
The modernization of power systems has brought
a revolution in the electricity generation and
distribution sectors in recent years Koochi et al.,
(2019), Biyik & Husein, (2018). In a smart grid
operating environment, the stochastic nature of
renewable energy sources have been a challenge in
managing the stable energy supply. The challenge
is mainly due to the fact that the electricity
generated from the renewable resources are not to
control to fulfill to the variation of the consumer’s
demand Talari et al., (2018). Consequently, the
inclusion of sustainable energy storage systems
increase the difficulties for system operators to
come out with effective measures to control the
network in the presence of a disturbance Ak et
al., (2015). Therefore, the power system network
needs to be simplified to ease the decision-making
process when necessary. One well-accepted
solution to simplify the network is by identifying

the coherent groups of generators that have a 
similar dynamic response Chow, (2013).

Coherency identification has been utilized to 
minimize the power system control effort by 
locating the weak link between the coherent areas 
Rezaeian et al., (2017). Thus, the coherency 
identification technique allows the operator to 
focus on the reinforcement of the weak link to 
improve the power system stability. The technique 
has evolved throughout the year Lin et al., (2017). 
It can be determined by using coherency 
identification based on the model or measurement 
method. In the measurement-based process, the 
rotor angles, generator speed and voltage 
magnitudes reflect the dynamic response of 
generator Khalil & Iravani, (2015). Based on these 
measures, the coherent generator groups are 
formed by identifying the closely coupled 
generators in inter-area modes Wei et al., (2019). 
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Abstract

The manuscript proposes a time series prediction technique to enhance the response time of the 
coherency identification technique. The proposed methodology utilizes the nonlinear autoregressive 
exogenous neural network (NARX) algorithm to predict the generator speed deviations following a 
disturbance in the system. Consequently, the coherency identification technique based on independent 
component analysis (ICA) is utilized on the predicted system responses. The effectiveness of the 
proposed approach is demonstrated on of the IEEE 16-generator 68-bus test system model. The result 
shows that the proposed technique can predict 0.2s following a disturbance in the system accurately. 
Therefore, the NARX allows a 0.2s head start for the ICA to determine the real-time coherent generator 
group in the system. Furthermore, the result shows that the proposed approach can identify the coherent 
group of generators based on the predicted generator speed deviation in all cases considered in this 
study, accurately. Conclusively, the result implies that the proposed technique can speed up the overall 
coherency identification process in a power system operation.
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1. Introduction
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In a smart grid operating environment, these 
groups of generators are varying with time, 
especially with the integration of the stochastic 
renewable energy resources Nayak & Nayak, 
(2018). Thus, it is crucial to identify the real-time 
coherency group of the generator to provide an 
accurate control measures following a disturbance 
in the system. Identifying the real-time coherency 
group can be a challenging task as the system is 
represented by thousands of differential-algebraic 
practice equation. Although the coherency 
identification method discussed in the literature can 
identify the group in near real-time, the reported 
performance does not allocate ample time for the 
system operator to process and provide the required 
control action. Thus, this challenge motivates the 
power system researchers and engineers to predict 
the time series of the system dynamic behavior to 
give an analytical tool, such as the coherency 
identification method, a head start to analyze and 
decide onpredicted signal. The time series 
prediction has been utilized in various data-driven 
methods in power system applications Ma & Vittal,
(2012).

This work presented in this paper aims to predict 
the time series of the generator dynamic response 
for the measurement-based coherency 
identification application. The time series 
prediction an algorithm is based on NARX to 
predict the generator speed deviation following a 
disturbance in the system. Consequently, the 
predicted generator speed deviation is applied to a 
data-driven coherency identification technique 
based on the independent component analysis 
(ICA) Ariff & Pal, (2012). The proposed NARX 
time series predictor is expected to enhance the 
overall performance of the coherency identification 
process using ICA. The proposed method is simple 
and does not require any prior system information 
during operation.

