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Abstract

In this paper, we introduce the concept of topological gamma acts as a generalization of
Zariski topology. Some topological properties of this topology are studied. Various algebraic
properties of topological gamma acts have been discussed. We clarify the interplay between
this topological space's properties and the algebraic properties of the gamma acts under
consideration. Also, the relation between this topological space and (multiplication, cyclic)
gamma act was discussed. We also study some separation axioms and the compactness of this

topological space.
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1. Introduction

In 1981, Sen, M. (Sen, 1981) introduced the
concept of gamma semigroups as a
generalization of semigroups as follows: let
S and I' be nonempty sets, S is said to be a
gamma semigroup (I'-semigroup for short)
if there is a mapping: S x I' x S — S written
(s1,a,s3) by s;as, that satisfies the condition
s10(s,853)=(s1as,)Bs;3 for all 54, s,, S5 €
Sand a, B €T'. Let S be a I'-semigroup. An
elements €S is called the left (right)
identity of S if sat=t (tas=t) forallt € S
and a €. An element s in S is called
identity if it is both a left and right identity
of S. A I'-semigroup with identity is called
a I'-monoid. The identity of a I'-semigroup
(if exists) is denoted by 1. A I'-semigroup S
is called commutative if sat=tas for all
s,t€ S and a € I'. A nonempty subset T of
I'-semigroup S is called a I'-subsemigroup
of Sifsat € T, foralls,t € Tanda €T.
A nonempty subset A of semigroup S is
called left (right) I'-ideal if STA < A
(AI'Sc A) where S'A={saa: s€S,a €
['and a€A}. The word I'-ideal is used for a
two-sided I'-ideal. The union of any family
of I'-ideals of I'-semigroup S is a I'-ideal of

S (Sen, 1981). An element s € S is said to
be a-idempotent if there exists a€l’ such that
sas=s. A T-semigroup S is called idempotent if
all elements of S are a-idempotent. For any
subsets A and B of S, then, AI'B={aab: a
€A, beB,and ael'}. AT-ideal BofaTl-
semigroup S is called globally idempotent
(gl-idempotent for short) if BI'B=B
(Anjaneyulu et al., 2012). A T'-ideal P of S is
said to be prime provided that for any two
I'-ideals A, B of S with AI'B € P, either A
C P or B € P (Anjaneyulu ez al., 2011). A
I'-ideal B of a I'-semigroup S is called
maximal if it is proper and is not properly
contained in any proper I-ideal of S
(Anjaneyulu et al., 2012). In 2016, Abbas
M. and Faris A. (Abbas & Faris, 2016)
introduced gamma's concept over gamma
semigroup as follows: let S be a I-
semigroup. A nonempty set M is called left
gamma act over S (denoted by Sr-act) if
there is a mapping: S x I' x M > M defined
by (s, a, m) = sam, satisfying (s;as,)fm
=s,a(s,fm) for all s;, s, €S, o, f €T
and m € M. In the same way, we can
define right gamma acts. From now on,
"Sr-act" means left Sr-act. A nonempty
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subset N of a left Sr-act M is called gamma
subact (denoted by Sr-subact) if, forall s €
S, a € I'and n € N implies that san € N.
An element 6 € M is called a zero of M if
sab=0, and if S is a ['-semigroup with zero
then, Oam=0 for all m € M and a€ I'. Let
N be a Sr-subact of Sr-act M. Then,
[N: M]={s€eS|sameN for all a€l’ and meM}.
Clearly, [N:M] is a I'-ideal of S. Given a
family of Sr-subacts {N;}; ¢; of Sr-act M.
Then, U;e; N; is Sr-subact of M, and if
Nie; N; is nonempty, then, N ;e N; is Sr-
subact of M. Let M and N be two Sr-acts. A
mapping f:M — Nis called Sr-homomorphism
if f(sam)=saf(m) for every s €S, a €l
and me M. If f is surjective, then, f is Sr-
epimorphism. Let f:M—N be Sr-homomo-
phism. Then, the kernel f is defined as
ker(f) = {(mi1, my)EM-M |f (m1) = f(m2)}
(Kamal, 2016). An equivalence relation p
on Sr-act M is called a congruence if for all
(m1, mx)€ p implies that (sami, samy)€ p
for all s € S, a € I'. Also, the quotient
gamma act of the congruence p on M is
denoted by M/p define by M/p={mp|me M
and mp the equivalent class containing m}.
If N is Sr-subact of M, then, N/py is a Sr-
subact of M/p where py =p N (N % N). If
H is a nonempty subset of Sr-act M, then,
Ls(H) = {(s, t)ESxS|sah =tah foralla € "
and h € H}. It is known that #s(H) is a
congruence on Sr-act S (Kamal, 2016).
Recently, Abbas M. and Jubeir S. (Abbas &
Jubeir, 2020) introduced the concept of mu-
Itiplication gamma acts. An Sr-act M is said
to be a multiplication if every Sr-subact N
of M is of the form N=AI'M for some I-
ideal A of S. An Sr-act M is multiplication
if and only if N=[N:M]I'M for all Sr-subact
N of M. Let M be a Sr-act and s;, s, € S.
Then, M is called faithful if the equality
s;am=s,am implies that s;=s, for every
m € M and a € I'. Let S be a commutative
I-monoid and M be a faithful Sr-act.
Then, M is a multiplication if and only if
Nier (A, TM)=(N;erA)TM for any nonempty
collection of I'-ideals A;, i € I of S, and for
all Sr-subact N of M and I'-ideal A of S
such that N € AI'M there exists an ['-ideal
BwithBc Aand Nc BI'M. Let Abeal-

