutional neural networks; deep learning; plant disease 
severity; squeeze and excitation networks.

1. Introduction
Protecting plant health is crucial to terminate hunger, decrease poverty and boost the economic 
as well as ecological developments. According to FAO (Food and Agriculture Organization of 
the United Nations), year 2020 has been declared as the International Year of Plant Health 
(IYPH), emphasizing on the importance of protecting plants from pests and diseases, which 
result in around 40% loss of food crops. Food security is one of the key agendas in 2030 
Sustainable Development Goals (SGDs). Also, recently a financing facility was launched by the 
Government of India, with an overall budget of Rs One Lakh Crore for refining agricultural 
infrastructure and providing a comprehensive platform to agri-entrepreneurs. 
Evidently for the past several decades, the agronomists as well as the research community has 
strived to find solutions for phytopathological complexities and pave the way for real-time 
detection of any anomalies found in a crop, and also to minimize the use of agrochemicals in 
the fields. In light of this, early detection becomes vital for maintaining ecological wealth. In 
numerous studies, machine learning techniques have been applied for plant disease 
classification and/or exploring properties of a plant, leading to a better understanding of the 
cause, such as applying SVM (Support Vector Machines) on Hyperspectral reflectance i.e. 
spectral vegetation indices for early detection in sugar beet leaves (Rumpf et al., 2010), PLSR 
(par-tial least-squares regression) on leaf reflectance for predicting crop photosynthetic capacity 
of cabbage and corn (Heckmann et al., 2017), SVM for predicting diseases resistive proteins in 
crops (Pal et al., 2016), decision tree applied on intensity-based features for disease recognition 
in Tomato (Sabrol & Kumar, 2016) etc. In practical scenarios, visual inspection by agronomists 
and laboratory-based experiments are used to identify the symptoms and stage of the disease. 
The process is time-consuming and labour intensive, not to mention costly for the growers, with 
the rising severity of the disease as time passes and the eventual use of expensive pesticides. 
Also, due to a myriad of plant species and their diseases, even qualified and expert pathologists 
might conclude with a faulty diagnosis leading to an ineffective treatment. Hence, automation 
through the utility of computer vision and image processing techniques would play a vital role 
in effective disease recognition approaches. Image segmentation with the help of genetic 
algorithms (Singh & Misra, 2017), feature extraction and selection from leaf images, based on 
texture, shape, dispersion etc. (Camargo & Smith, 2009), utilizing depth informa-tion along 
with local and global feature statistics extracted from thermal and stereo visible light images 
(Prince et al., 2015), image colour space transformation, image enhancement, segmentation and 
extracting ROI (region of interest) to identify diseased area (Camargo & Smith, 2009), are 
a few examples.

 Computer Vision-based approaches aim at finding different representations that capture 
prominent features which in turn help in improving classification performance (Al-Hmouz, 
2020). This paper aims at assessing disease severity in tomato crop with the help of Capsule 
networks, along with certain modifications in the feature computation phase. This approach has 
never been studied/proposed for plant disease severity estimation or any other application as 
per our research.
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The contributions of this research article are listed as follows:

• Analysis of the original CapsNet architecture implemented for plant disease severity
assessment.

• Implementing feature extraction through the use of squeeze and excitation (SE)
networks, instead of a single convolution layer as in the Original CapsNet architecture.

• Exploring the capabilities of the two proposed SE-CapsNet architectures, SE-Alex-
CapsNet, based on SE networks applied with operations similar to layers in AlexNet
and SE-Res-CapsNet, based on SE networks applied with operations similar to
ResNet layers, for estimating the plant disease severity.

• Investigating the performances of both architectures i.e. SE-Alex-CapsNet and SE-
Res-CapsNet on multiple datasets.

The organization of the paper is as follows: Section 2 details the related works from the 
previous studies; Section 3 discusses the background of the proposed techniques; Section 4 lists 
the materials and methods wherein data selection, data preparation, basic methodology and the 
proposed techniques with the help of flowcharts are explained; Section 5 presents the 
experimental results along with graphs and discussion of the findings; and Section 6 outlines 
the conclusion and future scope.

2. Related Works

Among several advanced technologies, deep learning has proved to be a powerful and most 
effective tool for plant disease identification (Kamilaris & Prenafeta-Boldu, 2018), specifi-cally 
convolutional neural networks (CNN) have been extremely successful with high accu-racy 
measures in classifying crop diseases. In 2016, (Mohanty et al., 2016) trained two deep learning 
models namely AlexNet and GoogLeNet on the leaf images from PlantVillage dataset (Hughes 
& Salathe, 2015) and achieved an accuracy of 99.35% with GoogLeNet. The authors 
implemented the models in both approaches i.e. transfer learning and training from scratch, for 
coloured, segmented and grayscale version of the images, in varying train : test ratios viz. 
80:20, 60:40, 50:50 etc. This was the first study conducted where pre-trained CNNs were 
imple-mented on a large leaf image dataset to classify plant diseases. Another study 
demonstrated the capability of a network designed and trained from scratch to identify 22 crop 
and weed species. The images taken were via a mobile phone and had variations in lighting 
conditions and soil types (Dyrmann et al., 2016). (Sladojevic et al., 2016) executed CaffeNet 
and showcased the capability of augmentation process for dataset expansion along with 
achieving promising results for recognizing 15 classes. In 2017, (Wang et al., 2017) studied the 
application of com-puter vision for assessing disease severity in a crop. They implemented four 
pre-trained CNN architectures namely VGG16, VGG19, Inception V3 and ResNet50, to 
diagnose the apple black rot disease severity from PlantVillage leaf images, and the 
performance varied between 80% to 90%. The best result of 90.4% was achieved with VGG16. 
The authors also concluded that transfer learning performs better when the number of training 
images available are low. (Fer-entinos, 2018) executed five CNN models, AlexNet, 
AlexNetOWTBn, GoogLeNet, Overfeat and VGG, on 87,848 leaf images of 25 distinct species 
and 58 pairs of different plant-disease groupings, with images taken in both controlled 
laboratory environment and field conditions. The best performance achieved was 99.53% in 
recognizing the correct plant-disease pair. The author also demonstrated the classification 
results when training with laboratory based images and testing being done on field images and 
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vice versa, with diminishing performance measures.(Too et al., 2019) also evaluated and 
compared the performances of six pre-trained CNN archi-tectures VGG16, ResNet50, 
ResNet101, ResNet152, Inception V4 and DenseNet via transfer learning approach, applied to 
the images from PlantVillage dataset and emphasized on the im-pact of fine-tuning the 
architectures for individual executions. DenseNet resulted into 99.75%accuracy, beating the 
rest. (Barbedo, 2019) utilized distinct lesions/spots on a leaf instead of an entire leaf for disease 
identification, arguing that it would increase the data size without addi-tional images and more 
significantly, multiple diseases affecting the same leaf can be identified. GoogLeNet was 
implemented through transfer learning, achieving accuracies between 75% -100% in a series of 
experiments on original, modified (background removed) and manually ex-panded (based on 
symptoms and area coverage) image dataset.
    An addition to various standard CNN architectures being exploited for plant species and 

