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Abstract 
In this paper, we introduce the concept of topological gamma acts as a generalization of 
Zariski topology.  Some topological properties of this topology are studied.  Various algebraic 
properties of topological gamma acts have been discussed. We clarify the interplay between 
this topological space's properties and the algebraic properties of the gamma acts under 
consideration.  Also, the relation between this topological space and (multiplication, cyclic) 
gamma act was discussed.  We also study some separation axioms and the compactness of this 
topological space. 
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1. Introduction 
 

In 1981,  Sen,  M. (Sen,  1981) introduced the 
concept of gamma semigroups as a 
generalization of semigroups as follows:  let 
S and Γ be nonempty sets,  S is said to be a 
gamma semigroup (Γ-semigroup for short) 
if there is a mapping:	S ⨯ Г ⨯ S → S written 
(𝑠(, ⍺, 𝑠+)	by	𝑠(⍺𝑠+ that satisfies the condition 
𝑠(⍺(𝑠+𝛽𝑠.)=(𝑠(⍺𝑠+)𝛽𝑠. for all 𝑠(, 𝑠+, 	𝑠. ∈ 
S and ⍺, 𝛽 ∈ Γ.  Let S be a Γ-semigroup. An 
element	𝑠 ∈S "is called the left (right) 
identity of S if 𝑠⍺𝑡=𝑡	(	𝑡⍺𝑠	=	𝑡) for all 𝑡 ∈ 𝑆 
and ⍺ ∈ Γ.  An element 𝑠 in S is called 
identity if it is both a left and right identity 
of  S.  A Γ-semigroup with identity is called 
a Γ-monoid. The identity of a Γ-semigroup 
(if exists) is denoted by 1. A Γ-semigroup S  
is called commutative if 𝑠⍺𝑡=𝑡⍺𝑠 for all 
𝑠, 𝑡∈ S and ⍺ ∈ Γ. A nonempty subset T of 
Γ-semigroup S is called a Γ-subsemigroup 
of S if 𝑠𝛼𝑡 ∈ T,  for all 𝑠, 𝑡 ∈ T and 𝛼 ∈ Γ.  
A nonempty subset  A of semigroup S is 
called left (right) Γ-ideal if SΓA Í A 
(AΓSÍ A) where SΓA={𝑠⍺𝑎:		𝑠 ∈ 𝑆	,	⍺ ∈
Γ	and	𝑎∈A}. The word Γ-ideal is used for a 
two-sided Γ-ideal. The union of any family 
of Γ-ideals of Γ-semigroup S is a Γ-ideal of 

