On the gamma spectrum of multiplication gamma acts

Mehdi S. Abbas¹, Samer A. Gubeir^{2,*}

¹Dept. of Mathematics, College of Education, Al-Zahraa University for women, Iraq ²Dept. of Air Conditioning and Refrigeration Techniques Engineering, Al-Mustaqbal University College, Iraq *Corresponding author: samer.adam@mustaqbal-college.edu.iq

Abstract

In this paper, we introduce the concept of topological gamma acts as a generalization of Zariski topology. Some topological properties of this topology are studied. Various algebraic properties of topological gamma acts have been discussed. We clarify the interplay between this topological space's properties and the algebraic properties of the gamma acts under consideration. Also, the relation between this topological space and (multiplication, cyclic) gamma act was discussed. We also study some separation axioms and the compactness of this topological space.

Keywords: Gamma spectrum; multiplication gamma acts; prime gamma subact; radical gamma subact; topological gamma acts.

1. Introduction

In 1981, Sen, M. (Sen, 1981) introduced the concept of gamma semigroups as a generalization of semigroups as follows: let S and Γ be nonempty sets, S is said to be a gamma semigroup (Γ -semigroup for short) if there is a mapping: $S \times \Gamma \times S \rightarrow S$ written (s_1, α, s_2) by $s_1 \alpha s_2$ that satisfies the condition $s_1 \alpha(s_2 \beta s_3) = (s_1 \alpha s_2) \beta s_3$ for all $s_1, s_2, s_3 \in$ S and $\alpha, \beta \in \Gamma$. Let S be a Γ -semigroup. An element $s \in S$ is called the left (right) identity of S if $s\alpha t = t$ ($t\alpha s = t$) for all $t \in S$ and $\alpha \in \Gamma$. An element s in S is called identity if it is both a left and right identity of S. A Γ -semigroup with identity is called a Γ -monoid. The identity of a Γ -semigroup (if exists) is denoted by 1. A Γ -semigroup S is called commutative if $s\alpha t = t\alpha s$ for all *s*, *t* \in S and $\alpha \in \Gamma$. A nonempty subset T of Γ -semigroup S is called a Γ -subsemigroup of S if $s\alpha t \in T$, for all $s, t \in T$ and $\alpha \in \Gamma$. A nonempty subset A of semigroup S is called left (right) Γ -ideal if S Γ A \subset A $(A\Gamma S \subset A)$ where $S\Gamma A = \{s\alpha a: s \in S, \alpha \in S\}$ Γ and $a \in A$. The word Γ -ideal is used for a two-sided Γ -ideal. The union of any family of Γ -ideals of Γ -semigroup S is a Γ -ideal of S (Sen, 1981). An element $s \in S$ is said to be α -idempotent if there exists $\alpha \in \Gamma$ such that $s\alpha s = s$. A Γ -semigroup S is called idempotent if all elements of S are α -idempotent. For any subsets A and B of S, then, $A\Gamma B = \{a\alpha b: a\}$ $\in A$, $b \in B$, and $\alpha \in \Gamma$ }. A Γ -ideal B of a Γ semigroup S is called globally idempotent (gl-idempotent for short) if BΓB=B (Anjaneyulu *et al.*, 2012). A Γ -ideal P of S is said to be prime provided that for any two Γ -ideals A, B of S with A Γ B \subseteq P, either A \subseteq P or B \subseteq P (Anjaneyulu *et al.*, 2011). A Γ -ideal B of a Γ -semigroup S is called maximal if it is proper and is not properly contained in any proper Γ -ideal of S (Anjaneyulu et al., 2012). In 2016, Abbas M. and Faris A. (Abbas & Faris, 2016) introduced gamma's concept over gamma semigroup as follows: let S be a Γ semigroup. A nonempty set M is called left gamma act over S (denoted by S_{Γ} -act) if there is a mapping: $S \times \Gamma \times M \rightarrow M$ defined by $(s, \alpha, m) \mapsto s\alpha m$, satisfying $(s_1 \alpha s_2)\beta m$ $=s_1\alpha(s_2\beta m)$ for all $s_1, s_2 \in S$, $\alpha, \beta \in \Gamma$ and $m \in M$. In the same way, we can define right gamma acts. From now on, "S_{Γ}-act" means left S_{Γ}-act. A nonempty

subset N of a left S_{Γ} -act M is called gamma subact (denoted by S_{Γ} -subact) if, for all $s \in$ S, $\alpha \in \Gamma$ and $n \in N$ implies that $s\alpha n \in N$. An element $\theta \in M$ is called a zero of M if $s\alpha\theta=\theta$, and if S is a Γ -semigroup with zero then, $0\alpha m = \theta$ for all $m \in M$ and $\alpha \in \Gamma$. Let N be a S_{Γ} -subact of S_{Γ} -act M. Then, $[N: M] = \{s \in S | s \alpha m \in N \text{ for all } \alpha \in \Gamma \text{ and } m \in M\}.$ Clearly, [N:M] is a Γ -ideal of S. Given a family of S_{Γ} -subacts $\{N_i\}_{i \in I}$ of S_{Γ} -act M. Then, $\bigcup_{i \in I} N_i$ is S_{Γ} -subact of M, and if $\bigcap_{i \in I} N_i$ is nonempty, then, $\bigcap_{i \in I} N_i$ is S_{Γ} subact of M. Let M and N be two S_{Γ} -acts. A mapping $f: M \to N$ is called S_{Γ}-homomorphism if $f(s\alpha m) = s\alpha f(m)$ for every $s \in S$, $\alpha \in \Gamma$ and $m \in M$. If f is surjective, then, f is S_{Γ}epimorphism. Let $f: M \rightarrow N$ be S_{Γ} -homomophism. Then, the kernel f is defined as $\ker(f) = \{(m_1, m_2) \in M \times M | f(m_1) = f(m_2)\}$ (Kamal, 2016). An equivalence relation ρ on S_{Γ} -act M is called a congruence if for all $(m_1, m_2) \in \rho$ implies that $(s\alpha m_1, s\alpha m_2) \in \rho$ for all $s \in S$, $\alpha \in \Gamma$. Also, the quotient gamma act of the congruence ρ on M is denoted by M/ ρ define by M/ $\rho = \{m\rho | m \in M\}$ and $m\rho$ the equivalent class containing m. If N is S_{Γ}-subact of M, then, N/ ρ_N is a S_{Γ}subact of M/ ρ where $\rho_N = \rho \cap (N \times N)$. If H is a nonempty subset of S_{Γ} -act M, then, $\ell_{\rm S}({\rm H}) = \{(s, t) \in {\rm S} \times {\rm S} | s\alpha h = t\alpha h \text{ for all } \alpha \in \Gamma$ and $h \in H$. It is known that $\ell_{S}(H)$ is a congruence on S_{Γ} -act S (Kamal, 2016). Recently, Abbas M. and Jubeir S. (Abbas & Jubeir, 2020) introduced the concept of mu-Itiplication gamma acts. An S_{Γ} -act M is said to be a multiplication if every S_{Γ} -subact N of M is of the form N=A Γ M for some Γ ideal A of S. An S_{Γ} -act M is multiplication if and only if N=[N:M] Γ M for all S_{Γ}-subact N of M. Let M be a S_{Γ} -act and $s_1, s_2 \in S$. Then, M is called faithful if the equality $s_1 \alpha m = s_2 \alpha m$ implies that $s_1 = s_2$ for every $m \in M$ and $\alpha \in \Gamma$. Let S be a commutative Γ -monoid and M be a faithful S_{Γ}-act. Then, M is a multiplication if and only if $\bigcap_{i \in I} (A_i \Gamma M) = (\bigcap_{i \in I} A_i) \Gamma M$ for any nonempty collection of Γ -ideals A_i , $i \in I$ of S, and for all S_{Γ} -subact N of M and Γ -ideal A of S such that $N \subset A\Gamma M$ there exists an Γ -ideal B with $B \subset A$ and $N \subseteq B\Gamma M$. Let A be a Γ - ideal of Γ -monoid S, and M be a S_Γ-act. If M is faithful multiplication, then, A=[AΓM:M] (Abbas & Jubeir, 2020). Let N₁, N₂ be S_Γsubacts of multiplication S_Γ-act M. If N₁=AΓM and N₂=BΓM for some Γ -ideals A and B of S, then the product of N₁ and N₂ is denoted by N₁ * N₂ is defined by N₁ * N₂ = (AΓB)ΓM. Clearly, N₁ * N₂ is an S_Γ-subact of M. Let N be a S_Γ-subact of multiplication S_Γ-act M. Then, N is called gamma nilpotent(Γ -nilpotent for short) if N^k= θ for some positive integer k, where N^k means the product of N, k times. (Abbas & Adnan, 2020).