disease identification, several studies have proposed their modified and improved versions, with 
better performances. (Zhang et al., 2018) experimented by means of different pooling 
combinations, dropout percentages and ReLU operations at multiple stages with GoogLeNet 
and Cifar10 mod-els. (Liu et al., 2018) presented an end-to-end architecture comprising of 
AlexNet concatenated with two cascaded Inception modules at the end, replacing the first two 
FC (fully connected) layers. (Hang et al., 2019) combined the structures of VGG16 (as the 
base), Squeeze and Ex-citation (SE) network and Inception module, replacing FC layer with 
global average pooling, which resulted into a reduced number of parameters and better 
classification accuracy. (Dong et al., 2019) utilized Capsule nAtworks (CapsNet) (Sabour et al., 
2017) for disease identification in peanut crop, whereby three convolutional layers were placed 
with the original CapsNet and performances compared with a standard CNN. CapsNets have 
also been implemented for hyper-spectral image classification (Paoletti et al., 2018) and 
identification of UAV imagery (Li et al., 2019). (Liang et al., 2019) designed an image-based 
architecture PD2SE-Net for plant recog-nition, disease identification and disease severity 
assessment. The authors utilized ResNet50 as the base model along with parameter sharing 
between layers and shuffle blocks, enabling the three functionalities to be carried out with three 
separate FC layers and softmax function. More recently, (Chen et al., 2020) combined the 
capabilities of VGG19, Inception module and global pooling via transfer learning, and created a 
hybrid structure to classify rice and maize crop diseases, from an enriched and augmented leaf 
image dataset. (Karlekar & Seal, 2020) proposed an image segmentation algorithm followed by 
SoyNet, a CNN model for soybean plant disease recognition. The authors argue that 
background subtraction and a reduction in the spatial resolution of the image with each layer 
can significantly enable the CNN to learn crucial features and thus improve the accuracy. (Zeng 
& Li, 2020) proposed SACNN, a basic CNN to extract global features with the aid of Residual 
Networks, followed by a self-attention (SA) net-work for extracting local and intricate features 
in later layers. Similarly, few other researchers have utilized CapsNet for disease recognition in 
potato crop (Verma et al., 2020), newly devel-oped CNN models EfficientNet and MixNet for 
automated recognition of fruits (Duong et al., 2020), features extracted via pre-trained CNNs 
exploited to train traditional machine learning techniques such as SVM, Logistic Regression 
and XGBoost (Espejo-Garcia et al., 2020) etc.

3. Background

3.1 Capsule networks

In the field of agriculture, CNN models have been effectively applied for plant species as well 
as weed identification, fruit counting, plant disease diagnosis, overall yield estimation etc. 
How-ever, certain drawbacks such as discounting the spatial relationship between 
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various features in an image (such as relationship between eyes, nose and mouth in a face), 
instability towards affine transformations such as rotation, translation, scaling etc., have been 
identified, which are the main cause for the requirement of humungous dataset, covering all 
possible orientations of objects in images, for training. This leads to increased computational 
cost in terms of resources as well as training time. The pooling operation in CNNs is known to 
lose spatial information, rendering CNNs to be invariant rather than equivariant. In 2017, 
(Sabour et al., 2017) investigated Capsule networks with dynamic routing between capsules, in 
order to conquer these flaws. Capsule networks have the capability to encode spatial data and 
distinguish between various textures, orientations and poses. A capsule is a group of neurons, 
whereby each capsule has an activity vector associated with it, that captures numerous 
instantiation parameters for detection of a particular type of object or its part. The length and 
orientation of the vector presents the likelihood or the probability of presence of that object and 
its generalized pose. These vectors are passed on to the upper level capsules from lower layer 
capsules. Coupling coefficients exist between these layers of capsules. As the name suggests, if 
the prediction by the lower level capsule matches the output of the current capsule, the value of 
the coupling coefficient between them increases, computed through the use of softmax function. 
That is to say, if the current capsule detects a tight cluster of previous predictions, strongly 
indicating the presence of that object, it results in a high probability, also known as routing by 
agreement.
Firstly, the prediction vector (equation 1) is computed as,

ûj|i = Wijui, (1)

where ûj|i is the output/prediction vector of the upper-level jth capsule, Wij and ui are the weight
matrix and prediction vector of capsule i in the lower layer respectively. It may capture spatial
relationships and relation between sub-objects and objects. As in equation (2), based on the
degree of agreement between adjoining layer capsules, the coupling coefficients are computed
via the softmax function,

cij = exp(bij)/
∑

kexp(bik), (2)

where bij is the log probability between the two capsules, initialized to zero and k denotes the
number of capsules. The input vector sj to the jth layer capsule, which a weighted sum of ûj|i
vectors learned by the routing algorithm, is calculated as follows,

sj =
∑

icijûj|i, (3)

