
Trajectory attribute data are typically large-scale
vector data of space-time or high dimensions,
whose complex data features require powerful
analytical techniques. The space-time cube
(STC) is a common method for visualizing
trajectory data; however, this approach may
result in confusing displays when analyzing
large amounts of trajectory data gathered over
long periods. Tominski et al. (Tominski et al.,
2012) modified the absolute time on the z-
axis into a time sequence, thereby effectively
extending the STC. This approach smoothly
resolves the problem concerning the overlap or
intersection of routes; hence, it can be used for
the analysis of big trajectory data. In graphic
mapping systems, the consensus is that visual
variables such as colors and textures should
remain constant during interactive operations such
as zooming, panning, and rotating to provide
excellently rendering effects and to constrain

attribute information. Based on this concept of 
color constancy, we propose a solution for 
analyzing the trajectory data involving attributes 
and attribute combinations to achieve the multi-
attribute visualization of three-dimensional 
trajectories. Our research results are as follows:

• We cluster spatially similar trajectories,
and describe their multi-attribute correlated
behaviors in a trajectory set (TS);

• We establish an elevation model for multi-
attribute trajectory sets, thereby extending the
3D representation of 2D stacking trajectory
visualization into a 4D-like representation of
3D stacking trajectory visualization;

• We develop a visualization tool with strong
interactivity, enriching processing methods
for moving object trajectory (MOT) data in
both static and dynamic visualizations.
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Abstract

Rapidly advancing location-awareness technologies and services have collected and stored massive 
amounts of moving object trajectory data with attribute information that involves various degrees of 
spatial scales, timescales, and levels of complexity. Unfortunately, interesting behaviors regarding 
combinations of attributes are scarcely extracted from datasets. Further, trajectories are typically 
dependent on the environment of three-dimensional space, and another issue of interest to us is to 
preserve spatial-location visualization while guaranteeing the description of temporal information. 
Therefore, we developed a novel analytics tool that combines visual and interactive components to 
enable a dynamic visualization of three-dimensional trajectory multi-attribute behaviors. Under the 
context of spatiotemporal analysis, this approach integrates multiple attributes into one view to efficiently 
explore the attribute visualization problem of multi-attribute combination without over-plotting. To 
assess the feasibility of our solution, we visualized and analyzed multi-attribute information of moving 
object trajectories using a real mining truck dataset as a case study.
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1. Introduction
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2. Related works and data

2.1 Related works

Trajectory visualization has progressed from
points to lines, from two to three dimensions,
and from space-time data to attribute data. As
a consequence, visualized point representations
are now vivid and intuitive. For example,
OpenDataCity (OpenDataCity, 2013) provides
point-based animations of conference participants’
positions based on records of wireless network
signals; however, the approach is generally
not suitable for comparative analysis. In
contrast, visualizations using lines facilitate data
analysis, but the excessive storage of data and
increasing numbers of attribute types raise the
requirements for such visualization approaches.
The MobilityGraph designed by Von Landesberger
et al. (Von Landesberger et al., 2015) displays
MOT data with a long span in a space-time diagram
that is capable of reducing the disorder within
the data but applies only to high-quality data.
The STC is a classic approach for displaying
spatiotemporal data in which the motion states
of individual trajectories concerning high-speed
motions, halts, encounters and separations can be
observed. Zhang et al. (Zhang & Lin, 2019)
chose a rational trajectory segmentation strategy
and displayed trajectories in space-time cube. Filho
et al. (Filho et al., 2020) studied the space-
time cube in the field of immersive Analytics
and plan to replace their methods with real-world
space-time datasets. This approach compares
trajectories without data quantity limitation, but
cannot represent multiple attributes.

It is uncommon to witness trajectory
visualizations for multiple attributes over a
decade. Huang et al. (Huang et al., 2016)
abstracted taxi trajectories into a traffic graph
where a vertex represents a street or a region and
an edge indicates taxi traffic between streets or
regions; Al-Dohuki et al. (Al-Dohuki et al., 2017)
summarized trajectories by transforming them
into text with reverse geo-coded POI name and
speed meta data. However, all of these studies are
concerned with the intermediate locations between
origins and destinations. The OD connections
are hard to perceive due to the data abstraction,
aggregation, or the high level of detail. Pei et
al. (Pei et al., 2018) suggested an urban traffic
visual analysis based on bus sparse trajectories
to explore multiple attributes in trajectory data

and display an overview of massive data. Based
on a statistical view of small multiples, Zhu et
al. (Zhu et al., 2020) designed a multi-view
combination visualization approach to depicting
the spatial and temporal distribution of trajectory
data. Such versatility and flexibility help analysts
focus on various aspects of the data but bring more
comprehension the burden to users.

Reviewing relevant works conducted worldwide,
our research objectives lay on integrating multiple
attributes into a single view to accurately and
efficiently explore visualization issues concerning
multi-attribute combinations of three-dimensional
TSs in the corresponding space-time context.

2.2 Data and preprocessing

Tominski et al. (Tominski et al., 2012) proposed
that the space-time and attributive methods (e.g.,
space aggregation (S), time aggregation (T),
and attribute aggregation (A)) of aggregating
movement data can be applied not only to a
single dimension but also to multiple dimensions
(e.g., space-time aggregation (S×T), time-attribute
aggregation (T×A), space-attribute aggregation
(S×A), and space-time-attribute aggregation
(S×T×A)). In this paper, multiple attributes are
denoted as ”A+”. The interrelationships among
the S, T, and A+ components in MOT data
constitute multi-attribute behavior concerning
space and time: S×T�A+. The issues related to
this approach are as follows:

• Behavior description. Monitor the
distribution of A+ values across the entire
or partial S and T and characterize the A+
behavior, such as the collaborative changing
trends and common sharp variations, within a
specific space-time region.