For S_{Γ} -act M, the set of all prime S_{Γ} subacts of M is called the gamma spectrum of M and denoted by $Spec_{\Gamma}(M)$. We remark that $Spec_{\Gamma}(\theta) = \emptyset$ and that $Spec_{\Gamma}(M)$ may be empty; for example, the zero S_{Γ} -act has no prime S_{Γ} -subact. Throughout this paper, we assume that $Spec_{\Gamma}(M)$ is nonempty. This article aims to study topological gamma acts for which the gamma spectrum is a topology in which the varieties $V_{\Gamma}(N) = \{P \in Spec_{\Gamma}(M) : N \subseteq P\}$ are closed sets for any S_{Γ} -subacts N of the S_{Γ} -act M. Note that our definition is a generalization of the Zariski topology on the spectrum of prime ideals of a ring. Thus, we extend the wellknown results of Zariski topology on Spec(R) to $Spec_{\Gamma}(M)$ and investigate the basic properties of this topology. The concepts of semiprime and extraordinary S_{Γ} -subacts are introduced to identify some cases when the gamma spectrum of a gamma act forms a topology. Also, using the concept of multiplication gamma acts to investigate various algebraic properties of such topology. We prove that $Spec_{\Gamma}(M)$ is a T_0 -space and it is compact if M is finitely generated multiplication gamma act. The relationship between $Spec_{\Gamma}(M)$ and $Spec_{\Gamma}(S)$ was investigated.

2. Preliminaries

In this section we introduce the concept of prime gamma subacts and basic related concepts which are needed in our work.

2.1. Definition.

A proper S_{Γ} -subact N of M is prime if for any $m \in M$ and $s \in S$, the set inclusion $s\Gamma S\Gamma m \subseteq N$ implies either $m \in N$ or $s \in [N:M]$.

2.2. Example.

Let $S=\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,b,c\}\}, \Gamma=\{\emptyset, \{a\}, \{a, b, c\}\}$ and M=S. Then, M is a S_{\Gamma}-act under the mapping: $S \times \Gamma \times M \rightarrow M$ defined by (A, B, C) $\mapsto A \cap B \cap C$. It can be easily verified that the S_Γ-subact $\{\{a, b\}, \{a\}, \emptyset\}$ is a prime S_Γ-subact of M.

2.3. Proposition.

Let S be a commutative Γ -semigroup and N be a proper S_{Γ} -subact of S_{Γ} -act M. The following statements are equivalent:

i. For every S_{Γ} -subact K of M, if $N \subset K$, then, [N:M] = [N:K].

ii. N is prime.

Proof:(i) \Rightarrow (ii) Let $s \in S$ and $m \in M$, such that $s \Gamma S \Gamma m \subseteq N$ and $m \notin N$. It is clear that $N \subset N \cup S \Gamma m$. Since $s \Gamma(N \cup S \Gamma m) \subseteq s \Gamma N$ $\cup s \Gamma(S \Gamma m) \subseteq N$. By statement (i), $s \in [N: N \cup S \Gamma m] = [N:M]$.

(ii) \Rightarrow (i) Let K be a S_Γ-subact of M such that N \subset K. Clearly [N:M] \subseteq [N:K]. Now, suppose that $s \in$ [N:K]. Then, $s\Gamma$ SΓK \subseteq $s\Gamma$ K \subseteq N. Since N \subset K,then, there exists $k \in$ K \setminus N such that $s\Gamma$ SΓ $k \subseteq$ N. By statement(ii), $s \in$ [N:M]. Hence, [N:M]=[N:K].

2.4. Proposition.

Let S be a commutative Γ -monoid, and M be a multiplication S_{Γ} -act. Then, for any S_{Γ} -subact N of M, the following conditions are equivalent:

i. N is prime S_{Γ} -subact of M.

ii. [N:M] is prime Γ -ideal of Γ -semigroup S. iii. There exists a prime Γ -ideal P of S, which is maximal with the property P Γ M=N.

Proof: (i) \Rightarrow (ii) Let A, B be Γ -ideals of S. Consider the inclusion A Γ B \subseteq [N:M].Then, (A Γ B) Γ M \subseteq N. Now, assume A \nsubseteq [N:M] then there is $a \notin$ [N:M] such that $a \alpha x \notin$ N, for some $x \in$ M and $\alpha \in \Gamma$. Let $b \in$ B, then, $b\Gamma(a\alpha x)=(b\Gamma a)\alpha x=(a\Gamma b)\alpha x\subseteq$ N. Since N is a prime S_{\Gamma}-subact of M and $a\alpha x \notin$ N, then, $b\Gamma M \subseteq N$. Thus, [N:M] is prime. (ii) \Rightarrow (iii) Consider the family of Γ -ideals $T=\{P:N=P\Gamma M \text{ and } P \text{ is an } \Gamma$ -ideal of S}. Since M is multiplication S_{Γ} -act, then, T is a nonempty partial order set by the usual inclusion relation. Let $\{P_i\}_{i\in I} \subseteq T$ be a chain. Then, $\bigcup_{i\in I} P_i \in T$ is an upper bound of $\{P_i\}_{i\in I}$. Zorn's Lemma implies that T has a maximal element such as P(say). Now, let A and B be two Γ -ideals such that $A\Gamma B \subseteq P$, then, $(A\Gamma B)\Gamma M \subseteq P\Gamma M \subseteq N$ and hence we obtain $A\Gamma B \subseteq [N:M]$, but by the assumption that [N:M] is prime we conclude that either $A \subseteq [N:M] \subseteq P$ or $B \subseteq [N:M] \subseteq P$. Thus P is prime Γ -ideal of S.

(iii) \Rightarrow (i) Let P be a prime Γ -ideal of S, which is maximal with the property $\Gamma M \subseteq N$. Clearly, P=[N:M]. Let $x \in S$ and $m \in M$ such that $x\Gamma S\Gamma m \subseteq N$. Since M is a multiplication, then there exists a Γ -ideal A of S, such that $S\Gamma m = A\Gamma M$, and hence $x\Gamma(A\Gamma M) = x\Gamma S\Gamma m$ $\subseteq N$. Thus $x\Gamma A \subseteq [N:M]$. Since [N:M]=Pand P is prime Γ -ideal of S, then, $x \in [N:M]$ or $A \subseteq [N:M]$ i.e $x \in [N:M]$ or $m \in S\Gamma m = A\Gamma M$ $\subseteq N$. Thus, N is prime S_{Γ} -subact of M.

2.5. Proposition.

Let N be a proper S_{Γ} subac of S_{Γ} -act M. Then, N is a prime in M if and only if N/ρ_N is prime S_{Γ} -subact of S_{Γ} -act M/ρ .

