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A new type of convergence for a sequence of rays
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Abstract

In this work, we introduce the concept of rough convergence for a sequence of rays and obtain some basic results. In this 
context, if we take 0=r  then we obtain the classical results in the theory of rays.
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1. Introduction

In classical mathematical analysis, it is important to 
consider the convergence properties of a bounded sequence 

. If the sequence  is unbounded, we are led 
to consider the concept of directions. That is why we deal 
with rays. Fenchel (1953) introduced the concept of the 
convergence of a sequence of rays. Fenchel (1953) also 
defined a metric by using the distance between the two 
rays. Moreover, he gave the definition of asymptotic cone, 
which is very important in optimization theory. Wijsman 
(1966) stated an equivalent definition of the asymptotic 
cone by means of the normalized sequences. Wijsman 
(1966) also proved that, if a sequence of convex sets 
is convergent to a set and the origin is contained in the 
closure of the limit set, then the sequence of projecting 
cones of these sets is convergent to the projecting cone of 
the limit set. In order to prove this theorem, he needed to 
introduce the notion of the asymptotic cone. Therefore, 
the asymptotic cones play an important role in the theory 
of convex sets.

The notion of rough convergence of a sequence was 
first given by Phu (2001) in finite dimensional normed 
spaces. Phu (2001) showed that a sequence, which is not 
convergent in the usual sense can be convergent to a point 
with a certain degree of roughness. He also proved that 
the rough limit set is convex, closed and bounded, and its 
diameter is smaller than .2r  Subsequently, Phu (2003) has 
proved analogous results for infinite-dimensional spaces. 

In 2008, Aytar (2008) investigated the relations between 
the core and the r -limit set of a real sequence. Listán-
García & Rambla-Barreno (2011) gave some results 
analogous to those of Phu, which are given by using strict 
convexity and uniform convexity, by means of uniform 
rotundity in every direction (URED). The condition URED 
is strictly weaker than the uniform convexity property. 
Listán-García & Rambla-Barreno (2014) stated two new 
geometric properties by using the rough convergence in 
Banach spaces. They also studied with Chebyshev centers 
and the M property of Kalton. Sudip et al. (2013) gave 
an extension of rough convergence, by using the notion 
of an ideal. They also stated some basic results related to 
the rough ideal limit set. Dündar & Çakan (2014) gave 
the definition of the rough convergence for a double 
sequence. In the recent literature, we see different types of 
convergence for sequences, such as convergence of order 
α (Et et al., 2014a; Et et al., 2014b).

In this paper, we apply the theory of rough convergence 
to the sequence of rays. We show that the sequence of 
rays is convergent to the whole nR  for .2≥r  We state 
that some results in the classical analysis also hold for the 
sequence of rays. We also present the additive properties 
of the sequences of rays.

2. Preliminaries

Let nR  be an −n dimensional Euclidean vector space 
with origin ,0  vectors (elements) …,, yx , inner product 
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 norm  and metric  Identify 
the vector x with the −n tuple ),,,( 21 nxxx …  in nR . Then 

ii

n

i
yxyx

1
,

=
∑=  (Fenchel, 1953).

A subset M of nR  is called a cone if 0  is in M and 
 implies  for every non-negative real scalar 

. The particular cones consisting of a non-zero vector 
x and all its multiples  are rays. A cone which 
contains at least one non-zero vector is therefore just the 
union of the rays it contains (Fenchel, 1953).

We state that }0{=M  is a cone in R n. However, we 
will study with cones except for such cones.

Throughout the paper, (R n) will denote the set of all 
rays in R n, and a sequence of rays in (R n) will be denoted 
by .

Since cones may be thought of as sets of rays, it is 
desirable to introduce a topology on these rays from 
the topology on R n. This might be done by defining the 
angle

as a metric on  This angle depends only on 
the rays (x) and (y) to which x and y belong. It may be 
thought of as the angle between the two rays. The proof 
that this angle is indeed a metric for the rays, in particular 
that it satisfies the triangle inequality is not obvious. An 
equivalent metric is given by

This new metric is the chord distance between 
the two points  and  on the unit sphere. That is, 

. Clearly [x, y] depends only on the rays 
(x) and (y). [x, y] also satisfies the defining conditions for 
a metric on the space of rays. The geometric description 
shows that the two metrics are topologically equivalent 
(Fenchel, 1953).

A sequence  is said to be convergent to a ray 
(x) if  as , and we denote this case by 

 or  We will also use the notation  

 as  (Fenchel, 1953).

Let M be a cone in R n. A ray (x) is called a limit ray 
of a cone M if there is a sequence of rays of the cone M 

which are different from (x) and which converges to (x) 
(Fenchel, 1953).

