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Abstract

Autonomous Transfer Vehicles (ATVs) are becoming increasingly prevalent in intra logistics. Industry 
4.0 is bringing us closer to the efficient routing and scheduling of autonomous multi robot systems 
which perform transportation tasks. In this study, an energy efficient routing and scheduling system is 
proposed to minimize the total energy that the vehicles spend. Not only travelled distance but also the 
load of the vehicle is considered between two points. The routes of vehicles are obtained by using the 
proposed Hybrid Simulated Annealing Algorithm. An algorithm for the initial solution is also proposed 
for determining of the minimum number of vehicles for pickup and delivery requests. The performance 
of the algorithm is compared with the best solutions of the test problems in the literature. Besides, the 
proposed energy efficient routing and task scheduling model is compared with the classical distance 
model for routing and scheduling with backhauls. An analysis of trade-offs between energy and distance 
is proposed for intra logistics.

Keywords: Autonomous Transfer Vehicles; energy efficient routing; hybrid simulated annealing; 
pickup and delivery tasks; Vehicle Routing Problem with backhauls.

1. Introduction
The routing and scheduling of a fleet of vehicles is one of the most common problems in logistics. The 
prevalence of transportation operations combined with the large variety of real-world constraints and 
characteristics have created a multitude of vehicle routing problems (VRP). There are many subclasses 
of the VRP problems (Eksioglu et al., 2009). The Pickup and Delivery Problem (PDP) is one of them. 
A classification of the PDP is given by Lin et al. (2014). Empty vehicle travelling is called deadheading 
and this situation causes increasing the logistics cost. To reduce the deadheading, vehicles visit the 
delivery points first and then pickup finished products at pickup points and back to the depot. This 
activity is called backhauling. VRP with backhauling where for each individual route all deliveries have 
to be made before the first pickup is one of the possible variants in intra logistics (Goetschalckx, 2011). 
Material handling vehicles such as Automated Guided Vehicle (AGV), forklift, etc. are used for intra 
logistics. Recently, Autonomous Transfer Vehicles (ATVs) have been replaced by classic AGVs. The 
vehicles are electrically operated and periodically charged. ATVs have the features of sensing features in 
the environment and navigating autonomously without any limitations on the route (Xidias et al., 2009).

ATVs allow more flexible production systems and material handling systems in factories. There are 
several studies about mission planning, task planning or routing of ATVs in smart factories. Emilio et al.
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(2002) proposes a randomized path planning approach for autonomous vehicles. Liu et al. (2006) utilize 
an improved ant colony algorithm to plan the motion path for each robot. As it is aforementioned, the 
main objective is to minimize the travel distance. Xidias et al. (2009) propose an algorithm to solve a 
vehicle scheduling and routing problem in 2D industrial environments. A modified Genetic Algorithm 
is utilized to minimize the distance. Herrero-Pérez & Martı́nez-Barberá (2010) utilize decentralized 
navigation control and a Distributed Petri Net to model and control a flexible material handling system. 
It consists of autonomous vehicles that are appropriate for flexible manufacturing systems. Hussein et 
al. (2012) compare three different metaheuristics such as Tabu Search, Simulated Annealing, and 
Genetic Algorithm that minimize the total travelled distance. In the experiments, Simulated Annealing 
outperforms other algorithms in terms of the computation times but Tabu Search provides the best path. 
Xidias et al. (2016) present a modified Genetic Algorithm to solve the task scheduling problem of a fleet 
of autonomous vehicles. Chávez et al. (2016) propose a Pareto ant colony algorithm for multi-depot 
VRPB to minimize distance, travel time and energy consumption. Magdy et al. (2017) apply various 
metaheuristics algorithms in order to solve the path planning problem of autonomous vehicles. Xidias 
(2018) uses the modified Genetic Algorithm to solve routing and task scheduling problem 
simultaneously by using the constructed matrix. Rahul (2020) proposes a co-evolutionary for very 
complex mission planning. Wang et al. (2019) propose a modified Genetic Algorithm for task allocation 
of AGVs by considering the remaining battery charge of each AGV.