Proof:(\Rightarrow)Let $s\in S$ and $m\rho\in M/\rho$ where $m\in M$ satisfy $s\Gamma S\Gamma(m\rho)\subseteq N/\rho_N$. Thus $(s\alpha t\beta m)\rho = s\alpha t\beta(m\rho)\in N/\rho_N$ for all $t\in S$ and $\alpha,\beta\in\Gamma$. This implies that $s\alpha t\beta m \subseteq N$. By hypothesis $,s\Gamma M\subseteq N$ or $m\subseteq N$. Thus, $s\Gamma(M/\rho)=s\Gamma M/\rho\subseteq N/\rho_N$ or $m\rho\in N/\rho_N$.

(\Leftarrow) Let $s \in S$ and $m \in M$ such that $s\Gamma S\Gamma m \subseteq N$. Then, $s\alpha t\beta m \in N$ for all $t\in S$ and α , $\beta \in \Gamma$. So, $s\alpha t\beta (m\rho_N) = (s\alpha t\beta m)\rho_N$ $\in N/\rho_N$. It follows that by assumption $s \in$ $[M/\rho: N/\rho_N]$ or $m\rho_N \in N/\rho_N$. Thus, $s\Gamma M/\rho$ $\subseteq N/\rho_N$ or $m \in N$. Hence, $s\gamma m_\circ \in N$ for all $m_\circ \in M$ and $\gamma \in \Gamma$. Thus, $s\Gamma M \subseteq N$ or $m \in N$.

2.6. Proposition.

Let $\{N_i, i \in I\}$ be a non-empty collection of S_{Γ} -subacts of S_{Γ} -act M.

If N_i is a prime S_{Γ} -subacts for each $i \in I$, then, $\bigcup_{i \in I} N_i$ is a prime S_{Γ} -subact of M. Proof: Let $s \in S$ and $m \in M$ satisfy $s \Gamma S \Gamma m$ $\subseteq \bigcup_{i \in I} N_i$. Then, $s \Gamma S \Gamma m \subseteq N_j$ for some $j \in I$. By hypothesis, either $s \in [N_j:M]$ or $m \in N_j$. So, $s \in [\bigcup_{i \in I} N_i:M]$ or $m \in \bigcup_{i \in I} N_i$ and hence $\bigcup_{i \in I} N_i$ is a prime S_{Γ} -subact.

In the following, we characterize prime S_{Γ} -subact in multiplication S_{Γ} -act by product S_{Γ} - subacts.

2.7. Theorem.

Let S be a Γ -monoid and P be a proper S_{Γ}-subact of a multiplication S_{Γ}-act M. Then P is prime if and only if N₁ * N₂ \subseteq P then either N₁ \subseteq P or N₂ \subseteq P for each S_{Γ}-subacts N₁, N₂ of M.

Proof: (\Longrightarrow) Let P be a prime and N₁ * N₂ \subseteq P, but neither N₁ \notin P nor N₂ \notin P for some S_Γsubacts N₁, N₂ of M. Since M is a multiplication, then N₁=AΓM and N₂=BΓM for some Γ-ideals A, B of S. So there is a∈A ,b∈ B and $\alpha, \beta \in \Gamma$ such that $\alpha \alpha m \in N_1 \setminus P$ and b $\beta m' \in N_2 \setminus P$. Since (AΓB) $\Gamma M \subseteq P$. Thus $\alpha \alpha$ (b $\beta m'$) \in P, and since P is prime then either a \in [P:M] that is, $\alpha \alpha m \in P$ or b $\beta m' \in P$, which is a contradiction.

(⇐) Let $s \in S$ and $x \in M$ such that $s\Gamma S\Gamma x \subseteq P$. Suppose that $x \notin P$. Let $m \in M$. Since M is multiplication, then $S\Gamma m = A\Gamma M$ and $S\Gamma(s\alpha x) = B\Gamma M$ for some Γ -ideals A, B of S. Now, $S\Gamma(s\alpha x) * S\Gamma m = (B\Gamma A)\Gamma M \subseteq B\Gamma M = S\Gamma(s\alpha x) \subseteq s\Gamma S\Gamma x \subseteq P$. By hypothesis, we have $S\Gamma(s\alpha x) \subseteq P$ or $S\Gamma m \subseteq P$, but $x \notin P$ so $s\Gamma M \subseteq P$. Hence, P is prime.

Let M be a multiplication S_{Γ} -act and $m, m' \in M$. Then $S\Gamma m=A\Gamma M$ and $S\Gamma m'=B\Gamma M$ for some Γ -ideals A, B of S. So m * m'means the product of $S\Gamma m$ and $S\Gamma m'$, which is equal to $(A\Gamma B)\Gamma M$. As consequence of Theorem(2.7), we give the following Corollary:

2.8. Corollary.

Let S be Γ -monoid and P be a proper S_{Γ}- subact of a multiplication S_{Γ}-act M. Then P is prime if and only if $m * m' \in P$ then either $m \in P$ or $m' \in P$ for each $m, m' \in M$.

2.9. Definition.

Let N be a S_{Γ} -subact of S_{Γ} -act M. Then the radical of N is the intersection of all prime S_{Γ} -subacts of M containing N and denoted by $rad_M(N)$. If N is not contained in any prime S_{Γ} -subact of M, then $rad_M(N) = M$.

2.10. Proposition.

Let S be a commutative Γ -monoid and N be a proper S_{Γ}-subact of a faithful multiplication S_{Γ}-act M. Then $rad_M(N) = \sqrt{[N:M]} \Gamma M$.

Proof: Let $\mathcal{F} = \{P: P \text{ is prime } \Gamma \text{- ideal of } S$ such that $[N:M] \subseteq P\}$. Let $B=\sqrt{[N:M]}$ then $B=\bigcap_{P\in\mathcal{F}} P$ and hence, $B\Gamma M=\bigcap_{P\in\mathcal{F}}(P\Gamma M)$. Let $P \in \mathcal{F}$. If $M=P\Gamma M$ then $rad_M(N) \subseteq$ $P\Gamma M$. If $M\neq P\Gamma M$ then $N=[N:M]\Gamma M \subseteq P\Gamma M$ by Proposition (2.4), $P\Gamma M$ is prime S_{Γ} -subact of M. Thus $rad_M(N)\subseteq P\Gamma M$. Therefore, $rad_M(N) \subseteq B\Gamma M$. Conversely, let K be a prime S_{Γ} -subact of M containing N. Then by Proposition (2.4), there exists a prime Γ -ideal P of S, such that $K=P\Gamma M$ and Since $[N:M]\Gamma M=N\subseteq K=P\Gamma M$ then $[N:M]\subseteq$ P, and hence $\sqrt{[N:M]}\subseteq P$. So, $\sqrt{[N:M]}\Gamma M \subseteq$ $P\Gamma M=K$. Thus, $\sqrt{[N:M]}\Gamma M \subseteq rad_M(N)$.

Now, we give the concept of completely globally idempotent as follows:

2.11. Definition.

A Γ -semigroup S, is called completely globally idempotent if every Γ -ideal of S, is gl-idempotent.

2.12. Example.

Let $S=\Gamma= \{i, 0, -i\}$. Then S is Γ -semigroup under the multiplication over complex numbers. Here, $A_1=\{0\}$ and $A_2=S$ are the only Γ -ideals of S. It's clear that A_1 and A_2 are gl-idempotent.

3. Topological gamma acts

In this section, we introduce the concept of a topological gamma act and its basic properties discussed. In what follows, S will denote a Γ -semigroup with zero, and all S_{Γ}-acts contain the zero element.