S (Sen,  1981). An element 𝑠 ∈ S is said to 
be ⍺-idempotent if there exists ⍺∈Γ such that 
𝑠⍺𝑠=𝑠. A Γ-semigroup S is called idempotent if 
all elements of S are ⍺-idempotent.  For any 
subsets A and B of S,  then,  AΓB={𝑎𝛼𝑏:	𝑎 
∈ A,  𝑏 ∈ B, and 𝛼∈Γ}.  A Γ-ideal B of a Γ-
semigroup S is called globally idempotent  
(gl-idempotent for short) if BΓB=B 
(Anjaneyulu  et al., 2012).  A Γ-ideal P of S is 
said to be prime  provided that for any two 
Γ-ideals A, B of S with AΓB ⊆ P, either A 
⊆ P or B ⊆ P (Anjaneyulu et al.,  2011).  A 
Γ-ideal B of a Γ-semigroup S is called 
maximal if it is proper and is not properly 
contained in any proper Γ-ideal of S 
(Anjaneyulu et al., 2012).  In 2016,  Abbas 
M. and Faris A. (Abbas & Faris, 2016) 
introduced gamma's concept over gamma 
semigroup as follows:  let S be  a Γ-
semigroup.  A nonempty set M is called left 
gamma"act over S (denoted by SГ-act) if 
there is a mapping: S ⨯ Г ⨯ M → 	M defined 
by	(𝑠, ⍺, 𝑚) ↦ 𝑠⍺𝑚, satisfying (𝑠(⍺𝑠+)𝛽𝑚 
=𝑠(⍺(𝑠+𝛽𝑚) for all 𝑠(, 𝑠+ ∈ S,  ⍺, 𝛽 ∈ Г 
and 𝑚 ∈ M.  In the same way, we can 
define right gamma acts.  From now on, 
"SГ-act" means left SГ-act. A nonempty 
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subset N of a left SГ-act M is called gamma 
subact (denoted by SГ-subact) if,  for all 𝑠 ∈ 
𝑆,  ⍺ ∈ Г and 𝑛 ∈ N implies that 𝑠⍺𝑛	∈ N. 
An element θ ∈ M is called a zero of  M if 
𝑠𝛼θ=θ,  and if S is a Γ-semigroup with zero 
then, 0𝛼𝑚=	θ for all 𝑚 ∈ M and 𝛼∈ Г. Let 
N be a SГ-subact of SГ-act M. Then,     
[N:M]={𝑠∈𝑆|𝑠𝛼𝑚∈N for all 𝛼∈Г and 𝑚∈M}. 
Clearly, [N:M] is a Γ-ideal of S. Given a 
family of SГ-subacts {NG}G	∈	H of SГ-act M. 
Then, ⋃ NᵢG∈K  is SГ-subact of M, and if 
⋂ NG	G∈K is nonempty, then, ⋂	G∈H	NG is SГ-
subact of M. Let	M	and N	be two SГ-acts. A 
mapping	𝑓:M → N	is called SΓ-homomorphism 
if 𝑓(𝑠𝛼𝑚)=𝑠𝛼𝑓(𝑚) for every 𝑠 ∈ S, 𝛼	∈Γ 
and	𝑚∈	M. If 𝑓 is surjective, then, 𝑓 is SΓ-
epimorphism. Let 𝑓:M→N be SГ-homomo- 
phism. Then, the kernel 𝑓 is defined as 
ker(𝑓) = {(𝑚1,	𝑚+)∈M×M |𝑓(𝑚1) = 𝑓(𝑚2)}   
(Kamal, 2016). An equivalence relation 𝜌 
on SГ-act M is called a congruence if for all 
(𝑚1,	𝑚2)∈ 𝜌 implies that (𝑠𝛼𝑚1, 	𝑠𝛼𝑚2)∈ 𝜌 
for all 𝑠 ∈ 𝑆, 	𝛼 ∈ Г. Also, the quotient 
gamma"act of the congruence 𝜌 on M is 
denoted by M/𝜌 define by M/𝜌={𝑚𝜌|𝑚∈ M 
and 𝑚𝜌 the equivalent class containing 𝑚}. 
If N is SГ-subact of M,  then, N/𝜌R is a SГ-
subact of M/𝜌 where 𝜌R = ρ ⋂ (N × N). If 
H is a nonempty subset of SГ-act M,  then, 
ℓS(H) = {(𝑠, 𝑡)∈S×S|𝑠𝛼ℎ	=	𝑡𝛼ℎ	for all 𝛼 ∈ Г 
and ℎ ∈ H}. It is known that  ℓS(H) is a 
congruence on SГ-act S (Kamal, 2016). 
Recently,  Abbas M. and Jubeir S. (Abbas & 
Jubeir, 2020) introduced the concept of mu- 
ltiplication"gamma"acts. An SГ-act M is said 
to be a multiplication"if every SΓ-subact N 
of M is of the form N=AΓM for some Γ-
ideal A of S. An SГ-act M is multiplication 
if and only if N=[N:M]ΓM for all SΓ-subact 
N of M.  Let M be a SГ-act and 𝑠(, 𝑠+	∈ S. 
Then, M is called faithful if the equality 
	𝑠1𝛼𝑚=𝑠+𝛼𝑚	 implies that 𝑠(=𝑠+  for every 
𝑚 ∈ M and α	∈ Г. Let S be a commutative 
Г-monoid and M be a faithful SГ-act.     
Then, M is a multiplication if and only if 
⋂ 	(AGG∈H ГM)=(⋂ AG)G∈H ГM for any nonempty 
collection of Г-ideals	AG, 𝑖 ∈ I	 of S, and for 
all SГ-subact N of M and Г-ideal A of S 
such that N ⊂	AГM there exists an Г-ideal 
B with B ⊂ A and N Í BГM. Let A be a Г-