The industrial sector’s energy consumption has accounted for about 50% of the world’s total energy 
consumption in the 2010’s. It has almost doubled over the last 60 years (Fang et al., 2011). Fuel 
consumption of vehicles is dependent on a lot of factors in logistics. Minimizing the fuel consumption 
in VRPs is considered by Kara et al. (2007), Bektaş and Laporte (2011), Xiao et al. (2012) and 
Ghannadpour and Hooshfar (2016) in the literature. While it is aimed to reduce the fuel consumption for 
trucks in logistics, it is important to address pollution routing problem in shop floor transportation 
problems and reduce energy consumption of transport vehicles in intra logistics. While the body of 
literature in internal logistics is vast, to the best of our knowledge, there are no papers that address task 
scheduling of pickup and delivery requests with backhauls for autonomous vehicles and energy saving 
routing in production environments.

In this study, we studied routing and scheduling of pickup and delivery problem of ATVs that 
are electrically operated and periodically charged. Vehicle Routing Problem with Backhauls (VRPB) 
where an ATV starts the route from a depot, visits linehaul stations for delivery, and then visits backhaul 
stations for pickup, and returns to the depot is handled. We estimate energy consumption according to 
the load of vehicle and the distance travelled between two points. Hybrid Simulated Annealing (HSA) 
is proposed to an energy saving routing and task scheduling. An heuristic algorithm for the initial 
solution that minimize the number of vehicles is also suggested. The proposed energy saving routing 
and scheduling algorithm minimizes consumed energy by considering distance travelled and the loads 
of ATVs for each pickup and delivery point. The algorithm is compared with the classical distance 
travelled model for routing and scheduling with backhauls to evaluate the trade-offs. The main 
contributions of the paper are as follows:

• VRPB is discussed in intra logistics for electrically operated ATVs.

• Path planning, scheduling and routing problems are evaluated in terms of energy savings.

• The number of ATV for requests is minimized.

The rest of the paper is structured as follows: In the following section, the problem description,
proposed energy saving routing and task scheduling model, proposed initial solution algorithm, and
proposed hybrid simulated annealing algorithm are explained. In section 3, experimental results for the
proposed algorithm are given. The last section includes the conclusion of the study.
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2. Routing and task scheduling of pickup and delivery tasks with backhauls

ATVs are expected to increase the flexibility and efficiency in intra logistics of production. Thus, the
need for methods that provide effective solutions in a short time for task planning of ATVs becomes
important. In our industrial environment, ATVs take the parts from Depot1 to the respective workstations
in the direction of the pickup and delivery requests from the workstations in the production line as seen
in Fig 1. Then they will take the products or semi-products from the pickup points and will deliver them
to Depot2. Without loss of generality, each workstation has pickup (P) and delivery (D) points in the
production environment.

Fig. 1. The covered 2D layout of the factory environment.

The proposed routing and task scheduling algorithm for VRPB consists of the following steps:
Step 1: Modeling of problem environment.
Step 2: Initial solution generation by minimizing the number of ATV.
Step 3: Hybrid Simulated Annealing Algorithm for routing and task scheduling.

The details of each step are given in the following subsections.

2.1 Modeling of Energy-Saving Routing and Task Scheduling

The model takes into consideration of the number of ATVs, their starting positions, and transportation
requests, and the graph of the environment. It generates routes for the ATVs by minimizing the total
energy consumed.

Assumptions:
There are enough ATVs to complete all the tasks in the environment.
The speed of the ATVs varies according to their load.
The weight of the no-load ATV, wvj , is 120 kg, and each has a maximum loading capacity represented
by V Cmax, 80 kg.
More than one ATV can perform pickup and delivery tasks for each station.
Pickup and delivery tasks can be divided.
Indices:
i, j: Index for nodes
k: Index for ATVs
Parameters:
dij : Distance between node i and j
ρ∗ : Energy spent when the ATV is full-load
ρ0: Energy spent when the ATV is no-load
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V Cmax: ATV load capacity
Decision variables:

xijk =

{
1; ATV k moves from node i to j

0; otherwise

yijk: load from node i to node j with ATV k
Objective function:

Min z =
∑
i∈V

∑
j∈V

∑
k∈K

dij (ρ0xijk + αyijk) (1)

α = (ρ∗ − ρ0)/V Cmax (2)

The objective function in Equation 1 shows the total energy minimized that depends on the 
transported load and travelled distance between nodes. α gives the average energy consumption per unit 
load. Total energy consumed by the partially loaded ATVs is calculated by multiplying decision variable 
yijk with α.