3.1. Definition.

Let M be a S_{Γ} -act. The gamma spectrum (Γ -spectrum for short) of M is the collection of prime S_{Γ} -subacts of M and denoted by $Spec_{\Gamma}(M)$. When S is an S_{Γ} -act, then $Spec_{\Gamma}(S)$ is the set of all prime Γ -ideals of S.

3.2. Definition.

Let N be a S_{\(\Gamma\)}-subact of S_{\(\Gamma\)}-act M. We define $V_{\Gamma}(N)$ to be the set of all prime S_{\(\Gamma\)}-subacts of M containing N, i.e $V_{\Gamma}(N) = \{P \in Spec_{\Gamma}(M): N \subseteq P\}$. Note that, $V_{\Gamma}(M)$ is empty set and $V_{\Gamma}(\theta)$ is $Spec_{\Gamma}(M)$.

It's easy to see that for S_{Γ} -subacts N_1 and N_2 of M we have:

- i. If $N_1 \subseteq N_2$, then $V_{\Gamma}(N_2) \subseteq V_{\Gamma}(N_1)$.
- ii. If $V_{\Gamma}(N) = \{N\}$, then N is a prime. The converse is true if N is the unique prime S_{Γ} -subact of M.
- iii. $V_{\Gamma}(N_1) \cup V_{\Gamma}(N_2) \subseteq V_{\Gamma}(N_1 \cap N_2)$.

3.3. Proposition.

Let S be a Γ -monoid and M be a S_{Γ}-act. Then for the S_{Γ}-subacts N, N₁ and N₂ of M, the following conditions hold:

- i. If M is a multiplication then, $V_{\Gamma}(N_1) \cup V_{\Gamma}(N_2) = V_{\Gamma}(N_1 * N_2) = V_{\Gamma}(N_1 \cap N_2)$.
- ii. $V_{\Gamma}(rad_{\Gamma}(N)) = V_{\Gamma}(N)$.
- iii. If $V_{\Gamma}(N_1) \subseteq V_{\Gamma}(N_2)$, then $N_2 \subseteq rad_{\Gamma}(N_1)$.
- iv. $V_{\Gamma}(N_1) = V_{\Gamma}(N_2)$ if and only if $rad_{\Gamma}(N_1)$ = $rad_{\Gamma}(N_2)$.
- v. $N_1=N_2$ for any S_{Γ} -subacts N_1 , N_2 of M whenever $V_{\Gamma}(N_1)=V_{\Gamma}(N_2)$ is equivalent to

every proper S_{Γ} -subact N is the intersection of primes.

vi. If $\{N_i: i \in I\}$ is a nonempty collection of S_{Γ} subacts of M, then $\bigcap_{i \in I} V_{\Gamma}(N_i) = V_{\Gamma}(\bigcup_{i \in I} N_i)$.

Proof:(i) Let $P \in V_{\Gamma}(N_1) \cup V_{\Gamma}(N_2)$. Then $P \in V_{\Gamma}(N_1)$ or $P \in V_{\Gamma}(N_2)$ and hence $N_1 \subseteq P$ or $N_2 \subseteq P$. Since $N_1 * N_2 \subseteq N_1$ and $N_1 * N_2 \subseteq N_2$ thus $P \in V_{\Gamma}(N_1 * N_2)$. Conversely, let $P' \in V_{\Gamma}(N_1 * N_2)$ then $N_1 * N_2 \subseteq P'$. By Theorem (2.7), $N_1 \subseteq P'$ or $N_2 \subseteq P'$ that is, $P' \in V_{\Gamma}(N_1) \cup V_{\Gamma}(N_2)$. For the other part let $Q \in V_{\Gamma}(N_1 * N_2)$ then $N_1 * N_2 \subseteq Q$. Thus $N_1 \subseteq Q$ or $N_2 \subseteq Q$ which implies that $Q \in V_{\Gamma}(N_1 \cap N_2)$. The other direction is clear.

(ii) For $P \in V_{\Gamma}(N)$ we have $N \subseteq P$ and hence $rad_{\Gamma}(N)\subseteq P$. So $P \in V_{\Gamma}(rad_{\Gamma}(N))$. Conversely $P' \in V_{\Gamma}(rad_{\Gamma}(N))$ then $rad_{\Gamma}(N)\subseteq P'$. Since $N \subseteq rad_{\Gamma}(N)$. Thus, $P' \in V_{\Gamma}(N)$. Therefore, $V_{\Gamma}(rad_{\Gamma}(N)) = V_{\Gamma}(N)$.

(iii) By hypothesis, $N_2 \subseteq P$ for every $P \in V_{\Gamma}(N_1)$. Thus $N_2 \subseteq \bigcap_{P \in V_{\Gamma}(N_1)} P$ and hence $N_2 \subseteq rad_{\Gamma}(N_1)$.

(iv) Clearly, $rad_{\Gamma}(N_1) = \bigcap_{N_1 \subseteq P} P = \bigcap_{P \in V_{\Gamma}(N_1)} P$ = $\bigcap_{P \in V_{\Gamma}(N_2)} P = rad_{\Gamma}(N_2)$. Conversely, by (ii) $V_{\Gamma}(N_1) = V_{\Gamma}(rad_{\Gamma}(N_1) = V_{\Gamma}(rad_{\Gamma}(N_2) = V_{\Gamma}(N_2))$.

(v)(⇒)Suppose N₁ is a proper S_Γ-subact of M. If $V_{\Gamma}(N_1)=\emptyset$, then $V_{\Gamma}(N_1)=V_{\Gamma}(M)$. By hypothesis N₁=M, a contradiction. Thus $V_{\Gamma}(N_1)$ $\neq \emptyset$, we obtain N₂= $\bigcap_{P \in V_{\Gamma}(N_1)} P=rad_{\Gamma}(N_1)$. Then, $V_{\Gamma}(N_2)=V_{\Gamma}(rad_{\Gamma}(N_1)=V_{\Gamma}(N_1)$, since N₁=N₂. Hence, N₁ is an intersection of prime S_Γ-subacts.

(\Leftarrow) Assume that $V_{\Gamma}(N_1)=V_{\Gamma}(N_2)$. It's clear by hypothesis every S_{Γ} -subact N of M is an intersection of prime S_{Γ} -subacts if and only if $N=\bigcap_{P\in V_{\Gamma}(N)} P$. Now, $N_1=\bigcap_{P\in V_{\Gamma}(N_1)} P$ and $N_2=\bigcap_{P\in V_{\Gamma}(N_2)} P$. It follows that $N_1=N_2$.

(vi) Let $P \in \bigcap_{i \in I} V_{\Gamma}(N_i)$. Then $P \in V_{\Gamma}(N_i)$ and hence $N_i \subseteq P$ for all $i \in I$. Thus, $\bigcup_{i \in I} N_i \subseteq P$. So, P∈ $V_{\Gamma}(\bigcup_{i \in I} N_i)$. Conversely, let Q∈ $V_{\Gamma}(\bigcup_{i \in I} N_i)$. Then, $\bigcup_{i \in I} N_i \subseteq Q$. We conclude that $N_i \subseteq Q$ and hence Q∈ $V_{\Gamma}(N_i)$ for every *i*∈I. Thus, Q∈ $\bigcap_{i \in I} V_{\Gamma}(N_i)$. Hence, $\bigcap_{i \in I} V_{\Gamma}(N_i) = V_{\Gamma}(\bigcup_{i \in I} N_i)$.

Now, we introduce the definition of topological gamma act as follows:

3.4. Definition.

Let M be a S_Γ-act, and $\tau(M) = \{V_{\Gamma}(N): N \text{ is } S_{\Gamma}\text{-subact of } M\}$. If $\tau(M)$ is closed under finite unions, then the family $\tau(M)$ satisfies the axioms for the closed subsets of a topological space. Thus,

 τ (M) is a topology on $Spec_{\Gamma}$ (M) called the gamma act topology.