A closed cone or a closed set of rays is a cone, which 
contains all its limit rays. A cone is closed in this sense, if 
and only if it is closed in the usual topology of R n. A cone 
is open, if and only if the complementary set of rays is a 
closed cone. This is equivalent to the following definition: 
M  is open, if and only if for every (x) in M there is an 

 such that all rays (y) with  are in M. The 
set of such rays (y) is called an neighborhood of (x) 
(Fenchel, 1953).

If a sequence  is convergent to x in the usual 
topology of R n, then the sequence  of rays is 
convergent to the ray (x). But, the converse of this 
proposition does not hold in general. This case will be 
illustrated in the following example.

Example 2.1. Let  be a cone. 
Define a sequence as follows: 

Then the sequence  is convergent to . If 
we consider the sequence  of  rays, then we have 

 as . Thus, the sequence  of rays is 
convergent to the ray . 

On the other hand, if we define a sequence  as

then this sequence is not convergent in the usual topology 
of . But the sequence  of rays is convergent to the 
ray .

Theorem 2.1. If a sequence  of rays converges, then 
its limit is unique.

Theorem 2.2. If the sequence  converges to (x), then 
every subsequence of  also converges to (x).

The proofs of theorems above are similar to those of 
the ordinary case.

In order to prove the Theorem 3.1, we need to introduce 
the concept of the addition of two rays. Let  
Then, the addition of the rays (x) and (y) is defined by 
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If the two rays have opposite direction, then their sum 
is not a ray. According to the addition operation, the set of 
rays is not closed. Therefore we add two points on the unit 
circle. Furthermore, if we apply the addition operation on 
the circle with radius r, then we obtain the same ray. If we 
take  then

and hence we have  for all .

We note that the addition of two rays can be defined by 
using the angles from the positive axis to the vectors. 
But, in this paper, we will use the vector sum of two 
rays.

Since the space of rays is a metric space, we can use 
the concept of boundedness in a metric space.

Definition 2.1. Let  be a set in (R n). The set  is called 
bounded if there exists a positive integer M and a fixed ray 

 such that  for every .

Since  for all , every 
subset  of (R n) is bounded. Furthermore, the set (R n) 
is bounded. As a consequence, we can say that every 
sequence of rays is bounded.

Definition 2.2. Let  We define  if 
and only if θ1 ≤ θ2, where θ1 and θ2 are the angles from the 
positive −x axis to the rays (x) and (y), respectively.

This ordering relation is a linear ordering. We say that 
the ray which has angle  radian is the least ray in 

. We denote this ray by . But, the greatest ray of 

 does not exist.

Unfortunately, we cannot define such an ordering in 
 for .

The following Definitions 2.3, 2.4 and 2.5 given for 
the rays are almost the same as the definitions given for 
real numbers in the book (Stoll, 2001).

Definition 2.3. A subset  of  is bounded above 
if there exists an  such that  for all 

 Such an  is called an upper bound of  
Similarly, a subset  of  is bounded below if there 
exists  such that  for all  Such 
an  is called a lower bound of .

We have  for all . Namely,  is 
bounded below. However,  is not bounded above with 
respect to this ordering relation, since there does not exist 
a  such that  for all .

Definition 2.4. Let  be a nonempty subset of  that 
is bounded above. An element  is called the 
least upper bound or the supremum of  if 

(i)  is an upper bound of  , and 

(ii) if  satisfies  then  is not an upper 
bound of  .

Similarly, let  be a nonempty subset of . An 
element  is called the greatest lower bound or 
the infimum of  if

(i)   is a lower bound of , and

(ii) if  satisfies  then  is not a 
lower bound of .

Example 2.2. Let 

The ray  with angle  is the greatest lower 
bound of the set (B). Similarly, the ray  with 
angle  is the least upper bound of the set (B).

Conclusion 2.1. Every nonempty subset of (R 2) that is 
bounded above has a supremum and an infimum in (R 2).

In order to prove Proposition 3.1, we need to introduce 
the concepts of the limit superior and the limit inferior of 
a sequence of rays.

Definition 2.5. Let  be a sequence of rays in (R 2). 
The limit superior and the limit inferior of the sequence 

 are defined by

and

respectively.

Theorem 2.3. A sequence  is convergent to a ray (x) 
if and only if 
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Since the proof of the theorem above is similar to the 
ordinary case, we omit it.

Example 2.3. Let

Then

Since

 does not exist.

3. Rough convergence of a sequence of rays

A sequence of rays which is not convergent in the usual 
sense can be convergent to a ray with certain roughness 
degree (or certain error).

Definition 3.1. Let  be given. A sequence  is said 
to be convergent to the ray (x) if for every  there 
exists a  such that  for all  
and we denote this situation by  or  

Furthermore, we write  as .