ideal of I'-monoid S, and M be a Sr-act. If
M is faithful multiplication, then, A=[ATM:M]
(Abbas & Jubeir, 2020). Let N;, N, be Sr-
subacts of multiplication Sr-act M. If N;=AI'M
and N,=BI'M for some I'-ideals A and B of
S, then the product of N; and N,is denoted
by Ny * N, is defined by N; * N, = (AI'B)['M.
Clearly, N; * N, is an Sr-subact of M. Let
N be a Sr-subact of multiplication Sr-act M.
Then, N is called gamma nilpotent(I'-nilpotent
for short) if N*¥= @ for some positive integer
k, where N¥ means the product of N, k
times. (Abbas & Adnan, 2020).

For Sr-act M, the set of all prime Sr-
subacts of M is called the gamma spectrum
of M and denoted by Specr(M). We remark
that Specr(0)=@ and that Specr(M) may
be empty; for example, the zero Sr-act has
no prime Sr-subact. Throughout this paper,
we assume that Specr(M) is nonempty.
This article aims to study topological
gamma acts for which the gamma spectrum
is a topology in which the varieties
Vr(N)={P € Specr(M): N c P} are closed sets
for any Sr-subacts N of the Sr-act M. Note
that our definition is a generalization of the
Zariski topology on the spectrum of prime
ideals of a ring. Thus, we extend the well-
known results of Zariski topology on
Spec(R) to Specr(M) and investigate the
basic properties of this topology. The
concepts of semiprime and extraordinary
Sr-subacts are introduced to identify some
cases when the gamma spectrum of a
gamma act forms a topology. Also, using
the concept of multiplication gamma acts to
investigate various algebraic properties of
such topology. We prove that Specr(M) is
a Ty-space and it is compact if M is finitely
generated multiplication gamma act. The
relationship between Specr(M) and Specr(S)
was investigated.

2. Preliminaries

In this section we introduce the concept of
prime gamma subacts and basic related
concepts which are needed in our work.

2.1. Definition.

A proper Sr-subact N of M is prime if for
any m€ M and s € S, the set inclusion



sI'SI'm € N implies either m € N or s €
[N:M].

2.2. Example.

Let S={o, {a},{b},{c}.{a,b},{b.c}, {ac],
{a,b,c}}, I'={0,{a},{a ,b ,c}} and M=S.
Then, M is a Sr-act under the mapping:
S x I' x M —- M defined by
(A, B, C) — ANBNC. It can be easily
verified that the Sr-subact {{a, b},{a}, @}
is a prime Sr-subact of M.

2.3. Proposition.

Let S be a commutative I'-semigroup and N
be a proper Sr-subact of Sr-act M. The
following statements are equivalent:

i. For every Sr-subact K of M, if N c K,
then, [N:M]=[N:K].

ii. N is prime.

Proof:(i)=(ii) Let seS and meM, such
that sI'ST'mc N and m € N. It is clear that
N c N U SI'm. Since sI'(NUSI'm) < sI'N
UsT(ST'm)cN. By statement (i), s€[N: NU
SI'm] = [N:M].

(i))=(i) Let K be a Sr-subact of M such that
NcK. Clearly [N:M]<[N:K]. Now, suppose
that se[N:K]. Then, sT'STK < sTK < N.
Since Nc K, then, there exists ke K\N such
that sTST'k cN. By statement(ii), s€[N:M].
Hence, [N:M]=[N:K].

2.4. Proposition.

Let S be a commutative I'-monoid, and M
be a multiplication Sr-act. Then, for any Sr-
subact N of M, the following conditions are
equivalent:

i. N is prime Sr-subact of M.

ii. [N:M] is prime I'-ideal of '-semigroup S.
iil. There exists a prime I'-ideal P of S, which
is maximal with the property P M=N.
Proof: (i)=>(ii) Let A, B be I'-ideals of S.
Consider the inclusion AI'B € [N:M].Then,
(AT'B)I'M < N. Now, assume A € [N:M]
then there is a€[N:M] such that aax € N,
for some xEM and a€l’. Let b€ B, then,
bI'(aax)=(bT'a)ax=(al'b)axcN. Since N
is a prime Sr-subact of M and aax &€ N,
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then, bI'M < N. Thus, [N:M] is prime.
(i1)=(iii) Consider the family of I'-ideals
T={P:N=PI'M and P is an I'-ideal of S}.
Since M is multiplication Sr-act, then, T is
a nonempty partial order set by the usual
inclusion relation. Let {P; };c; = T be a
chain. Then, U;¢;P; € T is an upper bound
of {P;};¢. Zorn's Lemma implies that T has a
maximal element such as P(say). Now, let
A and B be two I'-ideals such that ATBCS P,
then, (AI'B)IME PI'M € N and hence we
obtain ATBE[N:M], but by the assumption
that [N:M] is prime we conclude that either
AC [N:M]SP or BES[N:M]<SP. Thus P is
prime I'-ideal of S.