• Behavior search. Search for outliers of A+,
detect occurrence areas of specific behaviors
of interest to analysts, and locate them in S
and T. For example, when the attribute values
(direction, speed, acceleration, etc.) of all
the vehicles in an area of a certain road are
simultaneously anomalous, a traffic accident
may have occurred in that area.

• Behavior comparison. Compare the A+
behaviors in different areas of S over different
intervals of T or in different subsets of TSs.
For example, compare the vessel speeds and
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load behaviors between spring and winter
routes.

• Behavioral combinations. Observe the A+
behaviors of different TS subsets that occur
simultaneously in different areas of S or in
different intervals of T; for example, in an area
where a landslide or mudflow has occurred,
the trajectories of all vehicles might show
simultaneous speed reductions and directional
changes.

To derive trajectories from enormous amounts
of geospatial data and analyze the behavioral
characteristics of 3D trajectories, a series of
trajectory points collected by the data acquisition
system are extracted to form segments, which
are then used to create trajectory paths (Chen
et al., 2005). The trajectories obtained by
this method share a simplistic data structure.
Due to either subjective or objective reasons,
however, there is a difference between the quality
of the acquired data and the quality required
for conducting research (Vrotsou et al., 2014).
In practical applications, data preprocessing is
necessary, which includes coordinate conversion,
data filtering, outlier removal, data interpolation,
length adjustment, resampling, smoothing, and
other operations (Gosink et al., 2013). Figure 1
shows the data processing pipeline that illustrates
the procedures of preprocessing and clustering raw
datasets into several similar TSs.

Cluster analysis involves dividing data by
resemblance, maximizing inter-cluster distances
and minimizing intra-cluster distances (Guha et al.,
2000). Trajectory clustering is an extension of
cluster analysis on space-time trajectories; its
purpose is to classify time-space objects with
similar behaviors into clusters according to their
spatial or temporal similarities (Han et al., 2011).
We propose a trajectory spatial similarity metric
to simplify the trajectory data overall while
considering both timeliness and accuracy. The
models for trajectory points, trajectory segments,
and trajectories are respectively presented as
Equatuins 1, 2, and 3:

tr = (id,X, Y, Z) (1)

SubTr = (IDSub, tri, tri+1) (2)

TR = (ID, SubTr1, SubTr2, . . . , SubTrn) (3)

where id represents a unique identifier associated
with the trajectory points, IDsub indicates an
identifier of SubTr, and X , Y , and Z denote
the spatial geographic coordinates of trajectory
points. The SubTr segment is calculated by
interpolating two adjacent trajectory points tri and
tri+1. Here, TR denotes an entire trajectory
composed of a group of SubTr segments. The
spatial similarity metrics we adopt consist of both
evaluation indicators in Equatuins 4 and 5, where
the former is expressed as follows:

D(TRi, TRj) =
2lm(TRi, TRj)

ls(TRi) + ls(TRj)
(4)

where D denotes the proportion of the cumulative
length of the overlapping segments to the length
of the entire trajectory, lm(TRi, TRj) indicates the
length of similar segments between trajectory TRi

and TRj , and ls(TR) represents the total lengths
of trajectory TR.

In Equation 5, M expresses a fluctuational
metric between TRi and TRj that is fixed by
the respective fluctuational differences between
TRi and TRj (the variance between the peak
and the valley of the trajectory curve). For
each point along the trajectories, P (TRi) and
P (TRj) respectively indicate the maximum curve
fluctuations of TRi and TRj , whereas V (TRi) and
V (TRj) mark the minimum fluctuational values
of TRi and TRj . In practical applications, when
D(TRi, TRj) = 0, the two trajectories are
completely dissimilar, and when D(TRi, TRj) =
1, the two trajectories are identical. Furthermore,
when D lies in the range of (0,1), the smaller
the value of M , the better the similarity is. The
requirements that the above mentioned indicators
should meet are determined based on the actual
data conditions. For example, suppose we have
several flight trajectories representing different
routes, and we wish to determine their similarity
(which is not high). In this case, we could loosen
the requirements between adjacent trajectories. For
example, if D > 0.2 and M < 0.3 are satisfied,
the similar trajectories will be clustered into a TS.
In contrast, if another TS exists that has different
time and highly similar paths, we could set more
stringent conditions to eliminate the segments with
relatively large differences. In this case, we might
determine that D > 0.7 and M < 0.2 are
appropriate values.

M(TRi, TRj) =
[P (SubTri)− V (SubTri)]− [P (SubTrj)− V (SubTrj)]

ls(TRi) + ls(TRj)
(5)
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Fig. 1. Workflow of the processing module for trajectory data.

In the example shown in Figure 2,
D(TR1, TR2) = D(TR1, TR3) and
M(TR1, TR2) < M(TR1, TR3); thus, the
similarity between TR1 and TR2 is stronger than
that between TR1 and TR3. Using this approach,
spatially similar trajectories are clustered simply
and appropriately from massive MOTs.

3. Methods: multi-attribute spatiotemporal
data visualization

We consider three-dimensional trajectory data that
at least involve one variable as our major research
target; their visualization can be divided into spatial
data visualization, temporal data visualization
and attribute visualization according to their data
features, where geospatial data reflect the locations
of spatial elements, temporal data describe the
dynamic variations of trajectory events, and
attribute data represent information other than the
spatial locations of research targets over time. The
differences in the correspondences between these
three data types determine the data structures and
storage methods.