Finally, a squashing function that combines squashing and unit scaling (equation 4), is applied
to confine the value of the output in the range between 0 and 1, hence computing the probability
as,

vj =
‖sj‖ 2

1 + ‖sj‖ 2

sj
‖sj‖

, (4)

The loss function (as computed by equation 5) is associated with capsules in the last layer,
where m+ and m- are set to 0.9 and 0.1 resp.

lk = Tkmax(0,m
+ − ||vk||)2 + λ(1− Tk)max(0, ||vk|| −m−)2, (5)

where the value Tk is 1 for correct labels and 0 otherwise, λ is a constant whose value is 0.5.
The first term is computed for correct labels, the second term computes for incorrect labels. If
Tk is 1, the second term becomes 0 and for Tk as 0, the first term becomes 0. Also, the loss
value lk will be 0 for correct predictions with vk being greater than 0.9 and non-zero otherwise.
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Fig. 1. Basic SE Network

3.2 Squeeze and Excitation Networks

CNNs exploit the convolution layer to generate feature maps from images, where several filters 
are used for extraction of hierarchical data. Lower layers identify edges, curves etc and higher 
layers are able to recognize faces, objects, text and so on. This task is accomplished by 
aggregating the spatial as well as channel-wise data of the image at every layer. Various filters 
are used to find specific spatial data in all separate channels, which is later combined and added 
across all output channels available. Hence, the feature maps are created as a result of network 
weights being equal for all channels. Squeeze and excitation networks (SENets) proposed by 
(Hu et al., 2018), which also won first place at ILSVRC 2017, explores the interdependencies 
and relationship between the channels to improve performance. The authors introduced a 
simple yet effective building block that can be easily added to any CNN model without much 
increase in the computational cost. Figure 1 demonstrates the basic structure of the SE block. 
The aim is to scale each channel based on its significance rather than giving them the same 
importance by assigning equal network weights. Given the convolutional block and present 
number of channels as input, firstly, the feature maps are squeezed into a single numeric value 
by employing global average pooling (GAP). This is done for all feature maps. Hence, the 
resultant vector ‘n’ has size equal to the number of current channels. Then a fully connected 
(FC) layer followed by ReLU operation is used to introduce non-linearity. There is a second FC 
layer followed by Sigmoid function, which applies a smooth gating function to each channel. 
Lastly, the resultant vector of size ‘n’ is multiplied to the original convolutional block which 
was initially given as input, scaling the channel-wise data based on their respective importance. 
Thus, the feature maps are passed through a squeeze operation which generates a channel 
descriptor by combining the spatial data, then excitation operation is performed which results 
into channel-wise measured and proportional weights. The input image X is mapped into a set 
of feature maps U εRH×W×C via some transformation represented by Ftr, where H×W denote 
the spatial dimensions and C is the number of channels. Firstly, the squeeze operation Fsq(.) is 
applied to U (equation 6), generating z ε RC , that aggregates the feature maps throughout its 
spatial dimensions and produces a channel-wise descriptor of dimension 1 × 1 × C, the 
aggregation function being global average pooling.

zc = Fsq(uc) = 1/(H ×W )
∑

H
i=1

∑
W
j=1uc(i, j), (6)

For a feature map uc, corresponding to a specific channel c, i increments from 1 to H and
j increments from 1 to W, adding all values of uc(i, j). The total sum divided by H × W
gives the value of global average pooling, i.e. the entire feature map is aggregated to a single
value denoted by zc. In order to completely utilize the channel-wise information detected by the
squeeze operation, excitation operation Fex(.,W ) is applied (equation 7) via the fully connected
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layers and activation functions. Its purpose is to capture non-linearities amongst the channel
interactions as well as to stress on multiple channels. Two FC layers are placed here in order
to achieve that, first one followed by ReLU operation to introduce non-linearity, where the
complexity is reduced by a certain amount governed by the value r (denotes the reduction ratio),
followed by the second FC layer and sigmoid function for a smooth gating mechanism.

s = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)) (7)

where δ represents the ReLU operation, W1 ε R
(C
r
×C) and W2 ε R

(C×C
r
). The final output is

obtained by implementing the scaling operation (equation 8) that applies rescaling to U with
respect to activations s.

x̂c = Fscale(uc, sc) = scuc. (8)

4. Materials and Methods

4.1 Dataset

Tomato crop (aka Solanum Lycopersicum) is a key dietary source of fiber, nutrition, vitamins 
and minerals, having various health benefits. It is a fruit, being consumed mostly as a vegetable. 
There is a gamut of viral, bacterial and fungal diseases affecting its growth and overall yield. 
Late Blight disease (Nowicki et al., 2013) in Tomato plant, caused by the fungus Phytoph-thora 
infestans, is a fast spreading and devastating disease. The condition of the infected plant 
deteriorated rapidly, spreading and destroying entire fields, if not diagnosed and controlled on 
time. For this study, the late blight infected leaf images have been selected from the Plant 
Village dataset, mentioned previously. It is an openly available dataset that has been utilized by 
several previous studies, due to its large collection of leaf images (over 50,000), covering 14 
crops including tomato, and their corresponding 26 diseases, leading to 36 crop-disease pairs, 
which deems ideal for training a CNN considering image-based identification. The coloured 
leaf images were categorized into four classes: healthy, early, middle and end stage of disease. 
Figure 2 showcases few samples of the images selected for each stage and table 1 summarizes 
their count. The selection process was manually conducted and disease severity was assessed 
by the visibly damaged area coverage of the infected leaf (Campbell & Neher, 1994) (as shown 
in figure 2). Leaf image with few and smaller spots was selected for early stage, an almost 
destroyed and dried leaf was considered for end stage, and leaves with few but larger spots were 
selected for middle stage. Healthy tomato leaves are available separately in the PlantVillage 
dataset.