3.5. Examples.

1. Let $S=M=\{w, x, y, z\}$ and Γ any nonempty set. Then, M is an S_{Γ} -act under the multiplication mapping: $S \times \Gamma \times M$ $\rightarrow M$ defined by $a\alpha b=ab$, which given in the following table:

	w	x	у	Ζ
w	w	w	w	w
x	w	w	w	x
у	w	w	w	w
Ζ	w	w	у	Ζ

Here $\{w\}, \{w, x\}, \{w, y\}$ and $\{w, x, y\}$ are the S_r- subacts of M. But, $\{w, x, y\}$ is the only prime S_r-subact of M. So, $Spec_{\Gamma}(M) = \{\{w, x, y\}\},$

 $V_{\Gamma}(\{w\})=V_{\Gamma}(\{w, x\})=V_{\Gamma}(\{w, y\})=Spec_{\Gamma}(M)$ and $V_{\Gamma}(M)=\emptyset$. So, $\tau(M)=\{\emptyset, Spec_{\Gamma}(M)\}$. In this case $\tau(M)$ is the indiscrete topological S_{Γ} -act.

2. Let $S = \mathbb{Z}_6$, $\Gamma = \{\overline{1}, \overline{3}\}$, and M=S. Clearly, M is an S_{Γ} -act under multiplication mod 6. The S_{Γ} -subacts of M are $N_1 = \{\overline{0}\}$, $N_2 = \{\overline{0}, \overline{2}, \overline{4}\}$, $N_3 = \{\overline{0}, \overline{3}\}$, and $N_4 = \{\overline{0}, \overline{2}, \overline{3}, \overline{4}\}$. It's clear that N_2 , N_3 , N_4 are the only prime S_{Γ} -subacts of M. Thus, $Spec_{\Gamma}(M) = \{N_2, N_3, N_4\},\$ $V_{\Gamma}(N_1) = Spec_{\Gamma}(M), V_{\Gamma}(M) = \emptyset, V_{\Gamma}(N_2) = \{N_2N_4\},\$ $V_{\Gamma}(N_3) = \{N_3, N_4\} \text{ and } V_{\Gamma}(N_4) = \{N_4\}. \text{ Hence,}\$ $\tau(M) = \{\emptyset, Spec_{\Gamma}(M), \{N_2, N_4\}, \{N_3, N_4\}, \{N_4\}\}.$

3. Let $S=M=\{a, b, c, d, e, f\}$ and Γ be a nonempty set. Then M is an S_{Γ} -act under the mapping: $S \times \Gamma \times M \longrightarrow M$, which defined by:

$$x \alpha y = \begin{cases} a & if \quad x = f, y = a \\ b & if \quad x = f, y = b \\ c & if \quad x = f, y = c \\ f & if \quad x = f = y \\ e & if \quad x \in M, y = b \text{ or } y = e \\ d & otherwise. \end{cases}$$

Here, the S_Γ-subacts of M are: N₁={a, d, e, f}, N₂={b, d, e, f}, N₃={c, d, e, f}, N₄= {b, c, d, e, f}, N₅={a, c, d, e, f}, N₆={a, b, d, e, f} and N₇=M. Then it can be easily verified that, $V_{\Gamma}(N_1)$ ={ N_1, N_6, N_5 }, $V_{\Gamma}(N_2)$ ={N₂, N₆, N₄}, $V_{\Gamma}(N_3)$ ={N₃, N₄, N₅}, $V_{\Gamma}(N_4)$ ={N₄}, $V_{\Gamma}(N_5)$ ={N₅} and $V_{\Gamma}(N_6)$ ={N₆}. But $V_{\Gamma}(N_5) \cup V_{\Gamma}(N_6)$ ={N₆, N₅} $\neq V_{\Gamma}(N_i)$ for all i=1,2,3,4,5,6 and $V_{\Gamma}(N_5) \cup V_{\Gamma}(N_6) \neq V_{\Gamma}(N_5 \cap N_6)$. Now, we identify some cases for which $\tau(M)$ is a topological gamma act Before

 $\tau(M)$ is a topological gamma act. Before this, we need the following definitions.

3.6. Definition.

An S_{Γ} -subact N of S_{Γ} - act M is called semiprime if N is an intersection of prime S_{Γ} -subacts of M.

3.7. Definition.

A prime S_{Γ} - subact N of S_{Γ} - act M is said to be extraordinary if whenever K and L are semiprime S_{Γ} - subacts of M with $K \cap L \subseteq N$ then $K \subseteq N$ or $L \subseteq N$.

3.8. Example.

Let $S = \Gamma = \mathbb{Z}$ and $M = 6\mathbb{Z}$. Then M is a S_{Γ} -act under the usual multiplication of integer numbers.

It is clear that $Spec_{\Gamma}(M) = \{(6p)\Gamma S: p \in \mathbb{P} \text{ where } \mathbb{P} \text{ is the set of prime numbers}\}$. Thus, any semiprime S_{Γ} -subact N of M has a form $N = \bigcap_{i \in I} (6p_i)\Gamma S$, for some $p_i \in \mathbb{P}$. Also, the prime S_{Γ} -subact $P = (12)\Gamma S$ of M is extraordinary. Let K and L be semiprime S_{Γ} -subacts of M, such that $K = \bigcap (6p)\Gamma S$ and $L = \bigcap (6q)\Gamma S$, where the intersection runs among some p, q in \mathbb{P} . Thus, $K = (6m)\Gamma S$ and $L = (6nm)\Gamma S \subseteq P = 6(2)\Gamma S$. So, we have 2 divides nm then 2 divides n or 2 divides m. This, implies that $K \subseteq P$ or $L \subseteq P$.

3.9. Theorem.

For a S_{Γ} -act M. The following conditions are equivalent:

- i. M is a Top S_{Γ} -act.
- ii. Every prime S_{Γ} -subact of M is extraordinary
- iii. $V_{\Gamma}(N) \cup V_{\Gamma}(K) = V_{\Gamma}(N \cap K)$ for all semiprime S_{Γ} -subacts N and K of M.

Proof:(i)⇒(ii) Let K be a prime S_Γ-subact of M and N, L be semiprime S_{Γ} -subacts of M such that $N \cap L \subset K$. By assumption, there is an S_{Γ} -subact T of M such that $V_{\Gamma}(N) \bigcup V_{\Gamma}(L) = V_{\Gamma}(T)$. Since N is semiprime, then there exists a collection of prime S_{Γ} subacts K_i , $(i \in I)$ such that, $N = \bigcap_{i \in I} K_i$. So, for all $i \in I$, $K_i \in V_{\Gamma}(N) \subseteq V_{\Gamma}(T)$, and hence $T \subseteq K_i$ for all $i \in I$. Thus, $T \subseteq \bigcap_{i \in I} K_i = \mathbb{N}$. Similarly $T \subseteq L$. So $T \subseteq N \cap L$. Now, $V_{\Gamma}(N) \bigcup V_{\Gamma}(L) \subseteq V_{\Gamma}(N \cap L) \subseteq V_{\Gamma}(T) = V_{\Gamma}(N) \bigcup V_{\Gamma}(L).$ We conclude that $V_{\Gamma}(N) \cup V_{\Gamma}(L) = V_{\Gamma}(N \cap L)$. But, $K \in V_{\Gamma}(N \cap L)$. Thus, $K \in V_{\Gamma}(N)$ or $K \in$ $V_{\Gamma}(L)$. Hence, N \subseteq K or N \subseteq L. Therefore, K is extraordinary.