Based on the number of ATVs, their starting positions, and the received transportation requests, the 
assignment of requests and appropriate routes for the ATVs are obtained in order to minimize total energy 
consumed by the ATVs. The conventional routing and scheduling problem is known as a combinational 
optimization problem, which is an NP-hard problem and cannot be solved by existing exact algorithms 
in reasonable time. Therefore, metaheuristics algorithms are generally used in order to solve these kinds 
of problems. In this study, HSA is proposed to solve the routing and task scheduling problem of ATVs.

2.2 Proposed Initial Solution Algorithm

A heuristic algorithm is proposed to generate an initial solution. The pseudocode of the algorithm is 
given in Algorithm 1.

Algorithm 1. Proposed Heuristic Algorithm for Initial Solution Generation.
Input: D∗, TD, TP, K, V Cmax

Output: Initial solution S0

Define:Total weight of points TWP, total weight of delivery tasks TWDT, the total weight of pickup tasks
TWPT, number of routes n, number of ATVs K, route array for delivery RAD, route array for pickup RAP,
delivery tasks TD, pickup tasks TP.

TWDT := Calculate total weight of delivery task
TWPT := Calculate total weight of pickup task
n = ceil ( max ( TWDT, TWPT ) / V Cmax

RAD, RAP := Construct route arrays with dimension of n
while TD is not empty and routes in RAD are not full

foreach route in RAD
add min cost task TDi to route within constraint V Cmax

remove TDi from TD if TD is not empty
add new route to RAD and assign remaining task to new route

while P is not empty and routes in RAP are not full
foreach route in RAP

add min cost task TPi to route within constraint V Cmax

remove TPi from TP
if TP is not empty

add new route to RAP and assign remaining task to new route
assign routes in RAD and RAP to K ATVs as S0

D∗ is the distance matrix that is calculated (in meters) by using the Dijkstra’s Algorithm (Dijkstra, 1959).

The algorithm finds the initial solution in three steps. In the first step, it finds the required number of
routes to complete the given tasks by considering the ATV capacity. It classifies the pickup and delivery
tasks by P/D node number, finds the total weight of points (TWP) for each product type at each P/D

4

Energy efficient routing and task scheduling for autonomous transfer vehicles in intra logistics



points, and sums these up to find the total weight of delivery tasks (TWDT) and the total weight of
pickup tasks (TWPT). Then, it estimates the number of routes, n, to complete the given tasks. Note that
each ATV is assumed to be homogenous in terms of the ATV capacity VC. In the second step of the
algorithm, route arrays are created based on the costs of the tasks. The route array for delivery (RAD) is
created based on the index, which is the ratio of distance to TWP. As a procedure, heavier products are
delivered first. In the same way, the route array for pickup (RAP) is created based on the index, which
is Distance × TWP. As a procedure, lighter products are picked up first. In the last step of the initial
solution, the route arrays are assigned to available ATVs considering the number of ATVs, K. Note that
the number of ATV, K, and the number of routes, n, are not necessarily equal. If K is equal to n, then
each route is assigned to an ATV. If K is less than n, then the ATVs cannot complete all tasks in the first
tour, and (n - K) routes are assigned to ATVs for the second tour.

A list of tasks for delivery and pickup are generated for a sample problem in the Table 1. The delivery
point 29 requests three different items with a total quantity of 37.

Table 1. List of tasks for delivery and pickup.