Table 1. Total images selected in each category

Categories No. of 
Images

Early Stage 354
Middle
Stage

347

End Stage 382
Healthy 433
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Fig. 2. Sample Images of (a) healthy, (b) early, (c) middle and (d) end stages of late blight 
disease in tomato crop, selected from PlantVillage dataset.

After the finalization of the dataset, all images were downsized in order to fasten the training 
process, reduce parameters and overcome hardware restrictions. The images were downscaled 
to two sizes, 32X32 and 64X64. The resulting images were enhanced by utilizing the block 
wise DCT (Discrete Cosine Transform) scaling method (Mukherjee & Mitra, 2008). DCT has 
previously been adopted for JPEG compression standards. Brightness, contrast and colour are 
the three essential blocks while displaying an image. Most of the past studies have worked 
upon the brightness, or contrast, or a combination of both to enhance images, but none of 
them contemplated colour preservation in the resulting image. The abovementioned image 
enhancement technique proposed to consider all three factors for compressed images. The 
approach revolves around uniform scaling of DCT coefficients in a block. The original RGB 
image is transformed into YCbCr colour space. Thereafter, the algorithm operates in three 
steps: adjustment of the background illumination by mapping the current brightness values 
(DC coefficients) in a block, to values in the chosen range; preserving the local contrast by 
scaling the pixel values in a block with the same factor, however, overflow of values outside 
the range needs to be prevented; and lastly preserving the original colours as a consequence 
of the previous step, wherein uniform scaling of brightness and contrast also scales the colour 
vectors pertaining to RGB space, with the same factor. Hence, the enhancement technique not 
only processes the luminance components but also chrominance components for better quality 
images. The image pre-processing has been depicted in figure 3.

8

SE-CapsNet: Automated evaluation of plant disease severity based on feature extraction through Squeeze and Excitation (SE) 
networks and Capsule networks



Fig. 3. Data Pre-processing.

4.2 Methodology and Implementation Details

Figure 4 portrays the flowchart of the basic steps and methodology used for this study, and 
figure 5 highlights the feature extraction phase in the implementation. As discussed previously, 
images from the original dataset were selected, for all late blight disease severity stages, along 
with healthy tomato leaf images. This image dataset was downscaled and enhanced for further 
processing. The labelled dataset constituting of four classes was then divided into train: 
validation data and fed as input to the SE networks, in order to derive feature maps, as opposed 
to the original CapsNet architecture having a single convolution layer. Thereafter, the resulting 
feature maps were processed by the primary capsule layer for further classification. The 
hyperparameters viz. learning rate, epochs, batch size etc. were varied within a range and the 
models were trained for most of the combinations. For eg. learning rate was varied between 
0.01-0.0001, batch size was varied between 8, 16, 20 and 32. Similarly, epochs were varied 
between 30, 40 and 50. The values achieving highest performance measures were se-lected. All 
implementations were performed with 50 epochs and the mini batch size was set to be 16. Most 
common train:test ratio is 80:20 i.e. 80% of the data is used for training and the remaining 20% 
is used for testing. Hence, it was also set to 80:20. Table 2 describes the hyperparameters used 
for training. The Coefficient for the loss of Decoder and the Reduction ratio r (mentioned in the 
table for both architectures), were also selected empirically. The value r is used to control the 
computational cost for the SE block. It was varied between two values i.e. 8 and 16, previously 
investigated in (Hu et al., 2018). The Keras implementation adapted from (GITHUB. https://
github.com/XifengGuo/ CapsNet-Keras, 2020) was performed on a workstation equipped with 
GTX1060 6GB GPU, using Python 3.7. The image pre-processing was implemented on 
MATLAB R2019b.

4.3 SE-CapsNet

The original CapsNet architecture comprises of a single convolution layer having 256 filters of 
9X9X1 size. The features detected are analysed by the capsules in the subsequent layers. Two 
SE-CapsNet architectures have been proposed in this paper, namely, SE-Alex-CapsNet which is 
based on the basic operations of AlexNet with SE blocks, and SE-Res-CapsNet, which is based 
on the basic operations of ResNet with SE blocks, followed by the encoder and decoder 
operations of Capsule networks. AlexNet (Krizhevsky et al., 2012) is a hugely powerful 
network capable of a high success rate with complex datasets. Its architecture is one of the 
foremost in several computer vision applications such as object detection. AlexNet has five 
convolution layers and the CNN archi-tectures that came after, such as VGG and GoogLeNet 
were deeper with 19 and 22 layers, with the intent of learning more complex features. However, 
deeper networks, not to mention, are harder to train, also face the vanishing gradient problem, 
whereby the gradients that are back Aropagated to earlier layers end up being infinitely small 
due to the multiplication operation, thereby saturating or deteriorating the performance. 
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Fig. 4. Research Methodology

In order to tackle it, ResNet (He et al., 2016) introduced ‘residual blocks’, which are identity 
shortcut connections that skip few layers (figure 6). The output of the previous layer is added to 
the next layer, with the idea to reuse the previous activations. Figure 7 lists the basic operations 
performed by the SE block on the input convolutional block, the output of which is multiplied 
with the input block for applying the scaling effect. The layers in SE-Res-CapsNet are 
demonstrated in figure 8 and figure 9. For simplifying the flow of operations, it has been 
divided in two parts, figure 8 depicting the core layers in SE-ResNet, which are embedded in 
figure 9 i.e. Block SE-ResNet 1 through 5, for final computation, later given as input to the 
CapsNet. Similarly, the layers in SE-Alex-CapsNet are showcased in figure 10, utilized to 
compute the feature maps, which are then processed by the primary capsule layer in the 
CapsNet. The kernel size in the primary caps layer was reduced to 2. Four convolution layers 
with 64, 128, 256 and 512 filters respectively, are implemented to enhance the feature 
extraction process of the network, followed by the SE block operations, batch normalization, 
ReLU and MaxPool applied to the input image. Dropout layer was added to both proposed 
models in order to minimize the overfitting. The processing by the CapsNet Encoder layers is 
explained as follows:

• Primary Capsule Layer: As discussed in section 2.3, this is the lower level capsule layer,
constituting 32 distinct capsules. It detects more detailed features and patterns. The
features detected by the previous layers are analyzed in this layer, where each capsule
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Fig. 5. Feature Extraction through SE Networks before processing by CapsNet.