3.1 Visualization of data features

In current visualization systems, data analysis
is primarily limited to descriptive or exploratory
analysis, such as browsing data distributions
and detecting anomalous behaviors. Practical
problems, such as discovering the causes of vehicle
trajectory slowdowns and measuring the adoption
of traffic flow planning, require answers with
clarity, predictability, and causality. Moreover,
trajectory data visual analytics in the context
of the big data era involves interesting facts
in terms of multiple attributes, especially when
numerous trajectories traverse a specific spatial
area, when numerous trajectories are collected
during a specific time, or when multiple behaviors
occur simultaneously. For example, by analyzing

trajectories of a certain section of undulating
road and visualizing combined attributes such
as speed, vehicle model, traffic volume, we
can also study traffic-load information, real-time
speeding behavior, vehicle emergency responses,
the most accident-prone vehicle models and other
information. Visualizing multi-attribute data
benefits the evaluation of current events and the
prevention and optimization of future events.

3.1.1 Visualization of three-dimensional data
features

As we process trajectory data with similar
geometric paths, placing a 2D map into a virtual
3D space can smoothly address the trajectory-
overlapping problem. The 2D map is considered
as an interface to trajectory geospatial data,
thereby supporting information access and
exploratory activities. The MOT on a 2D map
is a ground path; however, the movements of
moving objects are predominantly dependent
on 3D spatial environment, and the MOT in
a 3D space-time domain is a space-time path
whose spatial location is defined by both the
ground position and the elevation (Ferreira et al.,
2013). In the geovisualization environment,
the method that accurately maps trajectories by
calculating and comparing distances between data
and corresponding ground locations in 2D maps
ignores elevation information. Consequently,
this approach does not apply to 3D trajectories
that apply to elevation-required ground objects
and all flying objects. If elevation information
is visualized above the trajectory ribbon, the
fluctuation of the ribbon in the Z-axis direction
will grow more drastic, the intuitiveness will suffer,
and trajectory stacking will hardly be achieved.
In this regard, we map the ground position of the
3D trajectory into the X × Y coordinate system
of a 2D map and then perform linear regression
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Fig. 2. Spatial similarity metric for trajectory segments

analysis on all trajectory points to yield a trajectory
regression line L. The axis perpendicular to the L
direction is defined as an elevation axis or
E-axis. Using this approach, the elevation
information can be displayed in the trajectory
ribbon without increasing the fluctuational
range on the Z-axis. Eq. (3) provides a
certain type of 3D trajectory denoted as
TR = (ID, SubTr1, SubTr2, . . . , SubTrn).
Technically, this trajectory is plotted from a
set of trajectory points after data processing.
Therefore, the TR point set is denoted as
T = (tr1, tr2, . . . , trn) (see Figure 3), in
which a single trajectory point is indicated as
tri = (idi, xi, yi, zi), i = 1, 2, . . . , n. Thus, we
have

tr1(x1, y1, z1) ∈ T (tr1, tr2, . . . , trn)

⊂ TR

⊂ TS(TR, TR2, . . . TRn)

⊂ S(X × Y × Z)

(6)

The projection of the trajectory points onto the
X × Y plane is described as a point set denoted
as P = (P1, P2, . . . , Pn), where Pi = (xi, yi) is a
single projection point. Consequently, we have

P1(x1, y1) ∈ P (P1, P2, . . . , Pn)

⊂ S(l1, l2, . . . , ln)

⊂ S(X × Y × Z)

(7)

If we draw an axis vertical to the regression line
L as the E-axis and then create a vector ei on the E-
axis such that |ei| = zi, we can obtain an elevation
point set E(E1, E2, . . . , En), where Ei(xi, yi, ei)
is a single elevation point:

E1(x1, y1, e1) ∈ E(E1, E2, . . . , En)

⊂ S(X × Y × Z)
(8)

Connecting all of the points in set E using a
certain plotting function yields an elevation ribbon.
In the same manner, other elevation ribbons can
be plotted and stacked. The pseudocode utilized
to extract all of the elevation values of T as a set
H = zi | i = 1, 2, . . . , n is shown in Algorithm 1.
Since linear regression of P has time complexity
O(p), where p is the number of projection points,
the computation of unit normal vector N and the
coordinates of the elevation ribbons E also have
time complexity O(p).

In our elevation view, due to the perspective
projection and the 3D rendering in the 3D scene,
the height information of the trajectory could be
too confusing to perceive, especially if users scan
the visualized views with non-3D display tools.
To offset this problem, we render the ribbons
according to their respective elevations. A gradient
color bar is applied to ensure a continuously
undulating terrain, thereby yielding a scalariform
3D effect (Juřı́k et al., 2017).