# Items Point number Type of the task (P/D) Item Quantity Weight(kg) TWP(kg)

3 Items
29 Delivery A 2 1 2
29 Delivery D 2 10 20
29 Delivery E 1 15 15

3 Items
37 Delivery A 3 1 3
37 Delivery C 1 7 7
37 Delivery E 2 15 30

3 Items
31 Delivery A 5 1 5
31 Delivery C 2 7 14
31 Delivery F 1 25 25

3 Items
39 Delivery B 2 4 8
39 Delivery D 2 10 20
39 Delivery F 1 25 25

2 Items 41 Delivery B 1 4 4
41 Delivery C 1 7 7

2 Items 24 Pickup X 1 2 2
24 Pickup Z 2 9 18

3 Items
26 Pickup B 1 4 4
26 Pickup X 1 2 2
26 Pickup Y 1 5 5

3 Items
28 Pickup X 5 2 10
28 Pickup Z 2 9 18
28 Pickup L 1 20 20

3 Items
30 Pickup X 2 2 4
30 Pickup Z 1 9 9
30 Pickup M 1 25 25

3 Items
36 Pickup N 1 16 16
36 Pickup Z 2 9 18
36 Pickup L 1 20 20

3 Items
38 Pickup Y 2 5 10
38 Pickup Z 2 9 18
38 Pickup X 6 2 12

2 Items 42 Pickup A 2 1 2
42 Pickup X 1 2 2

In the initial solution generation, pickup and delivery tasks are classified and TWP is calculated
for each item by multiplying the quantity and weight. The minimum route number (n) that is required
completing the tasks can be calculated as:
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n =

[
max(TWDT, TWPT )

V Cmax

]
(3)

2.3 Proposed Hybrid Simulated Annealing Algorithm

The proposed algorithm starts with an initial solution. An ATV can make multiple deliveries and multiple
pickups by travelling to more than one P/D point. For a test problem with 3 ATVs and 12 points, the
initial and the neighbor solutions are demonstrated in Table 2.

Table 2. Representation of initial and neighbour solutions.

Route # Initial Solution Neighbour Solution
1 37→ 41→ 31( 1; item)→ 42→ 24→ 36 37→ 41→ 39(1 item)→ 42→ 24→ 36
2 39(3 item)→ 31(1 item)→ 30→ 38 39(2 item)→ 31(2 item)→ 30→ 38
3 29→ 31(1 item)→ 26→ 28 29→ 31(1 item)→ 26→ 28

As seen in Table 2, the pairwise interchange process for swap moves is used to generate 
neighborhoods. While generating neighborhoods, two random numbers are derived and two 
numbers are interchanged randomly. The neighbor solution is obtained by swapping 31and 39 randomly 
in the initial solution.

Energy-saving routing and task scheduling for pickup and delivery with backhauls is achieved by 
using the proposed HSA. Pseudo-code of the HSA is given in Algorithm 2.

Algorithm 2. HSA-based Energy-Saving Routing and Task Scheduling Algorithm
Input:T, Tmin, j, S0

Output: Best solution
Define: Current temperature T , minimum temperature Tmin, iteration number j, maximum number of
iteration jmax, cost function E(), initial solution S0, current solution Sk, next solution generated randomly
from current solution Sj+1 generated random number between 0 and 1 r, cooling parameter α

Obtain the initial solution S0 by using the Proposed Heuristic Algorithm for Initial Solution Generation
while T > Tmin:
n = ceil ( max ( TWDT, TWPT ) / V Cmax

j = 0
while j < jmax:

Generate S(j + 1) randomly from Sj (replace two index randomly)
if (S(j+1))− E(Sj) < 0:

Sbest = S(j+1):
else:

r = random(0,1)

if e
−|E(Sj+1)−E(Sj))|

T > r:
Sj+1 = S

while j = j + 1:
T = T ×α

In the literature, the first set of problems for VRP with backhauls is originally proposed by 
Goetschalckx & Jacobs-Blecha (1989). The performance of the proposed HSA is tested for 19 
benchmark datasets and the results are shown in Table 3. In order to show the efficiency of the proposed 
algorithm, the results obtained for minimizing the total travel distance are compared with the best known 
values in the literature (Brandau, 2006). All experiments are executed on an 8-core Windows 10 
workstation (4 × dual core 3.4 Ghz, Intel(R) Core(TM) i7-6700) with 8GB of RAM. The HSA is 
implemented by using MS C#.NET under the .NET Framework 4.5 and MS Visual Studio 2015. The 
parameters of HSA is selected as T = 10000, Tmin = 100, α = 0.9999, jmax = 0.