Fig. 6. Residual Block

applies eight 9x9x256 convolutional kernels to the input, producing a 4D vector as output.

• DigitCaps: This is the higher level capsule layer resulting in 16D vectors containing all
the instantiation parameters.

The 16D vector is given as input to the CapsNet Decoder network, which is basically a feed 
forward neural net, having three fully connected layers with 512, 1024, 3072 (for 32X32 
images) or 12228 (for 64X64 images) neurons, each followed by ReLU operation. It also acts 
as a regularize. It learns to decode the instantiation parameters into the image it is supposed 
to detect. It utilizes Euclidean distance loss function for learning and training.
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Table 2. Hyper-parameters set for training

Optimizer Adam
Learning rate 0.001
Learning Rate De-
cay

0.9

Epochs 50
Train : Validation
Ratio

80:20

Batch size 16
Ratio r (For SE-
Alex-CapsNet)

8

Ratio r (For SE-Res-
CapsNet)

16

Coefficient for the
loss of Decoder

0.392

Fig. 7. Operations of SE Block, the output of which is multiplied to the input, for further
processing
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Fig. 8. Block for ResNet with SE.

Fig. 9. Basic flow of SE-Res-CapsNet
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Fig. 10. Basic flow of SE-Alex-CapsNet
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5. Results and Discussion

For evaluating the performances of the proposed techniques, the authors implemented the above 
mentioned approaches to the images selected from the PlantVillage dataset. The performance of 
the proposed architectures was compared with six pre-trained CNN models, implemented via 
transfer learning. The metrics considered for comparison purposes were accuracy, precision, 
recall, F1-score and validation loss. Firstly the implementation was completed with tomato late 
blight images and performance measures were recorded. Then, the approaches were 
implemented with another dataset namely grape black rot images, taken form PlantVillage 
dataset as well, in order to validate the findings. Lastly, implementation was performed after 
various percentages of Salt & Pepper noise were added to the original images in both the 
datasets, with image size 64X64 and accuracy as well as F1-score were recorded.
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5.1 Impact of proposed feature extraction via SE networks

Six CNN models namely, AlexNet, SqueezeNet, ResNet50, VGG16, VGG19 and Inception V3 
were also implemented on our dataset. Figures 11 – 12 demonstrate the resultant chart 
comparing the test accuracies obtained with each implementation along with the results of our 
proposed technique. It can be observed that both our approaches perform better in comparison, 
with SE-Res-CapsNet achieving the highest accuracy of 91.44% and 93.75% on the test set for 
both image sizes. Tables 3 and 4 present the resulting values for all experiments, performed on 
images sizes 32X32 and 64X64 respectively. Even in terms of precision, recall and F1-score, 
our approaches outperform other implementations, along with achieving the minimum values 
for validation loss. Original CapsNet is treated as the baseline architecture for our proposed 
techniques. It requires much less data to train as compared to traditional CNNs and can 
generalize successfully, leading to better performance measures, as in our case. Evidently, 
disease severity image data was selected from a mix of images manually and count in each class 
is in few hundreds. Images in PlantVillage dataset have an identical background, suitable for 
Cap-sNet implementation as it can’t deal with complex backgrounds. As depicted by the 
improved results, SE-CapsNet captures the advantages of the SE networks along with the 
underlying CNNs and the Capsule networks. The first proposed network is based on the 
sequential layered processing of AlexNet, enhanced with the capabilities of SE network that 
captures the complex features within the dataset having high inter-class similarity. The SE 
block is placed after every convolution layer. It doesn’t employ any transfer learning as the 
weights are assigned randomly, hence, the network is trained from scratch specifically for 
disease severity evaluation. Similarly, the next proposed network was based on ResNet, having 
identity mappings or skip connections, where SE block is applied systematically in every 
ResNet block. It acts as the feature extractor that results in a better performance in terms of 
predicting class of diseased leaf images. The effectiveness of adding SE blocks to ResNet have 
been investigated in (Hu et al., 2018). Intuitively it can be observed that deeper networks with 
channel-wise scaling in feature maps results in better classification accuracy. Optimization is 
achieved by employing Adam with learning rate initially set as 0.001. Results obtained in 
(Wang et al., 2017) for disease severity estimation in apple rot disease utilizing CNNs depicted 
the classification accuracy in the range of 80% -90%. With original CapsNet, implemented on 
our dataset, the accuracy achieved was 83.22%for 32X32 image size and 85.53% for 64X64 
image size. As showcased with the results, both proposed models outperform CapsNet as well 
as pre-trained CNN models with better classifi-cation accuracy and hence, it can be concluded 
that the proposed approaches can prove to be effective in plant disease severity assessment and 
can be extended to other crops or other areas of application. Also, due to reduced image size, it 
can be implemented in low power devices for practical use by the growers. Table 5 presents the 
comparative values of Kappa coefficient as well as loss values related to CapsNet and table 6 
lists the count of parameters in each implementation. 
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Fig. 11. Accuracy comparison for the implemented models for Tomato Late Blight Images 
size 32X32.