2. State of the art

In the light of smart grid development, the 
exploration of the time series prediction in power 
system application has gained more attention to 
fulfill the demand for fast and instantaneous control 
action. A time series prediction method based on 
Boltzmann algorithm is reported in Zhang et al., 
(2015) to predict the wind speed of an area to assist 
the wind farm operation. The algorithm is a variant 
of recurrent neural network (RNN), which has 
demonstrated its performance in handling nonlinear 

data. However, its performancein predicting the 
wind speed is highly dependent on the optimal 
deep model selection and its suitability varies with 
the application. In Liu et al., (2015), a support 
vector machine (SVM) is utilized to predict the 
failure of the reactor coolant pump component in a 
typical nuclear-pressurized water reactor. The 
method combines the SVM method with radial 
basis function (RBF) to predict the time series 
behavior of the reactor components. It can predict 
the response of the component one day ahead of its 
time. However, the reported SVM method requires 
an additional tuning process of hyperparameters to 
achieve the desired performance. Next, the 
researchers in Nazaripouya et al., (2016) predict 
the solar power output of a PV based on the 
historical time series data. The method is based on 
the combination of wavelet analysis, auto-
regressive moving average (ARMA) and RNN to 
predict one-minute solar power output. From the 
discussion, the method can predict the slow 
dynamic events in the power system, accurately. A 
hybrid method is reported in Silva et al., (2017) to 
predict the load curves of the residential and the 
commercial customers. In this report, the 
combination of seasonal autoregressive fractionally 
integrated moving average (SARFIMA) and fuzzy 
time series (FTS) method. In this paper, the load 
curves are viewed as a long memory time series. 
As a result, the method requires fewer input 
parameters to estimate the future time series 
accurately. The researchers in Wang et al., (2018) 
report a methodology to predict wind power using 
the distance weighted kernel density estimation. 
The method is used to capture the stochastic 
behavior of the non-stationary wind power time 
series. Despite the effectiveness of the method, it is 
very challenging to find a satisfactory balance 
between the prediction accuracy and the 
computational speed due to the unpredictability of 
the wind power. Consequently, the kernel density 
estimation method is combined with the fuzzy 
inference system and the tri-level adaptation 
function to capture the uncertainties of the 
prediction model and the wind power time series 
Khorramdel et al., (2018). The work presented 
Wang, et al., (2020) combines particle swarm 
optimization (PSO), ARMA, and SVM by using 
clustering theory to predict the wind power time 
series for large-scale of wind power integration 
applications. It is relatively complex as 
compared to other methods. 
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 The application of this method requires 
additional weight optimization to acquire adequate 
wind power prediction precision. Moreover, 
Khan et al., (2020), the researchers combine the 
multilayer perceptron (MLP), SVR, and CatBoost 
to predict the actual energy consumption in Jeju 
Island. The combination of renewable and non-
renewable energy data sources is used as training 
data for the proposed model. However, the 
hybrid approach complicates the process since each 
technique requires the hyperparameters tuned to 
give the optimal model. On the other hand, a 
hybrid method reported in Sarica et al., (2018) 
based on autoregressive (AR) and neuro-fuzzy 
inference system (ANFIS) are combined to reduce 
the parameters and rules of ANFIS. However, 
the model focuses on predicting the time series 
responses for a small test system only.

It is observed that the methods reviewed in the 
literature are dependable to predict the time series 
in various fields in the power system application. 
However, most of the reported methods are hybrid, 
which combines several methods to achieve the 
desired prediction performance. In addition, the 
methods reported in Nazaripouya et al., (2016); 
Silva et al., (2017); Wang, et al., (2020); Khan et 
al., (2020) require additional parameter tuning in 
order to obtain a satisfactory performance in 
estimating future time series. Thus, the 
computational the complexity of the methods is 
excessive, and it is very challenging to be 
implemented in practice. Consequently, a time 
series prediction method based on the NARX 
model is proposed in this paper to predict the future 
time series of dynamic generator response. The 
proposed method is simple and accurate. The 
application of the NARX model has been reported 
in Guzman et al., (2017) and Liu et al., (2016). The 
method demonstrates promising performance in 
predicting the future time series of a non-linear 
system. This is due to the fact that the NARX 
network has an embedded memory that facilitates 
an excellent time-prediction architecture to 
propagate the information and backpropagate the 
error signal Guzman et al., (2017). Therefore, 
NARX can predict the future time series accurately 
without any hybridization from other methods to 
improve its performance. The results this paper 
shows that the proposed method outperforms 
among the other hybrid technique in term of 
computational complexity.