(ili)=>(1) Let P be a prime I'-ideal of S,
which is maximal with the property PI'M < N.
Clearly, P=[N:M]. Let xeS and meM such
that xI'ST'm < N. Since M is a multiplication,
then there exists a I'-ideal A of S, such that
SI'm=AI'M, and hence xI'(AT'M)=xI'SI'm
C N. Thus xI'A < [N:M]. Since [N:M]=P
and P is prime I'-ideal of S, then, x€[N:M]
or AC[N:M] i.e x € [ N:-M] or m € S'm=AT'M
C N. Thus, N is prime Sr-subact of M.

2.5. Proposition.

Let N be a proper Srsubac of Sr-act M.
Then, N is a prime in M if and only if
N/py is prime Sr-subact of Sr-act M/p.
Proof:(=)Let s€S and mpEM/p where me
M satisfy sT'SI'(mp)SN/py. Thus (satfm)p
=satf(mp)EN/py for all t€S and a, fET.
This implies that satfm cN. By hypothesis
,STMcN or meN. Thus, sT(M/p)=sI'M/p
N/py or mp € N/py.

(&) Let s € S and m € M such that
sI'STmEN. Then, satfm € N for all teS
and a, B €T. So, satf(mpy)=(satfm)p,
€N/py. It follows that by assumption s€
[M/p: N/py] or mp, €N/py. Thus, sTM/p
cN/py or m €N. Hence, sym. € N for all
me. € Mand y€l'. Thus, sCTMc Norm € N.

2.6. Proposition.

Let {N;, i€l} be a non-empty collection of
Sr-subacts of Sr-act M.
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If N; is a prime Sr-subacts for eachi€l,
then, U;er N; is a prime Sr-subact of M.
Proof: Let s€ S and m €M satisfy sT'SI'm
C Ujer N;. Then, sI'ST'm < N; for some j €I .
By hypothesis, either s€[ N;:M] or m€ N;. So,
s € [UjerN;:M] or m € U;er N; and hence
Uier N; is a prime Sr-subact.

In the following, we characterize prime
Sr- subact in multiplication Sr-act by
product Sr- subacts.

2.7. Theorem.

Let S be a I'-monoid and P be a proper Sr-
subact of a multiplication Sr-act M. Then P
is prime if and only if N; * N,€ P then
either N; € P or N, € P for each Sr-
subacts N; , N, of M.

Proof: (=) Let P be a prime and N; * N, € P,
but neither N; €P nor N, & P for some Sr-
subacts N;, N, of M. Since M is a
multiplication, then N;=AI'M and N,=BI'M
for some I'-ideals A, B of S. So there is a€A
,b€ B and «a, f€I such that aameN,\P and
bpm'e N,\P. Since (AB)I'McP. Thus aa
(bpm")€EP, and since P is prime then either
a€[P:M] that is, aam€P or bfm'€P, which
is a contradiction.

(&) Lets € S and x € M such that sI'ST'x
C P. Suppose that x € P. Let meM. Since
M is multiplication, then SI'm= AI'M and
SI'(sax)=BI'M for some I'-ideals A, B of S.
Now, SI'(sax)*SI'm=(BI'A)I'M < BI'M =
SI'(sax)csI'ST'xSP. By hypothesis, we have
SI'(sax) c P or STmc P, but x € P so
sI'M c P. Hence, P is prime.

Let M be a multiplication Sr-act and m, m’
€ M. Then STm=AI'M and SI'm'=BI'M for
some I'-ideals A, B of S. So m * m'means
the product of SI'm and SI'm’, which is
equal to (AI'B)I'M. As consequence of The-
orem(2.7), we give the following Corollary:

2.8. Corollary.
Let S be I'mmonoid and P be a proper

Sr- subact of a multiplication Sr-act M.
Then P is prime if and only if m*m'e P

then either m € P or m’'€ P for each m, m'e
M.

2.9. Definition.

Let N be a Sr-subact of Sr-act M. Then the
radical of N is the intersection of all prime
Sr-subacts of M containing N and denoted
by rady(N). If N is not contained in any
prime Sr-subact of M, then rad,,(N) =M.

2.10. Proposition.

Let S be a commutative ['-monoid and N be
a proper Sr-subact of a faithful
multiplication Sr-act M. Then
rady(N)=y/[N: M] 'M.