The “best solution” column is the solution cost taken from Brandau (2006). The last column of Table
3 shows the gaps between the best values in literature and the proposed HSA. The optimal or near optimal
results are obtained by using HSA for the problems in literature.
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Table 3. Comparison of the results of the proposed HSA algorithm with the best results in the literature
for the traditional distance model.

Problem# # Pickup
Point

#Delivery
Point

Vehicle
Capacity #Vehicles Optimum

Solution HSA Gap%

A1 20 5 1,550 8 229,886 229,886 0.00%
A2 20 5 2,550 5 180,119 180,119 0.00%
A3 20 5 4,050 4 163,405 164,787 0.85%
A4 20 5 4,050 3 155,796 155,796 0.00%
B1 20 10 1,600 7 239,080 239,086 0.00%
B2 20 10 2,600 5 198,048 198,433 0.19%
B3 20 10 4,000 3 169,372 170,670 0.77%
C1 20 20 1,800 7 249,448 256,576 2.86%
C2 20 20 2,600 5 215,020 217,764 1.28%
C3 20 20 4,150 5 199,346 203,144 1.91%
C4 20 20 4,150 4 195,366 200,494 2.62%
D1 30 8 1,700 12 322,530 325,252 0.84%
D2 30 8 1,700 11 316,709 317,288 0.18%
D3 30 8 2,750 7 239,479 239,479 0.00%
D4 30 8 4,075 5 205,832 205,832 0.00%

3. Experimental results

The HSA is implemented by using MS C#.NET under the .NET Framework 4.5 and MS Visual Studio 
2015. The proposed energy-saving model is compared to the traditional model which minimizes the total 
distance. The total distance travelled and the consumed energy are shown for both models in Table 4 by 
using HSA

Table 4. The comparison of the proposed energy-saving model with the traditional distance model.

Traditional Distance Model Proposed Energy-Saving Model
Number
of ATV

Assigned
Route

Objective Function 1: Min Distance Objective Function 2: Min Energy
Distance ( m ) Energy ( kg.m ) Distance ( m ) Energy ( kg.m )

1 1 4,463 754,446 4,463 735,936
2 2 4,272 735,238 4,272 726,676
3 3 3,773 664,236 3,773 655,266

Overall 12,508 2,153,920 12,508 2,117,878

As seen in Table 4, the distance and energy consumption are calculated as 3,773 m and 664,236
kg × m by the traditional total-distance minimizing model with three ATVs. On the other hand, the
values are achieved as 3,773 m and 655,266 kg × m for the distance and consumed energy, respectively.
Although the proposed model has found the same distance value as the traditional model, 1.67% of the
energy compared to the traditional model has been saved for three ATVs. The best routes according to
the proposed model for each ATV are shown in Figure 2.

As seen in Figure 2 (a), the ATV starts its route from node 22 by taking the parts from Depot1. Since
each ATV has to complete its delivery task first, the ATV visits the node 29. Then, the ATV goes back to
the pickup node 28. The ATV completes the pickup tasks after visiting node 26 and 24. The ATV arrives
at node 21 (Depot2) to deliver the products from the pickup points to Depot2.

In Figure 2 (b), the 2nd ATV starts its route from node 22 (Depot1). It then follows node 41, 37, and
39 to complete its delivery tasks. Then, the ATV goes back to node 38 for the pickup task. The ATV
completes the pickup tasks after visiting node 36. Note that due to the capacity of the ATV, it can only
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(a) Route of the 1st ATV (b) Route of the 2nd ATV (c) Route of the 3rd ATV

Fig. 2. Route assignments of ATVs.

visit two pickup nodes in this trip. The ATV arrives at node 21 (Depot2) after finishing all its delivery
and pickup tasks.