The set of all limit points of  is defined by

We can say that the set  is a cone in R n. For 
an arbitrary sequence , we get  for 
all .

Example 3.1. Let us consider the sequence  defined in 

Example 2.1. Then we have   
or 

Since  for all , we get 

.

An alternative definition of the rough convergence for 
a sequence of rays can be given via the following

Proposition 3.1. A sequence  is convergent if and 
only if

Proof. (Necessity) Given . Let  Then 
there exists a  such that

Conversely, assume that  Let 
. By definition of the upper limit, we get 

that, for all  there exists an  such that 

If we choose  then there exists a  such 
that

which is a contradiction. Hence we obtain  
 

(Sufficiency) Now assume that  . Suppose 
also on the contrary that, there exists an  such that 
for all  there exists an  with  and 

. By hypothesis, we have 

  

This inequality contradicts to the fact that  
thus the proof is complete. □

Theorem 3.1. If  and  then we have 

, where the terms  and  as well as x 
and y are not in opposite direction for all .

Proof. Given . If  then there exists a 
 such that

Similarly, if  then there exists a 
such that 

Take  We have
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for all  Thus we get .□

Remark 3.1. Note that, even if one of the sequences 
defined above is not convergent, the sequence   
is convergent to the whole (R n) for 

Theorem 3.2. If  then  for all 
.

Since  and  for all , the 
proof of the above theorem is obvious.

In both of the theorems stated above, if we take 0=r  
then we obtain the classical (non-rough) convergence 
results.

The proofs of the following theorems are analogues of 
Phu’s Theorems (Phu, 2001).

Theorem 3.3. The cone  is closed.

Proof. Let  be given. A sequence  converges to 
(y) and  for all . Then there exists 
a  such that  for all . Since 

 we have . Then 
there exists a  such that  for all 

. Take . Then

for all . Thus we get .

Theorem 3.4. If  then we have 

Proof. Let  and . Then, for every 
 there exists a  such that

for all  Thus we have .□

Theorem 3.5. If  is a subsequence of  then 

.

Proof. Let . Then, for every  
there exists a  such that  for all 

 Since  is a subsequence of  we 
have  for all . Thus we have 

.□

Definition 3.2. Given a ray  and a real number 
 we call a set

a closed ball in (R n) with center (x) and radius r. This set 
is a cone in R n.

Theorem 3.6. If a sequence  converges to (x) then 
.

Proof. If  then for every  there exists 
a  such that  for all  Let us 
choose an arbitrary  Since  we 
obtain

for all  Thus we have . That is, 
 

Now let us take a  Let  be 
arbitrary. Then, there exists a  such that 

 for all . Since  there 
exists a  such that  for all  
Now take  Then

for all  Since  is arbitrary, we have . 
Hence we have . That is, 
Thus the proof is complete. □
Proposition 3.2. (a) If  is a cluster point of a sequence 

 then .

(b) Let  be the set of cluster points of a sequence 
 Then we have

Proof. (a) Assume that the sequence  has a cluster 
point . Then we get  for every  
On the other hand, there are infinitely many rays  
such that  for , but this 
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inequality contradicts to the fact that

(b) Since  we have  
. Let  Thus, 

we obtain  for every  This implies the 
inclusion   That is,

Now assume that  Thus, we can 
find an  such that there exist infinitely many 
rays  such that  Since  
we have a cluster point  of  Hence we 
have  and  
Since   we obtain 

 That is,

This completes the proof. □

Theorem 3.7. A sequence  is convergent to (x) if 
there exists a sequence  satisfying  and 

 for all .

Proof. Suppose that  Then, for every  
there exists a  such that  for all 

 Since  for all  we have

for all  □

We note that since  for all   
we can write

That is, we say that the diameter of an limit set is 
not greater than 2.

Definition 3.3. A subset  of (R n) is said to be convex 
provided that, for every  and for all  
we have 

Hence the definitions of convexity of a set in R n and 
the set of rays in (R n) coincide with each other.

Remark 3.2. Although the set  is convex in R n, 
the set  is not convex in (R n). This will be 
illustrated in following example.

Example 3.2. Let . Then we 
have 

 or . This set is 
not convex in . In addition, the set  is a 
convex set for  but this set is not convex for .

4. Conclusion

In the space of rays, the concepts of metric boundedness 
and order boundedness are different from each other. 
Furthermore, the definitions of the convexity of a set in R n 
and the convexity of the set of rays in (R n) coincide with 
each other. Although the set  is convex in R n, the 
set  is not convex in (R n). In addition, if  
and  then  in classical analysis. But, 

if  and  then  in the 
setting of rough convergence of a sequence of rays.
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