(ii) \Rightarrow (iii) Suppose that *N* and *K* semiprime S_Γ-subacts of M. It's clear that $V_{\Gamma}(N) \cup V_{\Gamma}(K) \subseteq V_{\Gamma}(N \cap K)$. Let $L \in V_{\Gamma}(N \cap K)$. Then, $N \cap K \subseteq L$. Since L is prime then by (ii), $N \subseteq L$ or $K \subseteq L$, *i.e* $L \in V_{\Gamma}(N)$ or $L \in V_{\Gamma}(K)$. This shows that $V_{\Gamma}(N \cap K) \subseteq V_{\Gamma}(N) \cup V_{\Gamma}(K)$. Hence, $V_{\Gamma}(N) \cup V_{\Gamma}(K) = V_{\Gamma}(N \cap K)$. (iii) \Rightarrow (i) Let K_1 and K_2 be any S_{Γ} -subacts of M. If $V_{\Gamma}(K_1)$ is empty, then $V_{\Gamma}(K_1) \cup$ $V_{\Gamma}(K_2) = V_{\Gamma}(K_2)$. Assume that $V_{\Gamma}(K_1)$ and $V_{\Gamma}(K_2)$ are both nonempty. Then, $V_{\Gamma}(K_1)$ $\cup V_{\Gamma}(K_2) = V_{\Gamma}(rad_{\Gamma}(K_1)) \cup V_{\Gamma}(rad_{\Gamma}(K_2))$ $= V_{\Gamma}(rad_{\Gamma}(K_1) \cap rad_{\Gamma}(K_2))$. Thus, M is a Top S_{Γ} -act.

If { A_i , $1 \le i \le n$ } is any nonempty family of Γ -ideals of Γ -semigroup S, then , $A_1 \Gamma A_2 \Gamma$... $\Gamma A_n \subseteq A_1 \cap A_2 \cap ... \cap A_n$.

3.10. Corollary.

Let M be a S_{Γ} -act with the property that for every prime S_{Γ} -subact N of M, $[K:M] \subseteq [N:M]$ implies that $K \subseteq N$ for each semiprime S_{Γ} -subact K of M. Then M is a Top S_{Γ} -act.

Proof: Let K_1, K_2 be a semiprime S_{Γ} -subacts of M with $K_1 \cap K_2 \subseteq N$. It follows that $[K_1:M] \cap [K_2:M] = [K_1 \cap K_2:M] \subseteq [N:M]$, since [N:M] is a prime Γ -ideal of S, then either $[K_1:M] \subseteq [N:M]$ or $[K_2:M] \subseteq [N:M]$. Now, by hypothesis, we have $K_1 \subseteq N$ or $K_2 \subseteq N$, that is, N is extraordinary. Hence, M is a Top S_{Γ} -act by Theorem (3.9).

3.11. Corollary.

Any homomorphic image of a Top S_{Γ} -act is a Top S_{Γ} -act.

Proof: Consider the S_Γ-epimorphism $\pi: M \rightarrow M/\rho$, where ρ a congruence on M. Let N/ρ_N be a prime S_Γ-subact of S_Γ-act M / ρ , where N is a prime S_Γ-subact of M (by Proposition (2.5)). Consequently, any semiprime S_Γ-subact of M/ ρ is of the form K/ρ_K for which K is semiprime S_Γ-subact of M. Let K_1/ρ_{K_1} and K_2/ρ_{K_2} be semiprime S_Γ-subact of M/ ρ . Then, $\pi^{-1}(K_1/\rho_{K_1} \cap K_2/\rho_{K_2}) \subseteq \pi^{-1}(N/\rho_N)$. So $\pi^{-1}(K_1/\rho_{K_1} \cap \pi^{-1}(K_2/\rho_{K_2}) \subseteq \pi^{-1}(N/\rho_N)$. Thus, $K_1 \cap K_2 \subseteq N$. It follows that $K_1 \subseteq N$ or $K_2 \subseteq N$ and hence, $\pi(K_1) \subseteq \pi(N)$ or

 $\pi(K_2) \subseteq \pi(N)$. Thus, $K_1/\rho_{K_1} \subseteq N/\rho_N$ or $K_2/\rho_{K_2} \subseteq N/\rho_N$. Hence, N/ρ_N is extraordinary. So, by Theorem (3.9), M/ρ is Top S_Γ-act. Now, let P be a prime Γ-ideal of Γ-semigroup S and A₁, A₂ be a semiprime Γ-ideals of S with A₁∩A₂ \subseteq P. Since A₁ΓA₂ \subseteq A₁∩A₂ \subseteq P, then A₁ \subseteq P or A₂ \subseteq P and hence P is extraordinary. Thus, by Theorem (3.9) any Γ-semigroup S is a Top S_Γ-act.

Recall, if M and N are S_{Γ} -acts, $f: M \to N$ S_{Γ} -homomorphism, then $M/\ker(f) \cong \operatorname{Im}(f)$. (Kamal, 2016)

Now, we study the relation between cyclic and topological gamma acts. For this reason, we give the following Proposition.

3.12. Proposition.

Let M be a S_{Γ} -act. If M is cyclic, then $M \cong S/\ell_S(m)$ for some $m \in M$. Proof: Let M be a cyclic S_{Γ}-act. Then, there exists $m \in M$ such that M=S Γm . Define, $f: S \rightarrow M$ by $f(s) = s\alpha m$ for every $s \in S$ and $\alpha \in \Gamma$. Now, let s'∈ S and $\beta \in \Gamma$. s, thus $f(s\beta s')=(s\beta s')\alpha m=s\beta(s'\alpha m)=s\beta f(s')$ and hence f is a S_{Γ}-homomorphism. Also, let $m' \in M$, then $m'=t\gamma m=f(t)$. Hence, $M\cong S/ker(f)$. Since $\ker(f) = \{(s, t) \in S \times S | f(s) = f(t)\} = \{(s, t) \in S \times S \} = \{(s, t)$ $s\alpha m = t\alpha m \} = \ell_{\rm S}(m)$. Thus, ${\rm M} \cong {\rm S}/\ell_{\rm S}(m)$.

3.13. Corollary.

Any cyclic S_{Γ} -act is a Top S_{Γ} -act. Proof: It's clear by Corollary (3.11) and Proposition (3.12).

But the converse of Corollary (3.13) may not be true, as we can see in the first part of example (3.5).

3.14. Corollary.

Let S be a Γ -semigroup and T be a Γ -sub-semigroup of S. If M is a Top T_{Γ} -act, then M is a Top S_{Γ} -act.

Proof: Let K be a prime S_{Γ} -subact of M. Then K is a proper T_{Γ} -subact of M. If $t, s \in T$, $m \in M$ and $\alpha, \beta \in \Gamma$ satisfy $t\alpha s\beta m \in K$ then $m \in K$ or $t\Gamma M \subseteq K$. Thus K is a prime T_{Γ} -subact of M. Let L_1 and L_2 be semiprime S_{Γ} -subacts of M with $L_1 \cap L_2 \subseteq K$. By the same way above, we have L_1 and L_2 are semiprime T_{Γ} -subact of M. Since M is a Top T_{Γ} -act then, $L_1 \subseteq K$ or $L_2 \subseteq K$. Thus, K is extraordinary. Hence, by Theorem (3.9), M is a Top S_{Γ} -act.

3.15. Proposition.

Let A be a Γ -ideal of Γ - monoid S and N be a S_{Γ} -subact of S_{Γ} -act M. Then $V_{\Gamma}(N) \cup V_{\Gamma}(A\Gamma M) = V_{\Gamma}(A\Gamma N) = V_{\Gamma}(N \cap A\Gamma M)$.