Proof: Let F = {P: P is prime I'- ideal of S
such that [N:M] < P}. Let B=,/[N: M] then
B=Nper P and hence, BITM=Npcz(PI'M).
Let P € F. If M=PI'M then rady(N)
PI'M. If M#PT'M then N=[N:M]I'M < PI'M
by Proposition (2.4), PI'M is prime
Sr-subact of M. Thus rady(N)SPI'M.
Therefore, rady(N) S BI'M. Conversely,
let K be a prime Sr-subact of M containing
N. Then by Proposition (2.4), there exists a
prime I'-ideal P of S, such that K=PI'M and
Since [N:M]I'M=NcK=PI'M then [N:M]<
P, and hence /[N:M]<SP. So, /[N: MM <
PI'M=K. Thus, ,/[N: M]I'M € rad,(N).

Now, we give the concept of completely
globally idempotent as follows:

2.11. Definition.

A T-semigroup S, is called completely
globally idempotent if every I'-ideal of S, is
gl-idempotent.

2.12. Example.

Let S=I'= {i, 0, -i}. Then S is I'-semigroup
under the multiplication over complex
numbers. Here, A;={0}and A,=S are the
only I'-ideals of S. It's clear that Aj;and A,
are gl-idempotent.



3. Topological gamma acts

In this section, we introduce the concept of
a topological gamma act and its basic
properties discussed. In what follows, S
will denote a I'-semigroup with zero, and
all Sr-acts contain the zero element.

3.1. Definition.

Let M be a Sr-act. The gamma spectrum
(I-spectrum for short) of M 1is the
collection of prime Sr-subacts of M and
denoted by Specr(M). When S is an Sr-act,
then Specr(S) is the set of all prime
I'-ideals of S.

3.2. Definition.

Let N be a Sr-subact of Sr-act M. We define
Vr(N) to be the set of all prime Sr-subacts
of M containing N, ie Vr(N)={P
€ Specr(M): N < P}. Note that, Vr(M) is
empty set and Vi(0) is Specr(M).

It's easy to see that for Sr-subacts N; and

N, of M we have:

i. If Ny < N,, then Vi(N,) < Vr(Ny).

ii. If Vp(N)={N}, then N is a prime. The
converse is true if N is the unique prime
Sr-subact of M.

iii. Vp(N;) U Vr(N,) € Vr(N; N Ny) .

3.3. Proposition.

Let S be a I''monoid and M be a Sr-act.

Then for the Sr-subacts N, N; and N, of M,

the following conditions hold:

i. If M is a multiplication then, Vr(N;)U
Vr(N2)=Vr(Ny * N2)=Vr(N1N Ny).

ii. Vr(radpr(N)) =Vr(N).

. If Vpr(N;) < Vr(N,), then Nycradp(N;).

iv. Vr(N;)=Vr(N,) if and only if rad (N,)
=radr(N,).

v. N;=N, for any Sr-subacts N; , N, of M
whenever Vr(N;)=Vr(N,) is equivalent to
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every proper Sr-subact N is the intersection
of primes.

vi. If {N;: i € I} is a nonempty collection of Sr-
subacts of M, then N;¢; Vr(N;)=Vr(U;er Ny).

Proof:(i) Let P € V(N;)U V(N,). Then P€e
Vr(N;) or P € V(N,) and hence N; < P or
N,cP. Since N; * N,cN; and N; * N, N,
thus P € Vr(N; * N,). Conversely, let P'€
Vr(N; *N,) then N;*N,c P. By
Theorem (2.7), Nyc P’ or N, < P’ that is,
P’ € Vr(N;) U Vr(N,). For the other part let
Q € Vp(N; *N;) then Ny *x N, < Q. Thus
N;< Q or N, < Q which implies that Q €
Vr(N;N N,). The other direction is clear.

(i1) For P € Vi(N) we have N ¢ P and hence
radr(N)SP. So PeVr(radr(N)). Conversely
P'€ Vr(radr(N)) then rad(N)c P'. Since
N cradp(N). Thus, P'€Vp(N). Therefore,
Vr(radr(N))=Vr(N).

(ii1) By hypothesis, N, < P for every P €
Vr(N1). Thus N, € Npey v, P and hence
N, c radr(Ny).

(IV) Clearly, radp(N1)=ﬂN1gpP=ﬂpeVr(N1)P
=NpevpnyP=radr(N;). Conversely, by (ii)
Ve(N)=Vr(radr(N)=Vr(rad (N)=Vr(Ny).

(V)(=)Suppose N, is a proper Sr-subact of
M. If Vr(N1)=0, then Vi(N;)=Vr(M). By
hypothesis Ni=M, a contradiction. Thus Vr(N,)
#0, we obtain Np=Npey (v, P=radr(Ny).
Then, Vp(Ny)=Vr(rady(N;)=Vr(N;), since
N;=N,. Hence, N;is an intersection of
prime Sr-subacts.