The 3rd ATV starts its route from node 22 (Depot1) in Figure 2 (c). Then, the ATV follows node 37
and 31 to fulfill its delivery task. Then, the ATV visits node 30, 36, and 42 to complete all its pickup
tasks. Finally, the ATV arrives at node 21 (Depot2) to deliver the products from the pickup points to
Depot2.

In order to compare the models in the proposed algorithm, 20 different test problems are generated for
the factory environment in Figure 1. The test problems involve heterogeneous loads with the minimum
ATV requirement from 2 to 9. Table 5 compares the results obtained by the traditional distance model
with the results obtained by the proposed energy-saving model using the proposed HSA. The last column
of this table shows the gaps between two models.

Table 5. The comparison of the proposed energy-saving model with the traditional distance model
using proposed HSA algorithm.

Problem #ATV
HSA with Traditional Distance Model HSA with Proposed Energy-Saving Model Saving
Energy
(kg.m)

Distance
(m)

Computation
Time (s)

Energy
(kg.m)

Distance
(m)

Computation
Time (s)

Energy
(kg.m)

Distance
(m)

1 20 5 1,136,392 6,533 11.60 1,124,546 6,567 11.60 11,846 -34
2 20 5 653,406 3,908 8.56 648,156 3,908 8.52 5,250 0
3 20 5 1,010,612 5,989 11.05 1,006,112 5,989 11.05 4,500 0
4 20 5 990,556 6,049 9.43 977,226 6,049 9.49 13,330 0
5 20 5 748,338 4,579 8.78 746,088 4,579 9.27 2,250 0
6 20 6 982,854 5,832 11.29 981,288 5,952 11.32 1,566 -120
7 20 5 707,526 4,309 8.17 696,946 4,309 8.23 10,580 0
8 20 5 875,515 5,363 9.84 871,465 5,389 9.81 4,050 -26
9 20 5 1,398,764 7,981 13.73 1,384,700 8,161 13.72 14,064 -180

10 20 4 591,783 3,604 6.01 587,313 3,628 5.99 4,470 -24
11 20 6 866,902 5,430 10.07 865,882 5,430 9.71 1,020 0
12 20 6 859,815 4,857 9.91 848,023 4,879 9.95 11,792 -22
13 20 9 1,259,449 7,328 11.53 1,254,679 7,328 11.35 4,770 0
14 20 4 610,477 3,822 7.71 609245 3,822 7.70 1,232 0
15 20 2 499,870 2,944 5.46 490,410 3,034 5.54 9,460 -90
16 20 7 1,006,106 6,083 10.77 1,002,288 6,083 10.66 3,818 0
17 20 3 562,160 3,349 7.03 552,820 3,349 6.92 9,340 0
18 20 5 1,000,695 5,641 10.22 983,179 5,761 10.14 17,516 -120
19 20 5 990,428 5,967 10.97 975,710 5,967 10.87 14,718 0
20 20 7 1,148,179 6,653 11.88 1,136,287 6,683 11.90 11,892 -30

Total 17,899,827 106,221 17,742,363 106,867 157,464 -646
Mean 894,991.35 5,311.05 887,118.15 5,343.35 7,873.20 -32.30

As seen in the Table 5, total distance and energy consumption are calculated as 17,899,827 m and
106,221 [kg × m] by the traditional total-distance minimizing model with three ATVs. On the other
hand, the values are achieved as 17,742,363 m and 106,867 [kg × m] or the distance and consumed
energy, respectively, by using the proposed energy-saving model. While the energy saving is 7,873 [kg
× m] in average, the total distance increases as 32.3 m in average for each route planning problem. 

Although the proposed algorithm has found the same distance value as the traditional distance model,
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there is an energy saving in 11 out of 20 problem sets. While energy saving is occurred in all of the
problems, the total distance increases in 9 out of 20 problems. Trade-offs between energy and distance
are demonstrated for each problem in Figure 3.

Fig. 3. Trade-offs (%) between energy and distance.

Nowadays, energy efficient production and logistics are important issue due to energy costs. The 
pickup and delivery tasks are repeated actions in production logistics. Considering the fact that millions 
of transportation tasks will be carried out in a production enterprise, it is clear that a great energy saving 
will be achieved in the plants. In addition, the proposed model avoids transportation of heavy loads over 
long distances. It is clear that the energy saving will be much higher if the transportation area is large that 
has more alternative routes.