3. Development of training dataset for time
series prediction

In this section, the IEEE 16-generator 68-bus test
the system model is used in this analysis to simulate
the system response for various system operating
situations. The transmission line, bus, and dynamic
features of the test system model can be found in
Pal & Chaudhuri, (2006). Figure 1 represents the
single-line diagram of the IEEE 16-generator 68-
bus test system model. The nonlinear simulation
is performed in MATLAB Simulink. In this
research, the 100Hz sampling frequency is used as
suggested in Martin, (2015). Historically, the test
system model consists of 5 coherent areas Rogers,
(2012). However, the real-time coherent areas are
depended on various factors such as fault location,
fault severity, and the operating situation of the
generators Saha et al., (2009).

Fig. 1. Single-line diagram of the 16-generator 68-
bus test system model.

In order to develop the comprehensive training 
dataset, the time series behavior of all generators 
following a disturbance is required. Then, a three-
phase fault applied at every bus is considered a 
disturbance for the training dataset construction. In 
this study, only stable cases are considered. Figure 
2 indicates the speed deviation for all generators 
for the fault at Bus 1. After 0.14s, the fault was 
cleared by opening the transmission line between 
Bus 1 and Bus 2. It is noted that the generator’s the 
response represents only one of the many cases 
considered to develop the dataset. The figure shows 
the system is stable because the generator speed is 
settled to a new equilibrium point following the 
disturbance applied to the
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 Fig. 2. Generator speed deviation on 16 generators.

system. Consequently, the input and output of the 
training dataset are represented as in Equation (1) 
and Equation (2), respectively.

Input data, x (t) = ω (t) , (1)

Output data, y (t) = ω (t + n∆t) , (2)

3.1 Development of the time series predictor

Figure 3 illustrates the NARX network utilized
in this study. It is based on a parallel architecture,
where the output is feedback to the input to
estimate the future output. Based on that figure,
the architecture consists of three layers: the
input, hidden, and output layer. The input and
output data are processed in the input and output
layer, respectively. In this study, the generator
speed deviation ω(t) is set as the input and
output of the network. However, the output
data is shifted by n∆t as compared to input
data. The hidden layer can be divided into
two sublayers, namely as Hidden Layer 1 and
Hidden Layer 2. These sublayers consist of
the combination of the tapped delay line (TDL),
weight, activation function, summation, and bias.
The TDL introduces m-delays to the input time
series and produces m-dimensional vectors consist
of the current input data and m-delayed data.
Consequently, this matrix input data is multiplied
by the interconnection weight W and subtracted
with the bias vector b. Then, the processed
weighted input matrix IW is passed through the

activation function to produce the output. These
processes can be represented in Equation (3).

From equation 3,
I is input matrix,
W is weighted input matrix,
b is bias vector,
x(t) is input data,
y(t) is output data,
h(t) is output data of Hidden Layer 1,
i is the number of neuron, and
f is the activation function.

To predict the future time series of the data,
the sigmoid and linear activation functions are
implemented in Hidden Layer 1 and Hidden Layer
2, respectively. These two activation functions
allow the NARX network to come out with the
desired decision based on the weighted input.
The sigmoid and linear activation functions are
represented in Equation (4) and Equation (5),
accordingly. In Equation (4), s is the processed
weighted input. This function permits the NARX
network to adapt the non-linearity in the data by
using the probability of the S-shape curve, ranging
between 0 to 1. From Equation (4), the output
of the Hidden Layer 1 is yielded based on the
processed weighted input data classification on the
S-shape curve. On the other hand, c, and l in
Equation (5) represent the gradient of the linear
activation function and the output data of Hidden
Layer 1, respectively. This function scaled the
output data of Hidden Layer 1 by c to the readjust
its the magnitude to suit to the desired output
data, y (t). Consequently, the network weights
and biases are adjusted iteratively until the error
between the actual input and the target output is
reduced.