(&) Assume that Vi (N,)=Vr(N,). It's clear
by hypothesis every Sr-subact N of M is an
intersection of prime Sr-subacts if and only
if N=anVF(N) P. NOW, N1=anVF(N1) P and
N,=Npev (n,) P- It follows that N;= N.

(vi) Let P € Nie; Vr(N;). Then P € Vi(N;) and
hence N;cP for all i € I. Thus, U;¢; N; <P. So,
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Pe Vr(Ujer N;). Conversely, let QEVE(U;er Ny).
Then, Uje; N; Q. We conclude that N, Q
and hence Q€ Vr-(N;) for every i€l. Thus, Q€
Nier Vr(Ny) . Hence, Ny Ve (Ny) =Vr(Uier Ny).

Now, we introduce the definition of topological
gamma act as follows:

3.4. Definition.

Let M be a Sr-act, and t(M)={Vp(N): N is
Sr-subact of M}. If (M) is closed under
finite unions, then the family t(M) satisfies
the axioms for the closed subsets of a
topological space. Thus,

(M) is a topology on Specr(M) called the
gamma act topology.

3.5. Examples.

1. Let S=M={w,x,y, z} and I any
nonempty set. Then, M is an Sr-act
under the multiplication mapping: SxI'xM
— M defined by aob=ab, which given in
the following table:

T T ||
T(T T T |
RITIZZ S
N[ S |R|S|N

NIR|R|Z

Here {w}.,{w,x},{w, y}tand{w, x,y}are the
Sr- subacts of M. But, {w, x,y} is the only
prime Sr-subact of M. So,
Specr(M)={{w, x,y}},

Vr((whH=Vr(fw, x)=Vr({w, y})=Specr(M)and
Vr(M)=0. So, t((M)={®, Specr(M)}.In this case
(M) is the indiscrete topological Sr-act.

2. Let S =Z¢, I'={1,3}, and M=S. Clearly,
M is an Sr-act under multiplication mod 6.
The Sr-subacts of M are N;={0}, N,={0, 2,
4}, N;={0, 3}, and N,={0, 2, 3, 4}. It's
clear that N, ,N;,N, are the only prime
Sr-subacts of M.

Thus, Specr(M)={N,, N3, N, },

Vr(Ny)=Specr(M), Vr(M)=0, Vr(N;)={N;N,},
Vr(N3)={N3,N,} and Vp(N,)={N,}. Hence,
T(M):{Qﬂspecl" (M)z {NZ' N4}' {Ng, N4}’{N4} } .

3. Let S=M={a,b,c,d,e,f} and I' be a
nonempty set. Then M is an Sr-act under
the mapping: SXI'xM — M, which defined
by:

a if x=fy=a
b if x=Ff,y=0»>
_J)Jc if x=fy=c
YTV fx= g =
e if x e M,y =bory =e¢

d otherwise.
Here, the Sr-subacts of M are: Ny={a,d, e, f},
N,={b,d,e, f}, N3={c,d,e, f}, Ny= {b,cd,
e, ft , Ns={a,c,d,e f}, Ng={a,b, d,e, [}
and N,=M. Then it can be easily verified
that, Vr(N1)={ Ny, Ng, N5}, Vr(N2)={N3, N¢,
N4}, Vr(N3)={ N3, Ny, N5 },Vr(N4)={N,},
Vr(N5)={Ns}and Vr(Ng)= {Ng}.
But Vr(Ns5) UVr(Ng)={ N, N5} #Vr(N;)
for all i=1,2,3,4 ,5,6 and
Vr(Ns)UVr(Ng)#Vr(NsNe).
Now, we identify some cases for which
(M) is a topological gamma act. Before
this, we need the following definitions.

3.6. Definition.

An Sr-subact N of Sr-act M is called
semiprime if N is an intersection of prime
Sr-subacts of M.

3.7. Definition.

A prime Sr- subact N of Sr- act M is said to
be extraordinary if whenever K and L are
semiprime Sr- subacts of M with KNL ¢ N
then K =N orL = N.

3.8. Example.

Let S=T =Z and M = 6Z. Then M is a Sr-
act under the usual multiplication of integer
numbers.



It is clear that Specr(M)={(6p)I'S: p€EP
where PP is the set of prime numbers}.
Thus, any semiprime Sr-subact N of M has
a form N=N;c(6p;)TS, for some p; € P.
Also, the prime Sr-subact P=(12)I'S of M is
extraordinary. Let K and L be semiprime
Sr-subacts of M, such that K=N(6p)I'S and
L=N(6q)T'S, where the intersection runs
among some p,q in P. Thus, K=(6m)I'S
and L=(6n)I'S where m,n € Z. Hence, KNL
=(6nm)I'ScP=6(2)I'S.So, we have 2 divides
nm then 2 divides n or 2 divides m. This,
implies that K c P or L c P.