3.1.2 Visualization of attribute data features

Typically, trajectory data contain complex
attributes and thus cannot be effectively
represented by traditional visualization methods.
It is also necessary to integrate different sources,
scales or types of trajectory data to prevent
potential misinterpretations caused by an
incomplete display of information. We will
present the attribute data features in a manner that
combines static and dynamic visualizations, where
static visualization is based on the visual mapping.
Dynamic visualizations are embedded because
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Table 1. Pseudocode of elevation ribbon creation

Algorithm 1: Elevation Ribbon Creation

1 def CreateElevationRibbon(Projection points P (xp, yp), Elevation H):

2 L← linear regression of P
3 N(xn, yn)← compute the unit normal vector of L
4 E(xe, ye)← P +H ×N
5 plot elevation ribbons with E

6 end

attribute features are likely to involve time-related
visualization issues due to their time-varying
characteristics.
• Static visualization

Visual analytics, which is a relatively new term
(Andrienko et al., 2010), can transmit different
visual perceptions with visual variables. When
acquiring, storing, transmitting, comprehending,
analyzing, and applying trajectory data, visual
variables serve as visual channels for exchanging
information so that users can quickly and
effectively grasp and control the process
(Bezerianos & Isenberg, 2012). These variables
can be freely combined, and their combinations
often produce synergies. Furthermore, in trajectory
visualization, superimposition typically combines
data information in an aligned manner based on
the same context into an integrated representation
in one view, in which the visual information
obtainable by users is no longer one-dimensional
but multidimensional. We introduce layers to
enhance the flexibility of visual variables, thereby
providing a solution in which any attribute
elements can be processed without damaging
others, and the transparencies and sequences can
be smoothly configured to alter the aggregation
mode of a view (Lulli et al., 2015). We also
combine the superimposing technique with layer
arrangement to produce an excellent visual
effect for analyzing attribute combination (Waser
et al., 2010). Figure 4 shows a multi-attribute
combination the view that consists of a series of
superimposed layers carrying attribute elements.
Attribute layers are built from simulation data:
Figure 4a colors the segments with a specific
rendering scheme, and Figure 4b maps the
segment attribute data using different styles of line
boxes. After the first two visualizations, Figure
4c superimposes both layers to generate a final
combination view of multiple attributes.

By combining several attribute layers into an
integrated system, users can build an internal story
representation that integrates space-time data and
attribute data. The pseudocode of this algorithm
is shown in Algorithm 2. Suppose the trajectory
set includes n trajectory points, the inner loop (line
3) will execute a total of n times. Since the time
complexity of the statements in the inner loop is
constant, the total time for this algorithm is O(n).
The space complexity of the inner loop is also
constant, and thus the total space complexity is also
O(n).

In this algorithm, the trajectory set denotes the
TS to be analyzed, the trajectory is a single
trajectory in the TS, and the trajectory point is a
single trajectory point along the trajectory. For
each trajectory point along each trajectory, a
decision is made concerning whether the attribute
value of the point and its counterpart in the previous
trajectory point is within the same interval; when
they are within the same interval, the point is added
to the plotting point set, which is eventually plotted
by the same visual variable.
• Dynamic visualization

In situations where the visualized information
amount of three-dimensional trajectory data
becomes excessive and additional attributes are
complex and varied, we tend to capture time-
varying attribute information of interest in one
view, which is geared to the topical evolution of
trajectory events simulated by animated map. By
configuring the continuity or discreteness of time,
users can interactively select the time where one
detail changes to another. This operation facilitates
the inspection and perception of subtle changes
or display dynamics in events. The dynamically
interactive representation of attribute information
that we designed introduces the principle of key
frame interpolation into computer animation to
dynamically display attribute information. We
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Fig. 3. Conversion of 3D trajectory elevation values. Here, (xi, yi, zi) denotes the spatial location of the
original trajectory point, while (xi, yi, ei) maps the geospatial data of the converted trajectory point.

Fig. 4. Superimposing attribute layers. (a) single-attribute visualization with color characterization;
(b) single-attribute visualization with line box characterization; (c) multi-attribute visualization by
superimposing the color and line boxes from (a) and (b).

consider the spatial and attribute features of
moving objects at different times as the key frames
and in between frames are interpolated through
transforming and mapping process. These key
frames and their in between frames are played
continuously in chronological order under certain
constraint rules, simulating all of the animation
information of the geometric primitives in the
selected duration and controlling animation
progress with time frames of rather short time
intervals as time units. Figure 5 illustrates a
time-series design model for dynamic-primitive
layers. Here, the time difference between the start
frame and the end frame (also known as the key
frame) indicates the duration of the occurrence,
while the temporal relationships between the
key frames define the change sequence of the
geometric primitives.

The transformation function between key frames
requires temporal variations to represent the
topical-evolution rate of changing the trajectory
events. We designed a time-selection tool, namely
speed-variable interactive time legend (SITL), for

this task to provide interactive and dynamic support
for multi-attribute data visualization. This timing
widget adopts a multiscale control method that
hierarchically processes the data sources to switch
time scales. Moreover, the timeline of animation
playback is controlled as a series of frames to
facilitate debugging. The backward- / forward-
frame button adjacent to the beginning point (B)
/ ending point (E) plays a single frame backward
/ forward—i.e., the successive actions of further
decomposing the complex trajectory attributes in
continuous key frames. SITL also serves as a visual
speed control, which freely adjusts the playing
speed and time scale to browse the visualization
results in any frame (see Figure 6). For example,
from a historical animation playback, we might
expect to learn whether a particular event occurred,
when it happened, and how long it lasted. Suppose
it is known that the duration of the entire animation
is one hour, and the duration of a specific event
is only one minute. Moreover, the number of
occurrences of that event is unknown. Playing the
animation at a time scale of 1:1seems unacceptable
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Table 2. Pseudocode of multi-attribute combination

Algorithm 2: Multi-Attribute Combination

1 def MultiAttributeCombination:
2 Initialize plot set(A, B, C)
3 for trajectory in trajectorySet :
4 for trajectoryPoint in trajectory :
5 if current point attributeA and last point attributeA are in the same interval :
6 append trajectoryPoint to A
7 else:

// e.g., using lines to indicate attributeA

8 plot lines with A
9 Initialize plot set(A)

10 end if
11 if current point attributeB and last point attributeB are in the same interval :
12 append trajectoryPoint to B
13 else:

// e.g., using lines to indicate attributeB

14 plot lines with B
15 Initialize plot set(B)
16 end if
17 if current point attributeC and last point attributeC are in the same interval :
18 append trajectoryPoint to C
19 else:

// e.g., using lines to indicate attributeC

20 plot lines with C
21 Initialize plot set(C)
22 end if
23 end for
24 end for
25 end

due to its slow progression, that is, playing such
historical animations at an excessively slow rate is
a waste of time; in contrast, playing at the overly
fast rate would make discovering characteristics
difficult. Therefore, during the playback process,
users typically start browsing at a relatively fast
speed; then, after they find a critical point, they
prefer a slower speed to view the corresponding
time.

With time series involved, trajectory data
describes the time-varying feature of spatial
data, whose spatial and attribute features of
geographic objects could change independently
or simultaneously overtime. Our major interest
is the attribute-feature variations, especially the
shared evolution of multiple attributes. Besides,
the strength of animation is in presenting data,
verifying, and analyzing results. For example,

in terms of enhancing visual scalability, it
can effectively prevent the cluttering problem
of static visualization caused by insufficient
display space or a plethora of data to visualize.
Furthermore, the animation is a natural technique
to transfer dynamically varying data and a
promising application of animation is conveying
real-time variations and the spatial and temporal
reproduction. Our solution comprises two aspects
of dynamically perceptual details:

• Trajectory replay
On a screen with a certain height, the number
of visible trajectories is limited. Where the 2D
map is out of the visible range, users will lose
the spatial reference of the trajectory. Replaying
the movement of trajectory ribbons addresses
the absence of missing locational information
in an arbitrary trajectory in the visible range.
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Fig. 5. Logical model of dynamic visual variables.

Fig. 6. The SITL interface.

Figure 7 shows the trajectory-replay behavior with
simulated data, where the selected trajectory is
highlighted, the trajectory ribbon is encoded by
corresponding visual variables, and the converted
elevations are plotted. The entire replay operation
is conducted by controlling the SITL, narrating the
evolution process regarding the movement path and
an attribute value of this trajectory.

• Dynamic extraction
We extracted the dynamic change processes of
trajectory data in any conditions of users’ interest
to detect potential anomalies. Here, the extraction
conditions can consist of one or more attributes.
Moreover, the dynamic change process can be
either a process that changes over time or a process
that changes based on the geographical location.
As shown in Figure 8, through the interactive tools,
we set the extraction conditions as a combination of
multiple attributes: the speed is 0m/s–30m/s (the
dark-red color), the acceleration is 0m/s2–10m/s2

(solid-line box style), and the dynamic change
process is changing over time. In this manner,

we can extract the evolution of a single attribute
over space or time or extract multiple attributes in
certain space or time.

3.2 Interactions

An excellent visualization solution should
possess a certain level of interactivity to solve the
varied requirements of users (Lam, 2008). We have
achieved interactive features of overview, zoom
filter, recognize, encode, filter, details-on-demand,
and adjustments to the visibility and rendering
order of different information layers. These
interactions enable a comprehensive observation
and analysis of the trajectory scene to support
research tasks regarding the local and global
exploration of space and time. As basic functions,
various operations serve to select objects of
interest, including trajectories, trajectory segments,
moving objects, and trajectory events, in separate
or combined forms, thereby reducing the trajectory
data complexity.
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Fig. 7. Three snapshots showing the simulated trajectory replay of a user-selected trajectory at moments
of (a) 00:14:08; (b) 00:14:21 and (c) 00:14:43.

Fig. 8. Multi-attribute dynamic extraction over time of simulated data withspeed in 0–30m/s ,
acceleration in 0–10m/s2 and time before (a) 09:32:05, (b) 10:26:01, and (c) 11:04:18.

4. Experiment and discussion

Open-pit coal mining employs giant mining trucks
as the primary form of vehicle transportation.
The above mentioned multi-attribute analysis and
research methods can derive central information of
the trucks’ movements, the schedule at which inner
tubes are changed and determination between
empty/heavy loads, and eventually develop
a reasonable strategy of achieving safe mine
production and reducing production costs.

4.1 Experimental preparation

4.1.1 Data preparation

During the operations of a mining truck,
GPS sensors, weather condition sensors, tire
temperature sensors and tire pressure sensors
connected to a truck-mounted computer
continuously collect these attribute values in
real time. The result is a composite dataset
consisting of multiple attributes. We continuously
collected these data from a truck identified
as TR207 in an opencast coal mine of Inner
Mongolia. In this experiment, we selected the
data from June 28, 2016, to August 30, 2016 with

a database filter, with a total of 259,200 records.
The spatiotemporal data, speed, tire pressure, and
tire temperature were selected as the source data
for the attribute superimposition investigation.
Since the trajectory data are collected by sampling
the positions of the truck, there are sampling
errors and speed variations. Before the trajectory
analysis, trajectory data preprocessing including
data cleansing, trajectory compression, trajectory
segmentation and trajectory clustering (Section
2.2), and index the clustered trajectories to
facilitate subsequently visual analysis. Through
the preprocessing, we reject 362 outliers from
the original dataset, and the noisy data points are
detected and interpolated using smoothing splines
(Early & Sykulski, 2020).