ideal of Г-monoid S,  and M be a SГ-act. If 
M is faithful multiplication, then, A=[AГM:M] 
(Abbas & Jubeir,  2020). Let N(, N+ be SГ-
subacts of multiplication"SГ-act M. If N(=AΓM 
and N+=BΓM for some Γ-ideals A and B of 
S, then the product of N( and N+is denoted 
by N( ∗ N+ is defined by N( ∗ N+	= (AΓB)ΓM. 
Clearly, N( ∗ N+ is an SГ-subact of M. Let 
N be a SГ-subact of multiplication SГ-act M. 
Then, N is called gamma"nilpotent(Γ-nilpotent 
for short) if NY=	θ for some positive integer 
𝑘, where NY	means the product of N,	𝑘 
times. (Abbas & Adnan, 2020).                                                                                                                                     

For SГ-act M, the set of all prime SГ-
subacts of  M is called the gamma"spectrum 
of  M and denoted by 𝑆𝑝𝑒𝑐^(M). We remark 
that 𝑆𝑝𝑒𝑐^(θ)=∅ and that 𝑆𝑝𝑒𝑐^(M)	may 
be empty; for example, the zero SГ-act has 
no prime SГ-subact. Throughout this paper, 
we assume that 𝑆𝑝𝑒𝑐^(M) is nonempty.    
This article aims to study topological 
gamma acts for which the gamma spectrum 
is a topology in which the varieties              
	𝑉 (N)={P ∈	𝑆𝑝𝑒𝑐^(M):	N	Í	P} are closed sets 
for any SГ-subacts N	of the SГ-act M. Note 
that our definition is a generalization of the 
Zariski topology on the spectrum of prime 
ideals of a ring. Thus, we extend the well-
known results of Zariski topology on 
𝑆𝑝𝑒𝑐(𝑅) to 𝑆𝑝𝑒𝑐^(M) and investigate the 
basic properties of this topology. The 
concepts of semiprime and extraordinary 
SГ-subacts are introduced to identify some 
cases when the gamma spectrum of a 
gamma act forms a topology. Also, using 
the concept of multiplication gamma acts to 
investigate various algebraic properties of 
such topology. We prove that 𝑆𝑝𝑒𝑐^(M) is 
a	Td-space and it is compact if M is finitely 
generated multiplication"gamma act. The 
relationship between 𝑆𝑝𝑒𝑐^(M) and 𝑆𝑝𝑒𝑐^(S) 
was investigated. 

2. Preliminaries 
 

In this section we introduce the concept of 
prime gamma subacts and basic related" 
concepts which are needed  in our work. 

 
2.1. Definition.  
 
A proper SГ-subact N of M is prime if for 
any 𝑚∈ M and 𝑠 ∈ S,  the set inclusion 
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𝑠ΓSΓ𝑚	⊆ N implies either 𝑚 ∈ N or 𝑠 ∈ 
[N:M].  
        
2.2. Example.  

 
Let S={⌀, {a},{b},{c},{a,b},{b,c}, {a,c}, 
{a,b,c}}, Г={∅,{a},{a ,b ,c}} and M=S. 
Then, M is a SΓ-act under the mapping:      
S ⨯ Г ⨯ M → M  defined  by                       
(A, B, C) ⟼ A⋂B⋂C.  It can be easily 
verified that the SГ-subact {{a, b},{a}, ∅} 
is a prime   SГ-subact of  M. 
 