3.9. Theorem.

For a Sr-act M. The following conditions are
equivalent:
i. Misa Top Sr-act.
ii. Every prime Sr-subact of M is extraordinary
it Vr(N) UV (K)=Vr-(NNK) for all semiprime
Sr-subacts N and K of M.
Proof:(i)=(ii) Let K be a prime Sr-subact
of M and N, L be semiprime Sr-subacts of
M such that NNLcK. By assumption,
there is an Sr-subact T of M such that
Ve(N)UVr(L)=Vr(T). Since N is semiprime,
then there exists a collection of prime Sr-
subacts K;, (i€ I) such that, N=N;¢; K;. So,
for all i €I, K;€ Vr(N) <V (T), and hence
Tc K; for all i € 1. Thus, TcN;¢; K;=N .
Similarly T < L. So TcNNL. Now,
Ve(N)UVr (L) Vr (NNL) SV (D=Vr(N)U Vi (L).
We conclude that Vp(N)UVp(L) =V-(NNL).
But, KEV-(NNL). Thus, K € Vp(N) or Ke
Vr(L). Hence, N <K or NcL. Therefore,
K is extraordinary.
(i1)=>(iii) Suppose that N and K semiprime
Sr-subacts of M. It's clear that V(N) U
Vr(K)SVR(NNK). Let L € VR(NNK). Then,
NNKc L. Since L is prime then by (ii),
NcL or Kc L,i.eL € Vp(N) or Le Vp(K).
This shows that Vi (NNK)< Vr(N) U Vr(K).
Hence, Vr(N) U Vr(K) = Vr(NNK).
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(ii1)) =(1) Let K; and K, be any Sr-subacts
of M. If Vp(K;) is empty, then Vi(K;)U
Vr(K;)=Vr (K, ). Assume that Vr(K; ) and
Vr (K, ) are both nonempty. Then, Vp(K;)
U Vr(Kz2)=Vr(rad (K1 ))U Vr(radr (K3 )
=Vr(radr(K; )Nradr(K;)). Thus, M is a
Top Sr-act.

If { A;, 1<i<n} is any nonempty family of
I'-ideals of I'-semigroup S, then , Ai['Axl
L TALS AN AN NA,.

3.10. Corollary.

Let M be a Sr-act with the property that for
every prime Sr-subact N of M,
[K:M]S[N:M] implies that KEN for each
semiprime Sr-subact K of M. Then M is a
Top Sr-act.

Proof: Let K;, K, be a semiprime Sr-subacts
of M with K; NK, € N. It follows that
[K; :M]N[K; :M]=[K; NK, :M]c[N:M], since
[N:M] is a prime I'-ideal of S, then either
[K; :M]c[N:M] or [K,:M]c[N:M]. Now,
by hypothesis, we have K; € N or K, € N,
that is, N is extraordinary. Hence, M is a
Top Sr-act by Theorem (3.9).

3.11. Corollary.

Any homomorphic image of a Top Sr-act is
a Top Sr-act.

Proof: Consider the Sr-epimorphism m:M—
M/p, where p a congruence on M. Let N/py
be a prime Sr-subact of Sr-act M /p, where
N is a prime Sr-subact of M (by Proposition
(2.5)). Consequently, any semiprime Sr-
subact of M/p is of the form K/pg for which
K is semiprime Sr-subact of M. Let K;/pg,
and K;/pg,be semiprime Sr-subac of M/p
such that (K;/pg, N K;/pg,)= N/py. Then ,
n (Ki/pk, N Ka/pg,) € = (N/py). So
Ky pr, )N~ (K /px,) S T (N /pp).
Thus, K; NK,; <N. It follows that K; <N or

K, cN and hence, m(K;)< n(N) or
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(K, ) cm(N). Thus, Ki/px, € N/py or
K,/pg,= N/py. Hence, N/py is extraordinary.
So, by Theorem (3.9), M/p is Top Sr-act.
Now, let P be a prime I'-ideal of I'-semigroup
S and Aj, Az be a semiprime I'-ideals of S
with AjNA> < P. Since AiT'A> € A1NA;
P, then A€ P or A2 € P and hence P is
extraordinary. Thus, by Theorem (3.9) any
I'-semigroup S is a Top Sr-act .

Recall, if M and N are Sr-acts, f:M — N
Sr-homomorphism, then M/ker(f)=Im(f).
(Kamal, 2016)

Now, we study the relation between cyclic
and topological gamma acts. For this reason,
we give the following Proposition.

3.12. Proposition.

Let M be a Sr-act. If M is cyclic, then
M=S/¥fs(m) for some m€e M. Proof: Let M
be a cyclic Sr-act. Then, there exists me M
such that M=SI'm. Define, f:S — M by
f(s)=sam for every s€ S and a € I'. Now,
let s, s€ S and pel, thus
f(sfs)=(sfsYam=sB(s'am)=sff(s'") and hence
f is a Sp-homomorphism. Also, let m’'€M, then
m'=tym=f(t). Hence, M= S/ker(f) .Since
ker(f)={(s, )ESXS|f (s)=F (£)}={(s, £)ES*S)|
sam=tam}= fs(m). Thus, M=S/¥s(m).