f1 (s) =
1

1 + e−s
(4)

f2 (l) = cl (5)

The selection of the network training function is
critical to the prediction performance of NARX.
Thus, three types of network training functions
are considered and compared in this study:
Levenberg-Marquardt, Bayesian Regularization,
and the Scaled Conjugate Gradient. The output
of the training functions is evaluated following
a disturbance in the system in estimating the
future time response of Generator 1 in the test
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Fig. 3. Construction of NARX network utilized in this study.

y (t) = f1

 n∑
x=1

IxWi,x +
n∑

y=1

IyWi,y + bi,1

+ f2

(
n∑

h=1

IhWi,h + bi,2

)
(3)

system model. The performance of the training
functions is compared and analyzed based on
the mean squared error (MSE) of the future
time series estimation. This simple comparative
study is crucial to determine which one of the
network training function is the best option out of
three for the power system time series prediction
application. The MSE is calculated based on the
difference between the actual y (t) and the desired
ydesired (t) estimations as shown in Equation (6).

MSE =
1

n

n∑
i=1

(ydesired (t) − y (t))2 (6)

4. Application, analysis and discussion

4.1 Determination of training network function

Table 1 tabulates the performance of the three
network training functions. From the table, the
Levenberg-Marquardt technique shows a more
desired result as compared to other methods.
The MSE using Levenberg-Marquardt, Bayesian
Regularization, and Scaled Conjugate Gradient are
4.4900×10−11, 1.6592×10−9, and 1.2249×10−7,
respectively. The result implies that the Levenberg-
Marquardt technique outperforms the other two
training functions. Thus, it is considered as the
preferred network training function for the work
presented in this paper.

Table 1. Comparison of MSE between three 
training network function.

Network Training Function MSE

Levenberg-Marquardt 4.4900 × 10−11

Bayesian Regularization 1.6592 × 10−9

Scaled Conjugate Gradient 1.2249 × 10−7

4.2 Determination of n-step ahead

This section aims to address the question of how
many n-step in Equation (1) and Equation (2) that
deliver the best prediction performance. Using
the Levenberg-Marquardt technique, the NARX
is trained using training databases with different
variants of n-step ahead as the output. Figure 4
shows the MSE versus the n-step ahead of the
training database output. From the graph, the worst
MSE occurs when the n = 10, where the MSE is
1.45×10−8. The best MSE is when n = 20, where
the MSE is 4.49×10−11. This outcome implies that
the time series predictor performs best when n is
set to 20 in this application. Therefore, n = 20 is
considered to develop the training database in this
study.

4.3 Future time series prediction

In the NARX training phase, the dataset is
divided into three phases, where 70%, 15%, and
15% of the training dataset are utilized in the
training, validation, and test phase, accordingly.
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The performance of the training, phases depend 
on the regression slope R. R = 1 indicates 
that the output of the trained NARX is equal to 
the targeted output data. In this study, the value 
of R for the training, validation, and test phase 
are 0.99984, 0.99966, and 0.99965, respectively. 
Figure 5 displays the comparison between the 
predicted and the actual response. The solid 
and the dashed line represent the predicted and 
the actual generator responses, respectively. For 
better visualization of the predictor performance, 
only the comparison of Generator 1 is displayed 
and discussed here as the representative of other 
generators in the system. The graph shows that 
the time trend of the predicted outcome comes 
to a good agreement with the actual generator 
speed deviation. The results display in Figure 2 
is corroborated this fact. From Figure 5, the 
Generator 1 speed deviation prediction starts 
immediately after the occurrence of the fault in 
the system. In practice, the implementation of 
the NARX predictor should be complemented with 
a fault detector to initiate the prediction process. 
From the graph, the selected peak of the predicted 
and the actual responses are 0.97s and 1.17s, 
correspondingly. The incidence of these two 
peaks indicates that the actual response is lagging 
the predicted generator response by 0.2s. The 
result shows that the proposed time series predictor 
predicts the generator speed deviation 0.2s ahead 
of the actual speed response. This 0.2s head start 
will allow ample time for various power system 
analytical tools such as coherency identification to 
assess the severity of a disturbance and provide

accurate remedial control action on time. In
the next subsection, the predicted generator speed
deviation is applied to the measurement-based
coherency identification technique based on ICA
Ariff & Pal, (2012).

tpredicted=0.97s

tactual=1.17s

Fig. 5. The comparison of the actual and the 
predicted response.