It can be observed that with improved Kappa coefficient and decreased losses as well as 
parameters, both our approaches present an enhanced model for implementation on such use 
cases. Figures 13 – 18 showcases the resultant accuracy and loss graphs for both image sizes i.e. 
32X32 and 64X64. CapsNet also reconstructs the input image through the features extracted 
and learned representations during the earlier stages, in order to improve accuracy measures 
and compute loss. It is possible to do so due to the equivariance property as well as pose and 
orientation data captured in the activity vector. Figure 19 visualizes the sample real and 
reconstructed images after the CapsNet implementation. Aigure 20 demonstrates the test 
accuracy comparison of the state-of-the-art CNN architectures after 20 epochs, 80:20 split ratio 
and Adam employed as the optimizer, implemented via trans-fer learning on the original 
dataset, with image size 256 × 256, for comparative purposes. As can be observed, the resultant 
classification accuracies are restricted between 80% - 90%, due to high interclass similarities 
and fewer images available for training. With reduced image size, the performances would 
diminish even further. The proposed methodology improves the perfor-mance substantially as 
compared to standard CNN models, as it benefits from the channel-wise scaling attributed to SE 
networks and also, doesn’t require huge dataset for training and clas-sification due to the 
utilization and benefits of CApsule networks. With a different dataset, the accuracy measures 
might differ but the performance of the proposed models, showcased for the two different data 
sizes were consistent. Hence, in order to validate our findings, the authors also implemented the 
proposed approaches on a different dataset, results of which are presented in the next section.
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Fig. 12. Accuracy comparison for the implemented models for Tomato Late Blight Images
size 64X64.

Table 3. Resultant Precision, Recall, F1-score and Validation Loss for the Tomato Late Blight
Image size 32X32

Networks Precision Recall F1-score Validation Loss
Original CapsNet 0.82 0.82 0.82 0.1383
SE-Alex-CapsNet 0.9046 0.9054 0.9049 0.0794
SE-Res-CapsNet 0.9063 0.904 0.9051 0.08

AlexNet 0.8248 0.8138 0.8193 1.3537
ResNet50 0.8286 0.8299 0.8292 0.7525
VGG16 0.7916 0.7962 0.7939 0.9561
VGG19 0.7893 0.7913 0.7903 0.5428

Inception V3 0.8052 0.8032 0.8042 0.7859
SqueezeNet 0.8432 0.8389 0.8411 0.6766

Table 4. Resultant Precision, Recall, F1-score and Validation Loss for the Tomato Late Blight
Image size 64X64

Networks Precision Recall F1-score Validation Loss
Original CapsNet 0.851 0.8512 0.8511 0.1112
SE-Alex-CapsNet 0.9179 0.9136 0.915 0.0691
SE-Res-CapsNet 0.9286 0.9274 0.928 0.06

AlexNet 0.8038 0.805 0.8044 1.095
ResNet50 0.8667 0.8662 0.8664 0.5807
VGG16 0.7837 0.7839 0.7838 0.7351
VGG19 0.7581 0.7572 0.7576 0.6688

Inception V3 0.8479 0.8392 0.8435 0.7942
SqueezeNet 0.8583 0.8526 0.8554 0.5728
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Fig. 13. Graphs depicting the training accuracy, validation accuracy and training loss for
Original CapsNet for image size 32X32.

Fig. 14. Graphs depicting the training accuracy, validation accuracy and training loss for
Original CapsNet for image size 64X64.

Fig. 15. Graphs depicting the training accuracy, validation accuracy and training loss for
SE-Alex-CapsNet for image size 64X64.
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Fig. 16. Graphs depicting the training accuracy, validation accuracy and training loss for
SE-Alex-CapsNet for image size 64X64.

Fig. 17. Graphs depicting the training accuracy, validation accuracy and training loss for
SE-Res-CapsNet for image size 64X64.

Fig. 18. Graphs depicting the training accuracy, validation accuracy and training loss for
SE-Res-CapsNet for image size 64X64.

Fig. 19. Sample Real and reconstructed images from CapsNet implementation.
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Table 5. Resultant Kappa Coefficient and Losses for the Tomato Late Blight dataset

Tomato Late Blight Images (32X32)
Networks Kappa coefficient Loss CapsNet loss Decoder Loss ValCapsNet loss ValDecoder Loss

Original CapsNet 0.8021 0.1238 0.1167 0.0182 0.1303 0.0204
SE-Alex-CapsNet 0.877 0.049 0.0414 0.0194 0.0712 0.0209
SE-Res-CapsNet 0.8769 0.0426 0.0349 0.0195 0.0714 0.0218

Tomato Late Blight Images (64X64)
Original CapsNet 0.8059 0.1065 0.0985 0.0204 0.1026 0.0221
SE-Alex-CapsNet 0.8938 0.0414 0.0343 0.0181 0.0613 0.02
SE-Res-CapsNet 0.9031 0.0295 0.0218 0.0197 0.0516 0.0214

Table 6. No. of parameters for the proposed architectures on our dataset.

Architectures # of parameters for 32 X 32 image # of parameters for 64 X 64 image
CapsNet 9,144,064 19,327,744

SE-Alex-CapsNet 8,343932 17,986,940
SE-Res-CapsNet 6,425456 16,396,144

Fig. 20. Test Accuracy comparison of standard CNN models on the original Tomato Late
Blight (256X256) images.
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5.2 Validation of the proposed models on a different dataset

The next dataset selected for implementation is Grape Black Rot disease, images of which
were again taken from the PlantVillage dataset. The images were selected similarly for three
diseased stages i.e. early, middle and end stage, along with healthy images. The count of images
selected in each category were: healthy - 320, early – 290, middle – 384 and end – 308. Figure
21 depicts the sample images in each category. The images in each class were resized to 32X32
and 64X64, and later enhanced using the block-wise DCT scaling technique.

Fig. 21. Sample images of Grape Black Rot in each category namely, healthy, early, middle
and end, taken from the PlantVillage dataset.