3.13. Corollary.

Any cyclic Sr-act is a Top Sr-act.
Proof: It's clear by Corollary (3.11) and
Proposition (3.12).

But the converse of Corollary (3.13) may
not be true, as we can see in the first part of
example (3.5).

3.14. Corollary.

Let S be a
I'-sub-semigroup of S . If M is a Top
Tr-act, then M is a Top Sr-act.

Proof: Let K be a prime Sr-subact of M.
Then K is a proper Tr-subact of M. If t,s€T,

I'-semigroup and T be a

m € M and «, f €I satisfy tasfmeK then
m € K or tI'M < K. Thus K is a prime
Tr-subact of M. Let Li and L, be semiprime
Sr-subacts of M with L; NL, < K. By the
same way above, we have L; and L, are
semiprime Tr-subact of M. Since M is a
Top Tr-act then, L; € K or L, < K. Thus, K
is extraordinary. Hence, by Theorem (3.9),
M is a Top Sr-act.

3.15. Proposition.

Let A be a I'-ideal of I'- monoid S and N be a
Sr-subact of Sr-act M. Then
Vr(N)UVH(ATM)=V(ATN)=V(NNATM).
Proof: It's clear that, Vo(N)UV-(AI'M) <
Vr(NNAT'M) € Vr(AI'N). Let PEVR(AI'N) .
Then AT'NcP. This implies that AT1I'N <
P and hence AT'ST'NcP. Since P is a prime,
then N < P or ATMcP. So, PEVR(N) or Pe
Vr(ATM). Thus, PeVr(N)UVR(ATM).
Therefore, Vo(AIT'M)c Vi (N) U Vr(ATM) .

3.16. Corollary.

Let A and B be a I'-ideals of I'-monoid S
and M be a  Sr-act. Then
Vr(ATM)UVR(BI'M)=V[(AT'B)I'M].

Now, if {A;};¢; 1s a collection of I'-ideals of
S, then it's easy to show that, N;¢; Vr( A;TM)
= Vr(Uie; A;TM). Thus, by using this fact
with Corollary (3.16), we get the subset
T(ATM)={V(AI'M): where A is I'-ideal of
S} of (M) is a topological space, and if M
is a Top Sr-act, then T7(AI'M) is a subspace
of t(M). In particular, if M is a
multiplication then M is a Top Sr-act.
Thus, we have the following result:

3.17. Proposition.
Ever multiplication Sr-act is a Top Sr-act.
3.18. Corollary.

If S is completely globally idempotent
I'-semigroup then any I'-ideal of S is a Top
Sr-act.



Proof: Let A and B be I'-ideals of S, such
that B € A. Then B = BB € BI'A € B.
Hence, B=BI'A. Thus, A is a multiplication.
By Proposition (3.17), A is Top Sr-act .

We denote the complement of Vp(N) in
(M) for any Sr-subact N of M by Dr(N),
i.e. Dp(N) =Specr(M)\Vr(N). Note that
Dr(m) = Dr(SI'm) for every m € M.

3.19. Proposition.

If M is a multiplication Sr-act, then the

following conditions hold:

i. Dp(m)NDr(n)=Dr(m * n) for any m, n€EM.

ii. Let NcM with every proper Sr-subact of
M is the intersection of primes. If Dp(N)
=@, then N is ["-nilpotent .

Proof:(i) Let m,n € M. Then SI'm=AI'M

and SI'n=BI'M for some I'-ideals A and B

of S. By Corollary (3.16), Dr(m) NDp(n)=

Dr(ATM)NDr(BI'M)=[Specr(M)\V-(ATM)]

NISpecr(M)\Ve(BIM)]=Specr(M)\[Vr(ATM)

U Vr(BI'M)] = Specr (M)\Vr((ATB)I'M)

= Specr(M)\Vi(m * n) =Dr(m * ) .

(i1) Let Dp(N)=@. Then, Specr(M)\V(N)= 0

thus Specr(M)=Vr(N) and hence Vp(N)=V(0).

By Proposition (3.3)(v), N=0. Therefore, N

is a I'-nilpotent.

3.20. Proposition.

Let M be a Sr-act. Then

the sets {Dr(m;): i€I} forms a base of the
gamma act topology on M.

Proof: Any nonempty open set in the
gamma act topology contains Dr(K) for some
Sr-subact K of M. Now, any such K= U;¢;{m;}
,m;€K. Then, Dr(K)=Dr(U;¢; m;)=Specr(M)\
Vr(Uiermy)=Specr (M)\Njer Vr (m;)=Uie; Dr(my).

3.21. Definition

(Erdogan, 2003) LetcA ={_A;: i€} be a
collection of sets. Then A is said to have
the finite intersection property if for every
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finite collection {44, ..., 4,,} of A, we have

3.22. Theorem

(Erdogan, 2003) A topologicalspace X is
compact if and only if for every collection
of closed sets A of X, with A has the finite
intersection property then, N e 4 A # @.