2.3. Proposition.   
 
Let S be a commutative Γ-semigroup and N 
be a proper SΓ-subact  of  SΓ-act M. The 
following statements are equivalent:                                                                                                                                                         
i.  For every SΓ-subact K of M,  if N"Ì K,    
then, [N:M]=[N:K].                                               
ii. N is prime.                                                                                                                                                          
Proof:(i)⟹(ii) Let 𝑠ÎS and 𝑚ÎM,  such 
that 𝑠ΓSΓ𝑚Í N and 𝑚	∉ N.  It is clear that 
N Ì N ⋃ SΓ𝑚. Since 𝑠Γ(N⋃SΓ𝑚) Í 	𝑠ΓN 
⋃𝑠Γ(SΓ𝑚)ÍN. By statement (i),	𝑠Î[N: N⋃	
SΓ𝑚] = [N:M].                                                                                 
(ii)⟹(i) Let K be a SΓ-subact of M such that 
NÌK. Clearly [N:M]Í[N:K]. Now, suppose 
that 𝑠Î[N:K]. Then, 𝑠ΓSΓK Í 𝑠ΓK Í N. 
Since NÌ K,then, there exists 𝑘Î K\N such 
that 𝑠ΓSΓ𝑘 ÍN. By statement(ii),		𝑠Î[N:M].  
Hence,  [N:M]=[N:K]. 
 
2.4. Proposition.  
 
Let S be a commutative Γ-monoid, and M 
be a multiplication SГ-act. Then, for any SГ-
subact N of M, the following conditions are 
equivalent:  
i. N is prime SГ-subact of M. 
ii. [N:M] is prime Γ-ideal of Γ-semigroup S.  
iii. There exists a prime Γ-ideal P of S, which  
is maximal with the property PΓM=N.  
Proof: (i)⟹(ii) Let A, B be Γ-ideals of S. 
Consider the inclusion AΓB ⊆ [N:M].Then, 
(AΓB)ΓM ⊆ N. Now, assume A ⊈ [N:M] 
then there is 𝑎∉[N:M] such that"a𝛼𝑥 ∉ N, 
for some 𝑥∈M and 𝛼∈Γ. Let b∈ B, then, 
bΓ(𝑎𝛼𝑥)=(𝑏Γ𝑎)𝛼𝑥=(𝑎Γ𝑏)𝛼𝑥ÍN. Since N 
is a prime SГ-subact of M and 𝑎𝛼𝑥 ∉ N, 

then, bΓM Í N. Thus, [N:M] is prime. 
(ii)⟹(iii) Consider the family of Γ-ideals     
T={P:N=PΓM and P is an Γ-ideal of S}. 
Since M is multiplication SГ-act,  then, T	is 
a nonempty partial order set by the usual 
inclusion relation.  Let\ {PG }G∈H Í T be a 
chain. Then,  ⋃ PG ∈ T	G∈H is an upper bound 
of {PG}G∈H. Zorn's Lemma implies that	T		has a 
maximal element such as P(say). Now, let 
A and B be two Г-ideals such that AГB⊆ P, 
then, (AГB)ГM⊆ PГM ⊆ N and hence we 
obtain AГB⊆[N:M],  but by the assumption 
that [N:M] is prime we conclude that either 
A⊆ [N:M]⊆P or B⊆[N:M]⊆P.  Thus P is 
prime Γ-ideal of S.                    .      .            
(iii)⟹(i) Let P be a prime Γ-ideal of S, 
which is maximal with the property PΓM Í N. 
Clearly, P=[N:M]. Let 𝑥ÎS and 𝑚ÎM such 
that 𝑥ΓSΓ𝑚 Í N. Since M is a  multiplication,  
then there exists a Γ-ideal A of S,  such that 
SΓ𝑚=AΓM, and hence 𝑥Γ(AΓM)=	𝑥ΓSΓ𝑚 
⊆ N.  Thus 𝑥ΓA Í [N:M]. Since [N:M]=P 
and P is prime Γ-ideal of S,  then, 𝑥∈[N:M] 
or A⊆[N:M] i.e 𝑥 ∈ [ N:M] or 𝑚 ∈ SΓ𝑚=AΓM 
⊆ N. Thus, N is prime SГ-subact of M.                         
.           
2.5. Proposition.  
 