4.1.2 Visual variables allocation

Appropriate visual variables should be selected
(Dang et al., 2010). Meanwhile, it is necessary
to optimize the visual encoding scheme and
reasonably adjust the weights and priorities
between variables such as colors, textures, and
shapes. Speed and tire pressure data should be
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rendered continuously by geometric primitives due
to the large fluctuations in the raw data, while the
temperature can be rendered discretely because of
its smooth changes.

• Speed and tire pressure mapping
We provide interactive legends to support a range
customization so that users can adjust the display
style and the corresponding interval. In this case,
we customized a color gradient to indicate the
speed and used a line box style to denote the tire
pressure. To highlight the abnormal distributions
of both high tire pressures and low tire pressures,
the former is displayed with boxes of thick, solid
lines, while the latter is represented as boxes with
thick dashed lines. Sequential trajectory paths
must be constructed to embed geometric primitives
integrated with attribute values into the virtual
display space. Consider the rendering of the speed
attribute as an example. In Figure 9, it is assumed
that the interactive speed legend has n segmented
intervals, [0, a1), [a1, a2)..., [an−1, an); each
interval consists of a point set T (tr1, tr2, . . . , trp)
for a given trajectory TR in a spatial connection;
and p − 1 in-between segments are colored. If
we were to directly encode these segments with
color variables corresponding to the n intervals,
the space-speed attribute characteristics of the
trajectory could be inadvertently altered. To
solve this problem, we divide each segment into
several microsegments according to the number
of legend intervals they span. The segment
coloration corresponds to the rendering scheme of
the interactive speed legend. Therefore, the final
trajectory segment type that requires continuously
rendering depends on the size of the attribute
value. Similar logic applies to the tire pressure
rendering.

• Tire temperature mapping
For the tire temperature attributes, we apply the
color saturation, size, and opacity of points to the
discrete rendering. After the trajectory path is
constructed, we merge successive attribute points
with the same radius, color, and opacity to avoid
creating a visual overload. Furthermore, stylized
and postprocessing effects are applied to remove
visual artifacts, resulting in better visual quality.

4.2 Results and discussion

Combining with the actual requirements
of mining truck management, we devise the
experimental features as follow:

1) Import of trajectory data, automatic index
creation and trajectory clustering.

2) Display of the preprocessed trajectory,
with scaling, panning, and multi-linking
operations.

3) Trajectory replay and dynamic extraction
features, with specified time and trucks.

4) Truck attribute query and multi-attribute
interplay analysis.

5) Truck trajectory elevation mapping.

6) Driver behavior detection and Truck operation
determination.

4.2.1 Multi-attribute interplay behaviors

For simplicity, we temporarily disabled the
stacked elevation ribbons of the trajectory, yielding
the snapshot in Figure 10. The trajectories are
stacked using days as relative time, and time
without a trajectory are displayed as blanks.
We can observe from the overview that various
attributes, such as the speed, tire pressure, and tire
temperature, of truck TR207 from 10:00 to 12:00
change significantly over time and with the spatial
location. This is particularly true at a certain area
at approximately 11:30 (the centralized dark green
area), which is marked as zone M. We speculate
that the following conditions occurred:

1) At approximately 11:30 throughout
several days, the mining trucks exhibited
anomalously behaviors in zone M different
from those in other areas. This anomalous
behavior typically occurred at a regular time
(approximately 11:30) and at a fixed location
(zone M).

2) During the anomalous behavior, the trajectory
speeds dropped to the interval of 0 − 5m/s,
and the tire pressure decreased suddenly.
Therefore, the tire pressure and speed changes
did not occur continuously; instead, they
were affected by some specific occurrence or
behavior. It seems highly probable that the
mining truck decelerated to a stop and reduced
its load repeatedly at this specific time and
location.

3) The tire temperature varied continuously, but
it was not particularly consistent with the
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Fig. 9. Plotting color segments and line box segments to construct the trajectory paths.

speed or tire pressure fluctuations. Therefore,
the tire temperature may not be strongly
related to the behavior, speed, and tire
pressure of the truck; rather, it may be more
closely related to the time.

4) The truck’s speed before 11:30 was generally
lower than its speed after 11:30. This result
may still be related to the truck’s behavior
in zone M, and it may also be related to
the safety requirements in the mining area
or the terrain. However, the time period
and spatial locations of occurrences were not
fixed, indicating that the speed may be related
to unexpected circumstances and also external
factors.

5) Two trajectories are missing from the upper
part of the chronologically ordered stacked
trajectories, demonstrating that truck TR207
was not in the area of the mine during those
periods.

6) Below the missing data are 3 consecutive
trajectories where the tire pressure remained
low for the entire time; this indicates that the
truck’s tires may have suffered abnormalities
during this period.

7) However, in the trajectories above the
vacancy, the tire pressure returned to its
previous state, indicating that the low-pressure
problem with truck TR207 was solved.