4. Conclusions

ATVs provide significant opportunities for the logistic industry by influencing all of the stages of the 
delivery and pickup tasks. This study proposes an energy saving routing and task scheduling system for 
delivery and pickup tasks with backhauls by using ATVs in production environments. The proposed 
algorithm for the initial solution minimizes the number of ATVs by considering capacity utilization rates 
of ATVs. Routes of ATVs and sequences of tasks are obtained by using the proposed energy saving 
routing and task scheduling system. The system is also compared to the traditional routing system which 
minimizes total distance travelled. Trade-offs between energy and distance show that the proposed 
system decreases energy.

Note that the costs of intra/production logistics activities have significant influence to the overall 
production costs. It is clear that a great energy saving will be achieved due to high energy costs and the 
nature of repeated transportation tasks in production plant. Future work will be concentrated on conflict 
free routing of ATVs for VRPB. The proposed model can be extended to cover other parameters that has 
effect on energy consumption of ATVs.
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Herrero-Pérez, D. & Martı́nez-Barberá, H., (2010). Modeling distributed transportation systems
composed of flexible automated guided vehicles in flexible manufacturing systems. IEEE Transactions
on Industrial Informatics. 6(2), 166–180.

Hussein, A., Mostafa, H., Badrel-din, M., Sultan, O. & Khamis A. (2012). Metaheuristic optimization
approach to mobile robot path planning. IEEE International Conference on Engineering and Technology
(ICET), 1-6.

Kara, I.; Kara, B.Y., & Yetiş, M. K., (2007). Energy minimizing vehicle routing problem. Combina-
torial Optimization and Applications Proceedings. Book Series: Lecture Notes in Computer Science,
4616. 62-71.

Lin, C., Choy, K. L., Ho, G. T. S., Chung, S. H. & Lam, H. Y. (2014). Survey of Green Vehicle
Routing Problem: Past and future trends, Expert Systems with Applications, 41, 1118-1138.

Liu, S., Linbo, M. & Jinshou, Y. (2006). Path planning based on ant colony algorithm and
distributed local navigation for multi-robot systems. IEEE International Conference on Mechatronics
and Automation, 1733-1738.

Magdy, Y., Shehata, O.M., AbdelAziz, M., Ghoneima, M., & Tolbah, F. (2017). Metaheuristic
optimization in path planning of autonomous vehicles under the ATOM framework. 2017 IEEE
International Conference on Vehicular Electronics and Safety (ICVES), Vienna, 32-37.

Rahul, K. (2020). Robot Mission Planning using Co-evolutionary Optimization. Robotica, 38(3), 512-
530..

Xiao, Y., Zhao, Q., Kaku, I., & Xu, Y., (2012). Development of a fuel consumption optimization model
for the capacitated vehicle routing problem. Computers and Operations Research, 39(7), 1419-1431.

Xidias, E.K., Nearchou, A.C. & Aspragathos, N.A. (2009). Vehicle scheduling in 2D shop floor
environments, Industrial Robot: An International Journal. Vol.36 (2), 176-183.

10

Energy efficient routing and task scheduling for autonomous transfer vehicles in intra logistics



Xidias, E.K. Paraskevi, Z. & Andreas, N. (2016). Path planning and scheduling for a fleet of 
autonomous vehicles. Robotica, 34(10), 1-17.

Xidias, E.K. (2018). On designing near-optimum paths on weighted regions for an intelligent vehicle. 
International Journal of Intelligent Transportation Systems Research, 17(2), 89-101.

Wang, F., Zhang, Y., & Su, Z. (2019). A novel scheduling method for automated guided vehicles in 
workshop environments. International Journal of Advanced Robotic Systems, 16(3).

Submitted:  10/07/2020
Revised: 06/01/2021
Accepted: 07/01/2021
DOI:       10.48129/kjs.v49i1.10194

11

Inci Saricicek, Sinem Bozkurt Keser, Azmi Cibi, Tahir Ozdemir, Ahmet Yazici