3.23. Theorem.

If M is finitely generated multiplication Sr-act,
then Specr(M) is compact.

Proof: Let {Vr(N;):i€El} be any collation of
closed subsets of Specr(M) where N; is a
Sr-subact of M for each i€l such that
Nie; Vr(N;)=0. Thus, by Theorem (3.3)(vi),
Nier Ve(N)=Vr(Uier Ni) = Vr (U [N;: M]JTM)
and hence Vp(Uje[N;: M][ITM)=0@. Now,
suppose that M # U;¢;[N;: M|TM then V(M)
# Vr(Uig[N,;: M]TM). This implies that @
# Vr(Uig[N;: M[TM), a contradiction. Thus,
Uies[N;:M]JTM =M. Since M is finitely
generated, there exists a finite subset I'of 1
such that M= U;¢;7[N;: M][T'M. Therefore ,
Nier Ve(N)=Vr(Uier N)=Vr(Uiep [N MIT'M
=@. Which contradicts the finite intersection
property. By Theorem (3.22), Specr(M) is
compact.

Now, we study some of the separation
axioms and the density of topological
gamma acts.

3.24. Definition.

Let M be a Sr-act and X be a nonempty
subset of Specr(M). Then the Jacobson
radical of X is the intersection of all prime
Sr-subacts of M which belong to X and
denoted by Jr(X). We denote the closure of
a subset X of Specr(M) by X.

3.25. Theorem.

Let M be a Top Sr-act. Then,
X=Vr ((Jr(X)).
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Proof: Let Vr(N) be a closed set containing X,
and P be a prime Sr-subact in X. Then N €SP,
and hence NCSJp(X) .Thus, Vr(Jr(X ))EVR(N).
Since X € Vr (Jr(X)), then Vp((Jr(X)) is the
smallest closed subset of Specr(M) containing
X. So, X=Vr((Jp(X)).

Recall that a topological space is a To-space
if and only if the closures of distinct points
are distinct. A subset A of a topological
space X is called dense in X if X=A.
(Erdogan 2003 & Oner 2020)

3.26. Corollary.

If (8) € X, then X is dense

in Specr(M).

Proof: By Theorem (3.25), X = V¢ ((Jr(X))
=Vr(0)=Specr(M). Hence, X is dense.

3.27. Corollary.

Specr(M) is a To-space

for every Top Sr-act M.

Proof: Let N; and N, be two distinct points of
Specr(M). Then, {Ny}=Vr(Ny)#Vr(N2)={N2}.
(By Theorem (3.25)). We deduce that, Specr
(M) is a To-space.

A topological space X is a Ti-space if and
only if all points of X are closed in X (i.e.,
given any x in X, the singleton set {x} is a
closed set. (Erdogan 2003&Oner 2020).

3.28. Theorem.

Let M be a Sr-act. Then Specr

(M) is Ti-space if and only if each prime
Sr-subact in Specr(M) is maximal.
Proof:(<)Let{P}c Specr(M).Then, {P}=Vp
(Jr({P}))=Vr(P). Since {P} is maximal. Thus,
{P} = Vr(P) ={P}.

(=) Let P be a prime Sr-subact of M. By
hypothesis {P} is a closed subset of
Specr(M). Thus Vr(P)=Vp
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(Jr(P))={P} = P. Hence, P is maximal in
Specr(M).

Recall, if N is a prime Sr-subact of Sr-act
M, then [N:M] is a prime ['-ideal of S. This
idea motivates us to introduce and study the
following mapping that gives a relationship
between Specr(M) and Specr(S). Before this
we need the following Lemma.

3.29. Lemma.

Let S be a commutative I'-

monoid and M be a Sr-act. Then [ST'P:M]
=SI'[P:M] for all Sr-subact P of M.

Proof: Clear.

3.30. Definition.

Let S be a [-monoid and M
be a Sr-act. Define a mapping ¥: Specr(M) —
Specr(S), by P +— [P:M] for all P € Specr(M).

Clearly, by Lemma (3.30) v is well-defined
and Sr-homomorphism. The next Proposition

present some properties of the mapping ¢ .
3.31. Proposition.

Let S be a I'monoid, and M be a
multiplication Sr-act, then

i.If M is faithful, then mapping y is surjective.
ii. The mapping 1 is injective.

Proof:(i) Let P € Specr(S). By Proposition
(2.4), PI'M 1is a prime Sr-subact. Now,
Y(PITM)=[PIM:M]=P.

(i1) Let Ny, N, €Specr(M) with p(N1)=yp(N,) .
Then, [N;:M]=[N,:M] and hence [N;:M]'M
= [N,:M]I'M. So, N;=N, .

Thus, the mappingy plays an important
role in studying algebraic properties of the
Sr-act M when we have a related topology.
if M is a faithful

multiplication Sr-act, then Specr(S) and

For an example,

Specr(M) are homeomorphic, and hence
we can transfer some of known topological
properties of Specr(M) to Specr(S) .
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