Proof: It's clear that, $V_{\Gamma}(N) \cup V_{\Gamma}(A\Gamma M) \subseteq V_{\Gamma}(N \cap A\Gamma M) \subseteq V_{\Gamma}(A\Gamma N)$. Let $P \in V_{\Gamma}(A\Gamma N)$. Then $A\Gamma N \subseteq P$. This implies that $A\Gamma 1\Gamma N \subseteq P$ and hence $A\Gamma S\Gamma N \subseteq P$. Since P is a prime, then $N \subseteq P$ or $A\Gamma M \subseteq P$. So, $P \in V_{\Gamma}(N)$ or $P \in V_{\Gamma}(A\Gamma M)$. Thus, $P \in V_{\Gamma}(N) \cup V_{\Gamma}(A\Gamma M)$. Therefore, $V_{\Gamma}(A\Gamma M) \subseteq V_{\Gamma}(N) \cup V_{\Gamma}(A\Gamma M)$.

3.16. Corollary.

Let A and B be a Γ -ideals of Γ -monoid S and Μ be a S_{Γ} -act. Then $V_{\Gamma}(A\Gamma M) \bigcup V_{\Gamma}(B\Gamma M) = V_{\Gamma}[(A\Gamma B)\Gamma M].$ Now, if $\{A_i\}_{i \in I}$ is a collection of Γ -ideals of S, then it's easy to show that, $\bigcap_{i \in I} V_{\Gamma}(A_i \Gamma M)$ = $V_{\Gamma}(\bigcup_{i \in I} A_i \Gamma M)$. Thus, by using this fact with Corollary (3.16), we get the subset $\tau(A\Gamma M) = \{V_{\Gamma}(A\Gamma M): \text{ where } A \text{ is } \Gamma \text{-ideal of } \}$ S} of $\tau(M)$ is a topological space, and if M is a Top S_{Γ}-act, then τ (A Γ M) is a subspace of $\tau(M)$. In particular, if M is a multiplication then M is a Top S_{Γ} -act.

3.17. Proposition.

Ever multiplication S_{Γ} -act is a Top S_{Γ} -act.

Thus, we have the following result:

3.18. Corollary.

If S is completely globally idempotent Γ -semigroup then any Γ -ideal of S is a Top S_{Γ} -act.

Proof: Let A and B be Γ -ideals of S, such that B \subseteq A. Then B = B Γ B \subseteq B Γ A \subseteq B. Hence, B=B Γ A. Thus, A is a multiplication. By Proposition (3.17), A is Top S $_{\Gamma}$ -act.

We denote the complement of $V_{\Gamma}(N)$ in $\tau(M)$ for any S_{Γ} -subact N of M by $D_{\Gamma}(N)$, i.e. $D_{\Gamma}(N) = Spec_{\Gamma}(M) \setminus V_{\Gamma}(N)$. Note that $D_{\Gamma}(m) = D_{\Gamma}(S\Gamma m)$ for every $m \in M$.

3.19. Proposition.

If M is a multiplication S_{Γ} -act, then the following conditions hold:

i. $D_{\Gamma}(m) \cap D_{\Gamma}(n) = D_{\Gamma}(m * n)$ for any $m, n \in M$.

ii. Let N⊂M with every proper S_Γ-subact of M is the intersection of primes. If D_Γ(N) =Ø, then N is Γ-nilpotent.

Proof:(i) Let $m, n \in M$. Then $S\Gamma m = A\Gamma M$ and $S\Gamma n = B\Gamma M$ for some Γ -ideals A and B of S. By Corollary (3.16), $D_{\Gamma}(m) \cap D_{\Gamma}(n) =$ $D_{\Gamma}(A\Gamma M) \cap D_{\Gamma}(B\Gamma M) = [Spec_{\Gamma}(M) \setminus V_{\Gamma}(A\Gamma M)]$ $\cap [Spec_{\Gamma}(M) \setminus V_{\Gamma}(B\Gamma M)] = Spec_{\Gamma}(M) \setminus [V_{\Gamma}(A\Gamma M)]$ $\cup V_{\Gamma}(B\Gamma M)] = Spec_{\Gamma}(M) \setminus V_{\Gamma}((A\Gamma B)\Gamma M)$ $= Spec_{\Gamma}(M) \setminus V_{\Gamma}(m * n) = D_{\Gamma}(m * n)$. (ii) Let $D_{\Gamma}(N) = \emptyset$. Then, $Spec_{\Gamma}(M) \setminus V_{\Gamma}(N) = \emptyset$ thus $Spec_{\Gamma}(M) = V_{\Gamma}(N)$ and hence $V_{\Gamma}(N) = V_{\Gamma}(\theta)$. By Proposition (3.3)(v), N= θ . Therefore, N is a Γ -nilpotent.

3.20. Proposition.

Let M be a S_{Γ} -act. Then

the sets $\{D_{\Gamma}(m_i): i \in I\}$ forms a base of the gamma act topology on M.

Proof: Any nonempty open set in the gamma act topology contains $D_{\Gamma}(K)$ for some S_{Γ} -subact K of M. Now, any such $K = \bigcup_{i \in I} \{m_i\}$, $m_i \in K$. Then, $D_{\Gamma}(K) = D_{\Gamma}(\bigcup_{i \in I} m_i) = Spec_{\Gamma}(M) \setminus V_{\Gamma}(\bigcup_{i \in I} m_i) = Spec_{\Gamma}(M) \setminus \bigcap_{i \in I} V_{\Gamma}(m_i) = \bigcup_{i \in I} D_{\Gamma}(m_i)$.

3.21. Definition

(Erdogan, 2003) Let $\mathcal{A} = \{\underline{A}_i : i \in I\}$ be a collection of sets. Then \mathcal{A} is said to have the finite intersection property if for every

finite collection $\{A_1, ..., A_n\}$ of \mathcal{A} , we have that $\bigcap_{i=1}^n A_i \neq \emptyset$.

3.22. Theorem

(Erdogan, 2003) A topologicalspace X is compact if and only if for every collection of closed sets \mathcal{A} of X, with \mathcal{A} has the finite intersection property then, $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$.

3.23. Theorem.

If M is finitely generated multiplication S_{Γ} -act, then $Spec_{\Gamma}(M)$ is compact.

Proof: Let $\{V_{\Gamma}(N_i): i \in I\}$ be any collation of closed subsets of $Spec_{\Gamma}(M)$ where N_i is a S_{Γ} -subact of M for each $i \in I$ such that $\bigcap_{i \in I} V_{\Gamma}(N_i) = \emptyset$. Thus, by Theorem (3.3)(vi), $\bigcap_{i \in I} V_{\Gamma}(N_i) = V_{\Gamma}(\bigcup_{i \in I} N_i) = V_{\Gamma}(\bigcup_{i \in I} [N_i: M] \Gamma M)$ and hence $V_{\Gamma}(\bigcup_{i \in I} [N_i: M] \Gamma M) = \emptyset$. Now, suppose that $M \neq \bigcup_{i \in I} [N_i: M] \Gamma M$ then $V_{\Gamma}(M)$ $\neq V_{\Gamma}(\bigcup_{i \in I} [N_i: M] \Gamma M)$. This implies that \emptyset $\neq V_{\Gamma}(\bigcup_{i \in I} [N_i: M] \Gamma M)$, a contradiction. Thus, $\bigcup_{i \in I} [N_i: M] \Gamma M = M$. Since M is finitely generated, there exists a finite subset I'of I such that $M = \bigcup_{i \in I'} [N_i: M] \Gamma M$. Therefore, $\bigcap_{i \in I'} V_{\Gamma}(N_i) = V_{\Gamma}(\bigcup_{i \in I'} N_i) = V_{\Gamma}(\bigcup_{i \in I'} [N_i: M] \Gamma M$ =Ø. Which contradicts the finite intersection property. By Theorem (3.22), $Spec_{\Gamma}(M)$ is compact.