4.4 Performance evaluation of time series
prediction methods

This subsection evaluates the performance of
MSE values in predicting the generator speed
deviation for various time-step ahead. The state-of-
the-art methods considered in this study are MLP
Ak et al., (2015), AR Pena et al., (2017), SVR
Liu et al., (2015), AR-ANFIS Sarica et al., (2018)
and CatBoost-SVR-MLP Khan et al., (2020). A
similar dataset is used to compare the performance
of all these approaches. Figure 6 displays the MSE
versus the n-step ahead of the training database
output. From the figure, AR shows the best
accuracy based on this dataset as compared to
other state-of-the-art methods. In this study, AR
performs best when predicting the generator speed
deviation for 15-step ahead. In contrast, SVR
gives the worst MSE for n = 35. There are two
hybrid time series prediction method considered in
this study: AR-ANFIS and CatBoost-SVR-MLP.
The best MSE of AR-ANFIS and CatBoost-SVR-
MLP are at 2.3179×10−08 and 3.0008×10−08,
respectively. This result implies that although
these methods show promising results in Sarica et
al., (2018) and Khan et al., (2020), respectively.
AR-ANFIS and CatBoost-SVR-MLP are unable
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to outperform the MSE obtained using NARX.
Conversely, the best MSE for NARX occurs when
predicting the generator speed deviation for 20-
step ahead. This performance demonstrates the
proposed technique predicts the generator speed
deviation 0.2s before the actual response takes
place, accurately. From a power system control
perspective, the control action should be taken
within 0.2s following a disturbance Taylor et
al., (2005). This delay exists in practice due
to signal delays and relay operation. Since
the proposed method can predict the future time
series response of the system accurately, the
control mitigation algorithm such as wide-area
control system (WACS) can be initiated earlier to
compensate for the signal delay.
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Fig. 6. MSE values achieved on 10 datasets by each 
time series prediction method.

4.5 Coherency identification

In this subsection, the effectiveness of the 
proposed the method is demonstrated on the 
coherency identification application in power 
system. The study focuses on the coherency 
identification in the IEEE 16-machine 68-
bus test system model under two types of 
disturbance: a sudden increase of the generator 
mechanical input and a balanced three-phase fault 
represented as Case A and Case B, respectively. 
The first case is considered because it is a 
typical type of disturbance considered in various 
coherency identification studies Wei et al., (2019). 
Conversely, a balanced three-phase fault is the 
most the severe disturbance that could occur in the 
system.

4.5.1 Case A: A sudden increase of the generator
mechanical input

In this study, a 10% increment of mechanical
input torque for 80ms is applied to all generators
in the IEEE 16-machine 68-bus test system model.
This perturbation is applied to provide the required
oscillation to capture the slow coherent dynamics
Cuicui et al., (2019). The generator speed deviation
is recorded and applied to the proposed method.
Figure 7 shows the predicted generator speed
deviation when the system is subjected to this
disturbance. It is noted that the response shown
in the figure is the 0.2s future response prediction
made by the proposed NARX predictor. Then,
the predicted generator speed deviation is applied
to the coherency identification based on ICA. The
coherency plot of the system response following
this disturbance is illustrated in Figure 8.

 Fig. 7. Generator speed deviations for Case A.

In Figure 8, the group of coordinates in the three-
dimensional coherency plot represents coherent 
groups of generators. It is shown that the first nine 
plots, G1 until G9, are relatively close to each other 
as compared to other generators. Thus, this group 
of generators is clustered as the first coherency the 
group is named Group 1. A similar observation 
can be made for G10 to G13 as these generators 
are well isolated from other generators as well. 
Thus, since G10 to G13 has a relatively similar 
coordinate in the three-dimensional plot, they form 
a different coherent group named Group 2. The 
other three generators, G14, G15, and G16 are 
separated from each other and the first two coherent 
groups. Thus, these generators form three separate
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coherent groups named Group 3, Group 4, and
Group 5, respectively. It is noted that the result
obtained in this study is similar to the one reported
in Ariff & Pal, (2012). This result implies that the
predicted generator speed deviation using the time
series NARX predictor can be implemented for the
coherency identification in the system accurately.