4.2.2 Elevation stacking behaviors

In addition to the ground location information,
which is recorded as the longitude and latitude,
elevation information is also included in the

data collected for mining truck TR207. Based
on the elevation data changes, we created an
interactive legend to customize the trajectory
elevation interval and establish an elevation value
rendering model of the trajectory to map and
render the trajectories (the selected transparency is
higher than that of the attribute data). Meanwhile,
the stacked elevation ribbons for each trajectory
are plotted as well. In this manner, we can
transform the original simple 2D trajectories
into 3D trajectory ribbons that display elevation
information. Each 3D trajectory ribbon contains
time information and elevation information in
addition to the corresponding ground position
information on the 2D map and three types of
attribute data (speed, tire temperature, and tire
pressure data). We rotate the superimposing view
in Figure 10 around the yaw axis by 180° and
enable the elevation ribbons. To attain relatively
ideal intuitiveness, we then rotate the view around
the pitch axis by an appropriate negative angle
and lower the opacity of the 2D map, yielding the
snapshot in Figure 11. Due to the yawing, on the
right side of Figure 11 corresponds to the left side
of Figure 10. Figure 11 shows that the elevation
differences before the truck reaches zone M are
generally greater than those after it reaches zone
M; hence, we conjecture that the major cause of the
speed difference before and after approaching zone
M is related to the terrain and the safe production
requirements of the mining area.

4.2.3 Actual situation verification

To confirm our hypothesis of the multi-attribute
behavior of the truck, we conducted a site
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Fig. 10. Multi-attribute superimposition for truck TR207.

Fig. 11. 3D trajectory stacked elevation ribbons for truck TR207.

investigation in the mining area and verified the
following situations:

1) Truck TR207 was driven from the loading
area to the dumping area from June 28,
2016, to August 30, 2016. The mining truck
decelerated as it approached the dumping
area (zone M). When the speed reached zero,
the truck began unloading, which completed
at approximately 11:30. Subsequently, the
load dropped, the tire pressure decreased, the
vehicle switched from a full load to an empty
load, and then the truck accelerated while
leaving the dumping area. Therefore, this
unloading behavior affected both the truck’s
speed and its tire pressure (in this experiment,
the phenomenon in which the speed fell to
zero and the tire pressure decreased signifies
unloading behavior). Moreover, the tire
pressure is highly related to the load under

certain conditions. Hence, to a certain extent,
the method can identify a truck’s operational
status: empty or loaded.

2) From 10:00 to 12:00, the outdoor temperature
gradually increased, and the tire temperature
changed linearly with time. Thus, the truck’s
behavior, speed, and tire pressure had a
little effect on the tire temperature, which
was primarily determined by the external
temperature.

3) The fact that the speed before 11:30 was
generally lower than that after 11:30 is related
to the safety regulations and the spatial
terrain of the mining area. In other words,
when a certain load level is reached and
the production safety limit is met, elevation
differences along the route affects the truck’s
speed. However, the time and space locations
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Fig. 12. Individual attribute displays of truck TR207. (a) speed attribute, (b) tire pressure attribute, and
(c) tire temperature attribute.

Fig. 13. Trajectory replay of truck TR207 before 11:12:14 on August 29.

of speed changes were not fixed; instead,
the speed changes are related to the weather
conditions, the occurrence of emergencies,
and the driver’s on-spot performance.

4) On August 20th, 2016, the tire health
monitoring system (THMS) on truck TR207
issued a warning that the tire pressure was
too low, making the truck susceptible to
undesirable phenomena such as higher
fuel consumption and increased tire wear.
Consequently, the vehicle entered the
workshop on August 23 for inspection and
maintenance. This explains the missing
visualizations in the upper trajectories in
Figure 10 and 11. From August 25 onwards,
the truck re-entered the loading area as usual,
and the tire pressure returned to normal.

All of the above mentioned observations match
the visualization results in Figure 10. Particularly,
if there is a study requirement for certain
attributes, we can separately display the layer that
corresponds to an attribute.

4.2.4 Trajectory replay behaviors

In the trajectories of truck TR207 during the
period from June 28th, 2016, to August 30th, 2016,
the attribute information of several trajectories at
the top of the view is incomplete. Although our
visualization view supports interactions of panning
/ rotating to display complete stacked trajectory,
these operations could trigger partial trajectories
beyond the display space, therefore losing the
overall morphological structure and failing to
referring the corresponding 2D-map location of
trajectory segments. We enabled the stacked
elevation ribbons and selected the trajectory on
August 29, 2016, yielding the snapshot shown in
Figure 13. The time selection control on the SITL
interface then corresponds to the selected period
and the spatial sequence is displayed consecutively
on the 2D map. The actual movement of the
trajectory is presented to reproduce the trajectory
of truck TR207 integrated with the speed, tire
temperature, tire pressure and elevation.
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Fig. 14. Attribute extraction of truck TR207 where the tire pressure is less than 93 psi.

4.2.5 Dynamic attribute extraction

The tires are the only points of contact between
the vehicle and road surface: the entire dynamic
vehicle performance ultimately derives from the
power transmitted from the tires to the road
surface. If a tire’s pressure is excessively low,
the surface contact patch between the tire and
ground increases, and the heat generated by rolling
is greater than that generated at the standard
tire pressure, resulting in additional energy costs.
Moreover, the presence of a continuous low
pressure deforms the inner ply, causing structural
damage and even a flat tire in severe cases. To
directly reveal the distribution of overly low tire
pressures during the truck’s operation, we disabled
the elevation ribbons. In the interactive interface,
we set the filter condition to a tire pressure
of less than 93 psi and selected the dynamic
change process as changing over time, yielding the
snapshot shown in Figure 14. The entire process of
perception can be accomplished through the SITL
interface by combining a succession of extracted
views into a low-tire-pressure event, which occurs
mainly in two periods. First, almost all segments
with a relatively low tire pressure occurs after
zone M, which is due to the behavior-guided
unloading phenomenon. Second, the tire pressure
remains exceedingly low over the entire trajectories
only from August 20 to August 22, which is
undoubtedly a behavioral anomaly. We can also set
other types of interactions based on corresponding
requirements. For example, by establishing a filter

with the speed > 15km/h, tire pressure < 93psi,
elevation difference < 5m (with stacked elevation
ribbons enabled) and selecting the dynamic change
process as changing with the geographical location,
the distributions of high speeds, smooth paths, and
low tire pressures can be obtained (most likely
representing that the truck is lightly loaded with
smooth road conditions).