As done with tomato dataset, six state-of-the-art CNN architectures namely, AlexNet, 
SqueezeNet, ResNet50, VGG16, VGG19 and Inception V3 were also implemented on this 
dataset. Figures 22 – 23 demonstrate the resultant chart comparing the test accuracies obtained 
with each imple-mentation along with the results of our proposed technique. With SE-Res-
CapsNet achieving the highest accuracy of 81.22% and 89.27% on the test set for both image 
sizes, it can be as-certained that both our approaches again perform better in comparison. 
Tables 7 and 8 present the resulting values i.e. precision, recall, F1-score and validation 
loss, for all experiments, performed on images sizes 32X32 and 64X64 respectively. 
Evidently, our approaches outper-form other implementations with better performance 
measures in terms of precision, recall and F1-score as well, while also achieving the minimum 
values for validation loss. Similarly, table 9 lists the comparative values of Kappa coefficient as 
well as loss values related to CapsNet. With improved Kappa coefficient and decreased value of 
losses, it can be concluded that both our approaches improve upon the existing architecture in 
this scenario. Figures 24 -29 showcases the resultant accuracy and loss graphs for both image 
sizes i.e. 32X32 and 64X64

Fig. 22. Accuracy comparison for the implemented models on Grape Black Rot for Images
size 32X32.
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Fig. 23. Accuracy comparison for the implemented models on Grape Black Rot for Images 
size 64X64.

and the sample reconstructed image in demonstrated in Figure 30. Hence, through the above 
implementations, it can be concluded that even with a different dataset, SE-Res-CapsNet and 
SE-Alex-CapsNet outperforms the original CapsNet as well as CNN models with improved 
accuracy measures. Hence, it can be concluded that even with a different dataset, SE-Res-
CapsNet and SE-Alex-CapsNet will outperform the original CapsNet as well as CNN models 
with improved accuracy measures.

5.3 Performance with the addition of noise

The authors added variation of Salt & Pepper noise, also known as impulse noise, to the 
original images before implementing with the proposed approaches, in order to put the model 
under stress and understand its robustness against such noise and disturbances. The noise added 
was such that it affected 1%, 3%, 5%, 7%, 10% and 20% of pixels in the image, as depicted in 
figures 31 and 32. Figure 31 showcases a sample tomato late blight original image (leftmost), as 
well as six variations of images affected by Salt & Pepper noise. Similarly, figure 32 
demonstrates the grape black rot image affected by the noise addition.
Firstly noise was injected to the original images selected from the PlantVillage dataset for both 
datasets i.e. tomato late blight and grape black rot, in six different variations for each disease. 
The modified dataset was then resized to 64X64 and enhanced in the similar way. The proposed 
approaches were then implemented with these datasets and test accuracy as well as F1-score 
were recorded for comparative purposes. Figures 33 - 36 showcase the comparative charts for 
all variations. It can be observed that SE-Res-CapsNet achieves the highest classification 
accuracy and F1-score in almost all experiments. Also, noise addition doesn’t affect the 
performance of the implemented models that much. Hence, they can be said to be robust against 
such disturbances in input images.
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Fig. 24. Graphs depicting the training accuracy, validation accuracy and training loss for
Original CapsNet for Grape Black Rot image size 32X32.

Fig. 25. Graphs depicting the training accuracy, validation accuracy and training loss for
Original CapsNet for Grape Black Rot image size 64X64.

Fig. 26. Graphs depicting the training accuracy, validation accuracy and training loss for
SE-Alex-CapsNet for Grape Black Rot image size 32X32.
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Fig. 27. Graphs depicting the training accuracy, validation accuracy and training loss for
SE-Alex-CapsNet for Grape Black Rot image size 64X64.

Fig. 28. Graphs depicting the training accuracy, validation accuracy and training loss for
SE-Res-CapsNet for Grape Black Rot image size 32X32.

Fig. 29. Graphs depicting the training accuracy, validation accuracy and training loss for
SE-Res-CapsNet for Grape Black Rot image size 64X64.
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Fig. 30. Sample Real and reconstructed Grape Black Rot images from CapsNet
implementation.

Table 7. Resultant Precision, Recall, F1-score and Validation Loss for the Grape Black Rot
size 32X32

Networks Precision Recall F1-score Validation Loss
Original CapsNet 0.7326 0.7496 0.7379 0.1892
SE-Alex-CapsNet 0.7893 0.8033 0.7899 0.1461
SE-Res-CapsNet 0.815 0.8233 0.8191 0.1343

AlexNet 0.7322 0.6372 0.6814 2.5548
ResNet50 0.7011 0.6438 0.6712 1.4586
VGG16 0.7244 0.6134 0.6643 1.7321
VGG19 0.7397 0.6351 0.6834 0.8705

Inception V3 0.7477 0.6557 0.6987 1.3142
SqueezeNet 0.7502 0.6118 0.6739 1.5819

Table 8. Resultant Precision, Recall, F1-score and Validation Loss for the Grape Black Rot
Image size 64X64

Networks Precision Recall F1-score Validation Loss
Original CapsNet 0.7481 0.7536 0.7505 0.1763
SE-Alex-CapsNet 0.8398 0.8607 0.8432 0.1097
SE-Res-CapsNet 0.8899 0.9033 0.8936 0.085

AlexNet 0.7826 0.7322 0.7566 1.9284
ResNet50 0.7916 0.7194 0.7538 1.0465
VGG16 0.7532 0.7115 0.7318 0.8966
VGG19 0.7554 0.7328 0.7439 0.7476

Inception V3 0.7267 0.5988 0.6566 1.1999
SqueezeNet 0.8056 0.7812 0.7932 0.7776
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Table 9. Resultant Kappa Coefficient and Losses for the Grape Black Rot dataset

Grape Black Rot Images (32X32)
Networks Kappa coefficient Loss CapsNet loss Decoder Loss ValCapsNet loss ValDecoder Loss

Original CapsNet 0.6365 0.1648 0.1594 0.0138 0.1837 0.0139
SE-Alex-CapsNet 0.7093 0.1135 0.107 0.0167 0.1401 0.0153
SE-Res-CapsNet 0.7398 0.1103 0.1037 0.017 0.1283 0.0153

Grape Black Rot Images (64X64)
Original CapsNet 0.665 0.1576 0.1516 0.0154 0.1701 0.0157
SE-Alex-CapsNet 0.7907 0.0963 0.0897 0.0168 0.1037 0.0152
SE-Res-CapsNet 0.8566 0.0793 0.0727 0.017 0.0789 0.0154

Fig. 31. Original Tomato Late Blight Image (Leftmost), with images impacted by a) 1% b) 3%
c) 5% d) 7% e) 10% f) 20% of noise addition.