Group 1

Group 2

Group 4

Group 5

Group 3

Fig. 8. Generator’s coherent groups for Case A 
using ICA.

4.5.2 Case B: A three-phase balanced fault

This subsection shows the application of the 
proposed a method in corresponds to a fault in 
the system. In this study, a temporary balanced 
fault at Bus 31 for 480ms is applied to the test 
system model. Similar to Case A, the generator 
speed deviation is recorded and applied to the 
proposed time series predictor. Figure 9 depicts 
the predicted generator speed deviation for this 
operating situation. The NARX network predicts 
the generator speed deviation 0.2s ahead of the 
actual response. Consequently, the predicted 
response is applied to the ICA method to classify 
the coherency group of generators Ariff & Pal,
(2012).

Figure 10 shows the three-dimensional 
coherency plot that represents this case. It is 
noted from Figure 9 that the generators are 
segregated into three coherent groups. The first 
group consists of G1 until G9 together with G12 
until G16, namely as Group 1. These generators 
shared a relatively similar coordinate in the 
three-dimensional coherency plot and create a 
coherent group of generators. The second (Group

Gen 10

Gen 11

Fig. 9. Generator speed deviations for Case B.

2) and the third group (Group 3) only consist of
a single generator in each group, G10, and G11,
respectively. The segregation of the coherent group
can also be observed from the predicted generator
speed deviation responses as shown in Figure 9. In
the figure, G10 oscillates away from the rest of the
group, while G11 has a relatively higher oscillation
as compared to other generators (generators in
Group 1). This observation corroborated the
segregation of the coherent group illustrated in
Figure 9. The formation of this coherent group
is also because the location of the fault is close
to G10 and G11. Therefore, these two generators
have a high tendency to oscillate against the rest of
the group of generators.

Group 1

Group 2

Group 3

Fig. 10. Generator’s coherent groups for Case B 
using ICA.
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The most critical discussion of the results
obtained from these two cases is the coherency
group of generators is identified 0.2s earlier as
compared to the ICA method presented in Ariff
& Pal, (2012). This improvement is realized
by using the proposed time series predictor
based on NARX, which can provide an accurate
time series prediction of the generator speed
deviation 0.2s ahead of the actual event. Thus,
the coherency identification method can start its
algorithm 0.2s earlier. The results show that the
predicted responses are accurate and can be used to
identify coherent groups of generators accurately.
Consequently, this implies that the proposed time
series predictor based on NARX can enhance
the performance of the coherency identification
method using ICA. Also, the application of the
predicted responses can easily be extended to
any research field in power systems that utilized
generator speed deviation in their algorithm such
as state estimation Rinaldi et al., (2018) and direct
stability assessment Papadopoulos & Milanović,
(2016).

5. Conclusions

Conclusively, a new time series prediction method
to predict the generator speed deviation following
a disturbance has been reported. The method is
based on the NARX network to predict future time
series ahead of the actual event. First, the generator
speed deviations to form a comprehensive training
dataset to train the NARX network has been
performed. Consequently, the performance of
various network training functions to select the best
option for the time series prediction application has
been conducted. Then, the prediction MSE for
various n-step ahead to determine the best value of
n has been determined. It is found that the NARX
network performed best in estimating the generator
speed deviations 0.2s ahead of its time. Also,
the performance of the trained NARX network to
estimate the generator speed deviations following
a disturbance has been explained. The prediction
of the generator speed deviation 0.2s before it
happened has been discussed. The effectiveness
of the proposed method based on NARX has
been demonstrated to enhance the performance of
coherency identification in the power system using
ICA.

The application of the proposed methodology
can be extended to predict various other
measurements such as rotor angle, frequency,

voltages and currents in the system. The predicted
measurement can be applied to other research
fields in the power system such as state estimation,
protection and control, and stability enhancement
application.
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