4.2.6 Other interactions

As the amount of visualized trajectories grows,
the details may become blurred due to the limited
display space (Ma et al., 2018). The close-
up tool solves the problem of coordinating the
visualization of both the overall structure and the
local details of the view in a limited space. The
basic idea is to display a secondary close-up view
of a rectangular area of interest selected by the
user; meanwhile, the statistical results of various
attribute values in the area of interest are visualized
in other linked views as texts and charts. Figure 15
displays a close-up analysis performed on certain
parts of the trajectories numbered from 44 to 53,
yielding multilinked views that consist of the main
view, a secondary close-up view, and a ratio view.

5. Conclusion

The paper introduced an information visualization
analytics and highly interactive virtual
environment. First, we calculated and analyzed
the obtained trajectory data, stacked trajectories
in subsets with spatial similarity, and displayed
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Fig. 15. Multilinked views of close-up analysis on an area of interest.

the elevation information of the contained
trajectory points in each trajectory. Then, we
established a corresponding number of layers
for the attribute types to be studied and created
geometrical primitives that are reasonably
configured based on the selected mapping
parameters. While researching the interrelations
among the multiple attributes, we superimposed
their layers, implementing a combinational
association study of those attributes and achieving
a real-time dynamic visualization under certain
space-time conditions. Finally, we provided
a type of interaction to support users’ space-
time exploration endeavors. Typically, although
space-time cube effectively matches temporal
information, its utility is often limited by the
3D cognition mechanism of humans. Therefore,
this approach seems not adequate for long-term
and complex trajectory visualization. Essentially,
multi-attribute spatiotemporal trajectory stacking
visualization is an enhanced space-time cube that
supports exploratory spatiotemporal analysis and
trajectory data mining. Compared with previous
visualization methods, our solution exhibits
an excellent information integration display.

When exploring various complexities of dynamic
multi-attribute spatiotemporal trajectories, the
derived results also meet human cognition and
comprehension. Our visualization tool is suitable
for those trajectory sets whose data can be
clustered into similar geometries under given
real-time constraints; however, when the paths
of moving objects are completely disordered,
our tool is no longer applicable. Besides, the
approach depends on collected trajectory data
for post visualization analysis. In dealing with
real-time trajectory data streams, our approach
cannot perform a real-time dynamic trajectory
view.
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& Chmelı́k, J. (2017) When the display matters: A
multifaceted perspective on 3D geovisualizations.
Open Geosciences 9(1):89–100.

Lam, H. (2008) A framework of interaction costs
in information visualization. IEEE transactions on
visualization and computer graphics 14(6):1149–
1156.

Lulli, A., Dazzi, P., Ricci, L. & Carlini, E. (2015)
A multi-layer framework for graph processing via
overlay composition. In European Conference on
Parallel Processing. Springer, pages 515–527.

Ma, Y., Wang, Y., Xu, G. & Tai, X. (2018)
Multilevel visualization of travelogue trajectory
data. ISPRS International Journal of Geo-
Information 7(1):12.

OpenDataCity (2013) re:log -
Besucherstromanalyse per re:publica W-LAN.
https://opendatacitygithubio/relog/ .

Pei, W., Wu, Y., Wang, S., Xiao, L., Jiang, H.
& Qayoom, A. (2018) BVis: urban traffic visual
analysis based on bus sparse trajectories. Journal of
Visualization 21(5):873–883. doi:10.1007/s12650-
018-0489-z.

Tominski, C., Schumann, H., Andrienko,
G. & Andrienko, N. (2012) Stacking-based
visualization of trajectory attribute data. IEEE
Transactions on visualization and Computer
Graphics 18(12):2565–2574.

Von Landesberger, T., Brodkorb, F., Roskosch,
P., Andrienko, N., Andrienko, G. & Kerren, A.
(2015) Mobilitygraphs: Visual analysis of mass
mobility dynamics via spatio-temporal graphs and

17

Jing He, Haonan Chen



clustering. IEEE transactions on visualization and
computer graphics 22(1):11–20.

Vrotsou, K., Janetzko, H., Navarra, C., Fuchs,
G., Spretke, D., Mansmann, F., Andrienko, N. &
Andrienko, G. (2014) SimpliFly: A methodology
for simplification and thematic enhancement of
trajectories. IEEE Transactions on Visualization
and Computer Graphics 21(1):107–121.

Waser, J., Fuchs, R., Ribicic, H., Schindler, B.,
Bloschl, G. & Groller, E. (2010) World lines.
IEEE transactions on visualization and computer
graphics 16(6):1458–1467.

Zhang, Y. & Lin, Y. (2019) An interactive method
for identifying the stay points of the trajectory of
moving objects. Journal of Visual Communication
and Image Representation 59:387–392.

Zhu, S., Sun, G., Jiang, Q., Xia, W. & Liang,
R. (2020) Microscopic Visual Analysis of High-
Density Trajectory Data. Journal of Computer-
Aided Design and Computer Graphics :1–11.

Submitted: 09/09/2020
Revised: 01/11/2020
Accepted: 21/11/2020
DOI:          10.48129/kjs.v48i4.10548

18

Multi-attribute interactive visualization of three-dimensional trajectory sets