Now, we study some of the separation axioms and the density of topological gamma acts.

3.24. Definition.

Let M be a S_{Γ} -act and X be a nonempty subset of $Spec_{\Gamma}(M)$. Then the Jacobson radical of X is the intersection of all prime S_{Γ} -subacts of M which belong to X and denoted by $J_{\Gamma}(X)$. We denote the closure of a subset X of $Spec_{\Gamma}(M)$ by \overline{X} .

3.25. Theorem.

Let M be a Top S_{Γ}-act. Then, $\overline{X} = V_{\Gamma} ((J_{\Gamma}(X)).$ Proof: Let $V_{\Gamma}(N)$ be a closed set containing X, and P be a prime S_{Γ} -subact in X. Then $N \subseteq P$, and hence $N \subseteq J_{\Gamma}(X)$. Thus, $V_{\Gamma}(J_{\Gamma}(X)) \subseteq V_{\Gamma}(N)$. Since $X \subseteq V_{\Gamma}(J_{\Gamma}(X))$, then $V_{\Gamma}((J_{\Gamma}(X))$ is the smallest closed subset of $Spec_{\Gamma}(M)$ containing X. So, $\overline{X} = V_{\Gamma}((J_{\Gamma}(X)))$.

Recall that a topological space is a T₀-space if and only if the closures of distinct points are distinct. A subset A of a topological space X is called dense in X if \overline{X} =A. (Erdogan 2003 & Oner 2020)

3.26. Corollary.

If $(\theta) \in X$, then X is dense in $Spec_{\Gamma}(M)$. Proof: By Theorem (3.25), $\overline{X} = V_{\Gamma} ((J_{\Gamma}(X))$ $= V_{\Gamma}(\theta) = Spec_{\Gamma}(M)$. Hence, X is dense.

3.27. Corollary.

 $Spec_{\Gamma}(M)$ is a T₀-space

for every Top S_{Γ} -act M.

Proof: Let N_1 and N_2 be two distinct points of $Spec_{\Gamma}(M)$. Then, $\overline{\{N_1\}} = V_{\Gamma}(N_1) \neq V_{\Gamma}(N_2) = \overline{\{N_2\}}$. (By Theorem (3.25)). We deduce that, $Spec_{\Gamma}$ (M) is a T₀-space.

A topological space X is a T_1 -space if and only if all points of X are closed in X (i.e., given any x in X, the singleton set {x} is a closed set. (Erdoğan 2003&Öner 2020).

3.28. Theorem.

Let M be a S_{Γ} -act. Then $Spec_{\Gamma}$

(M) is T_1 -space if and only if each prime S_{Γ} -subact in $Spec_{\Gamma}(M)$ is maximal.

Proof:(\Leftarrow)Let{P} \subseteq Spec_{Γ}(M).Then, $\overline{\{P\}}=V_{\Gamma}$ (($J_{\Gamma}(\{P\})$)= $V_{\Gamma}(P)$. Since {P} is maximal. Thus, $\overline{\{P\}} = V_{\Gamma}(P) = \{P\}.$

(⇒) Let P be a prime S_Γ-subact of M. By hypothesis {P} is a closed subset of $Spec_{\Gamma}(M)$. Thus $V_{\Gamma}(P)=V_{\Gamma}$ $((J_{\Gamma}(\mathbf{P}))=\overline{\{P\}} = \mathbf{P}$. Hence, P is maximal in $Spec_{\Gamma}(\mathbf{M})$.

Recall, if N is a prime S_{Γ} -subact of S_{Γ} -act M, then [N:M] is a prime Γ -ideal of S. This idea motivates us to introduce and study the following mapping that gives a relationship between $Spec_{\Gamma}(M)$ and $Spec_{\Gamma}(S)$. Before this we need the following Lemma.

3.29. Lemma.

Let S be a commutative Γ monoid and M be a S_{Γ}-act. Then [S Γ P:M] =S Γ [P:M] for all S_{Γ}-subact P of M. Proof: Clear.

3.30. Definition.

Let S be a Γ -monoid and M be a S_{Γ}-act. Define a mapping ψ : Spec_{Γ}(M) \rightarrow Spec_{Γ}(S), by P \mapsto [P:M] for all P \in Spec_{Γ}(M).

Clearly, by Lemma (3.30) ψ is well-defined and S_{Γ}-homomorphism. The next Proposition present some properties of the mapping ψ .

3.31. Proposition.

Let S be a Γ -monoid, and M be a multiplication S_{Γ} -act, then

i. If M is faithful, then mapping ψ is surjective.

ii. The mapping ψ is injective.

Proof:(i) Let $P \in Spec_{\Gamma}(S)$. By Proposition (2.4), P Γ M is a prime S_{Γ}-subact. Now, $\psi(P\Gamma M)=[P\Gamma M:M]=P$.

(ii) Let $N_1, N_2 \in Spec_{\Gamma}(M)$ with $\psi(N_1) = \psi(N_2)$. Then, $[N_1:M] = [N_2:M]$ and hence $[N_1:M]\Gamma M$ $= [N_2:M]\Gamma M$. So, $N_1 = N_2$.

Thus, the mapping ψ plays an important role in studying algebraic properties of the S_{\(\Gamma\)}-act M when we have a related topology. For an example, if M is a faithful multiplication S_{\(\Gamma\)}-act, then $Spec_{\(\Gamma\)}(S)$ and $Spec_{\(\Gamma\)}(M)$ are homeomorphic, and hence we can transfer some of known topological properties of $Spec_{\(\Gamma\)}(M)$ to $Spec_{\(\Gamma\)}(S)$.

ACKNOWLEDGEMENTS

The authors would like to thank Al-Mustaqbal University College and Al-Zahraa University for Women for giving them the opportunity time and scientific support for completing this research.

References

Abbas, M. & Faris, A. (2016) Gamma"Acts. International Journal of Advanced Research, 4 (6) : 1592-1601.

Abbas, M. & Jubeir, S. (2020) Idempotent" and Pure Gamma"Subacts of multiplication Gamma Acts. Materials Science and Engineering, 871(1): 1-13.

Abbas, M. & Jubeir, S. (2020) The product of gamma subacts of multiplication gamma act. Proceedings of Internationa conference of modern application on information and communication technology. Babylon, Iraq.

Anjaneyulu, A.; Gangadhara, A. & Madhusudhana, D. (2011) Prime Radicals In Γ–Semigroups". International Journal of Mathematical and Engineering, 138 (3): 1250–1259. Anjaneyulu, A.; Gangadhara, A. & Madhusudhana, D. (2012) Duo Chained Γ-semigroups. International Journal of Mathematical Sciences, Technology, and Humanities, 50 (2): 520-533.

Erdoğan, S. (2003) Functional Analysis." Springer-Verlag, New Yourk. Pp.241.

Kamal, A. (2016) Gamma"Acts. M.Sc. thesis, University of Al-Mustansiriyah, Baghdad, Iraq.

Öner, T. (2020) Rarely convergent sequences in topological spaces. Kuwait Journal of Science, 47 (3):2-13.

Sen, M. (1981) On Γ-semigroups". Proceedings of Internationa Conference on Algebra and its Applications. Decker Publication, New York.

Sen, M. & Saha,K. (1986) On Γsemigroup. Bull. Calcutta Math. ,78 (3): 180–186.

Submitted	: 13/07/2020
Revised	: 10/09/2020
Accepted	: 13/09/2020
DOI	: 10.48129/kjs.v48i2.10147