Let N be a proper SГsubac of SГ-act M. 
Then, N is a prime in M if and  only if 
N/𝜌R	is prime SГ-subact of SГ-act M/𝜌.                                                                                                                           Proof:(⟹) Let 𝑠 ∈ S and 𝑚𝜌∈ M/𝜌 ,where 𝑚 ∈M  satisfy 𝑠ΓSΓ(𝑚𝜌)⊆ N/𝜌R . Thus (𝑠𝛼𝑡𝛽𝑚)𝜌 = 𝑠𝛼𝑡𝛽(𝑚𝜌) 
Proof:(⟹)Let 𝑠∈S and 𝑚𝜌∈M/𝜌	where 𝑚∈ 
M satisfy 𝑠ΓSΓ(𝑚𝜌)⊆N/𝜌R. Thus (𝑠𝛼𝑡𝛽𝑚)𝜌 
=𝑠𝛼𝑡𝛽(𝑚𝜌)∈N/𝜌R for all 𝑡∈S and 𝛼, 𝛽∈Γ. 
This implies that 𝑠𝛼𝑡𝛽𝑚	ÍN. By hypothesis 
,𝑠ΓMÍN or 𝑚ÍN. Thus, 𝑠Γ(M/𝜌)=𝑠ΓM/𝜌 Í 
N/𝜌R or 𝑚𝜌	∈	N/𝜌R.                                                                                                                       
(⟸) Let 𝑠 ∈ S and 𝑚 ∈ M such that" 
𝑠ΓSΓ𝑚⊆N. Then, 𝑠𝛼𝑡𝛽𝑚 ∈ N for all 𝑡∈S 
and	𝛼, 𝛽 ∈ Γ.		So, 	𝑠𝛼𝑡𝛽(𝑚𝜌R)=(𝑠𝛼𝑡𝛽𝑚)𝜌𝑁	
∈N/𝜌R. It follows that by assumption 𝑠∈	
[M/𝜌:	N/𝜌R]	or		𝑚𝜌𝑁∈N/𝜌R. Thus, 𝑠ΓM/𝜌 
ÍN/𝜌R		or		𝑚	∈N. Hence,		𝑠𝛾𝑚° ∈ N	 for all 
	𝑚° ∈ M	and 	𝛾∈Γ.  Thus, 	𝑠ΓM Í N or 𝑚 ∈ N. 

 
2.6. Proposition.  
 
Let {NG,	𝑖∈I} be a non-empty collection of 
SГ-subacts of SΓ-act M.  
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If NG is a prime SГ-subacts for each	𝑖∈I, 
then, ⋃ NGG∈H	  is a prime SГ-subact of M.                                                                                                                                                                                                                                                                 
Proof: Let s∈ S and  𝑚 ∈M  satisfy 𝑠ΓSΓ𝑚 
⊆ ⋃ NGG∈H	 . Then, 	𝑠ΓSΓ𝑚 ⊆	Nv for some 𝑗	∈I . 
By hypothesis, either 𝑠∈[	Nv:M] or 𝑚∈ Nv. So, 
𝑠 ∈ [⋃ NGG∈H :M]  or 𝑚 ∈ ⋃ NGG∈H	  and hence 
⋃ NGG∈H	  is a prime SГ-subact. 

 
In the following, we characterize prime   
SΓ--subact in multiplication SΓ-act by 
product SΓ--subacts. 