Fig. 32. Original Grape Black Rot Image (Leftmost), with images impacted by a) 1% b) 3% c)
5% d) 7% e) 10% f) 20% of noise addition.
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Fig. 33. Test accuracy comparison of Tomato Late Blight image size 64X64 after noise
addition.

Fig. 34. F1-score comparison of Tomato Late Blight image size 64X64 after noise addition.

Fig. 35. Test accuracy comparison of Grape Black Rot image size 64X64 after noise addition.

Fig. 36. F1-score comparison of Grape Black Rot image size 64X64 after noise addition.
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6. Conclusion and Future Direction
In this paper, two architectures based on squeeze and excitation networks, one constructed with 
AlexNet and another with ResNet, combined with Capsule networks, were proposed for late 
blight disease severity estimation for tomato crop. Also, original Capsule Network was 
implemented for disease severity assessment in plants. The images utilized were taken from the 
PlantVillage dataset. Upon finalizing the images in each category, downscaling and image 
enhancement, the resultant images were utilized for feature computation by the SE networks. 
The performance measures viz. accuracy, precision, recall, F1-score, validation loss etc. of the 
proposed approaches as well as other pre-trained CNN models namely AlexNet, SqueezeNet, 
ResNet50, VGG16, VGG19 and Inception V3 were recorded. The results clearly demonstrate 
that the two proposed architectures exceed the performance of original CapsNet architecture, 
with SE-Res-CapsNet achieving the highest accuracy of 91.44% with 32X32 image size and 
93.75% with 64X64 image size. SE-Alex-CapsNet achieved the accuracy of 90.879% with 
32X32 image size and 92.1% with 64X64 image size. The classification accuracy measures of 
standard CNN architectures was also showcased for comparison. The proposed approaches 
were also implemented on Grape Black Rot images, achieving similar findings, with SE-Res-
CapsNet achieving the highest accuracy of 81.22% with 32X32 image size and 89.27% with 
64X64 image size. SE-Alex-CapsNet achieved the accuracy of 78.16% with 32X32 image size 
and 85.05% with 64X64 image size. Even with noise addition, the proposed models showcased 
robustness and consistent performance. This is still an active area of research. Our work aims at 
better performance of the system with less image size and limited computational capabilities, 
which can be later implemented on a mobile device for actual use by the growers. The proposed 
methodology improves the performance substantially as compared to standard CNN models, as 
it benefits from the channel-wise scaling attributed to SE networks and also, doesn’t require 
huge dataset for training and classification due to the utilization and benefits of Capsule 
networks. Image-based classification methods have an extensive range of design opportunities, 
still remaining uncharted and unexplored, with abundant choices for restructuring the original 
architectures. For essentially robust models in future applications, utilization of real-life images 
is absolutely vital. Images accumulated from several regions, backgrounds, lighting conditions, 
resources etc. could give a clear understanding of the concrete applicability of the developed 
prototype. Also, estimating the disease severity correctly could lead to timely and appropriate 
preventive measures, along with saving the growers from unnecessary plights due to faulty 
deductions. The authors have proposed two architectures based on AlexNet and ResNet. More 
such SE networks based on various CNN architectures can be explored. Capsule Networks 
based on Expectation-Maximization (EM) routing can be analysed for disease severity. The aim 
is to minimize the computation costs in terms of memory, time and hardware, as well as 
maximising the performance. With fewer images and their reduced size that require low 
processing power, the proposed methodology can be exploited to create a mobile application, to 
be installed on a reasonably priced smartphones for practical usage by farmers and agronomists. 
The authors aim to collect images via digital and hyperspectral cameras of tomato crop, in 
laboratory as well as field conditions, for further research and explore the possibilities of early 
detection of plant diseases.
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Mohanty, S. P., Hughes, D. P., &  Salathé, M. (2016). Using deep learning for image-
based plant disease detection, Frontiers in plant science, vol. 7, p. 1419.

Mukherjee, J., &  Mitra, S. K. (2008). Enhancement of colour images by scaling the DCT 
coefficients. IEEE Transactions on Image processing, 17(10), 1783-1794.

Nowicki, M., Kozik, E. U., &  Foolad, M. R. (2013). Late Blight of Tomato. 
In Translational Genomics for Crop Breeding (pp. 241–265), 
https://doi.org/10.1002/9781118728475.ch13.

Pal, T., Jaiswal, V., &  Chauhan, R. S. (2016). DRPPP: A machine learning based tool 
for prediction of disease resistance proteins in plants. Computers in biology and medicine, 
78, 42-48.

Paoletti, M. E., Haut, J. M., Fernandez-Beltran, R., Plaza, J., Plaza, A., Li, J., &  Pla, F.
(2018). Capsule networks for hyperspectral image classification. IEEE Transactions on 
Geoscience and Remote Sensing, 57(4), 2145-2160.

Prince, G., Clarkson, J. P., &  Rajpoot, N. M. (2015). Automatic detection of diseased 
tomato plants using thermal and stereo visible light images. PloS one, 10(4), e0123262.

Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., &  Plümer, L. (2010). 
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