 
2.7.   Theorem.  
 
Let S be a Γ-monoid and P be a proper SГ-
subact of a multiplication SГ-act M. Then P 
is prime if and only if N( ∗ N+⊆ P then 
either	N( ⊆ P or N+ ⊆ P  for each SГ-
subacts N( , N+ of M.                                                                                                                                              
Proof: (⟹) Let P be a prime and N( ∗ N+ ⊆ P, 
but neither N(⊈P nor N+ ⊈ P for some SГ-
subacts N(, N+ of M. Since M is a 
multiplication, then	N(=AΓM and N+=BΓM  
for some Γ-ideals A, B of S.  So there is a∈A 	
,b∈ B and 𝛼, 𝛽∈Г such that a𝛼𝑚∈N(\P	and  
b𝛽𝑚x∈	N+\P. Since (AΓB)ΓMÍP. Thus a𝛼 
(b𝛽𝑚x)∈P, and since P is prime then either 
a∈[P:M] that is,  a𝛼𝑚∈P or b𝛽𝑚x∈P, which 
is a contradiction.	
(⟸) Let	𝑠 ∈ S and		𝑥 ∈ M such that  sΓSΓ𝑥 
⊆ P. Suppose that	𝑥 ∉ P.  Let 𝑚∈M. Since 
M is multiplication, then SΓ𝑚= AΓM and 
SΓ(𝑠𝛼𝑥)=BΓM for some Г-ideals A, B of S. 
Now, SΓ(𝑠𝛼𝑥)∗SΓ𝑚=(BΓA)ΓM Í BΓM = 
SΓ(𝑠𝛼𝑥)Í𝑠ΓSΓ𝑥⊆P. By hypothesis, we have 
SΓ(𝑠𝛼𝑥)	Í P or SΓ𝑚	Í P , but  𝑥 ∉ P so 
	𝑠ΓM Í P.  Hence, P is prime. 
 
Let M be a multiplication SГ-act and 𝑚, 𝑚x	
∈ M. Then SΓ𝑚=AΓM and SΓ𝑚x=BΓM for 
some Γ-ideals A, B of S. So 𝑚 ∗𝑚xmeans 
the product of SΓ𝑚 and SΓ𝑚x, which is 
equal to (AΓB)ΓM. As consequence of The- 
orem(2.7), we give the following Corollary:  

 
2.8. Corollary.  
 
Let S be Γ-monoid and P be a proper       
SГ--subact of a multiplication SГ-act M. 
Then P is prime if and only if  𝑚 ∗𝑚x∈ P 

then	either	𝑚 ∈ P or 𝑚x∈ P for each		𝑚	, 𝑚x∈ 
M. 
 
2.9. Definition.  
 
Let N be a SΓ-subact of SГ-act M. Then the 
radical of N is the intersection of all prime 
SΓ-subacts of M containing N and denoted 
by 𝑟𝑎𝑑�(N). If N is not contained in any 
prime SΓ-subact of M, then 𝑟𝑎𝑑�(N) =M. 
 
2.10. Proposition. 
 
Let S be a commutative Г-monoid and N be 
a proper SΓ-subact of a faithful 
multiplication SГ-act M. Then  
𝑟𝑎𝑑�(N)=�[N:M]	ΓM.                           
Proof: Let ℱ = {P: P	is	prime	Γ-	ideal of S 
such that [N:M] Í P}. Let B=�[N:M] then 
B=⋂ P�∈ℱ  and hence, BΓM=⋂ (PΓM).�∈ℱ  
Let P ∈ ℱ. If M=PΓM then  𝑟𝑎𝑑�(N) Í 
PΓM. If M≠PΓM then N=[N:M]ΓM Í PΓM 
by Proposition (2.4), PΓM is prime          
SΓ-subact of M. Thus 𝑟𝑎𝑑�(N)⊆PΓM. 
Therefore, 𝑟𝑎𝑑�(N) ⊆ BΓM. Conversely, 
let K be a prime  SΓ-subact of M containing 
N. Then by Proposition (2.4), there exists a 
prime Γ-ideal P of S, such that K=PΓM and 
Since  [N:M]ΓM=NÍK=PΓM then [N:M]⊆ 
P, and hence �[N:M]⊆P. So, �[N:M]ΓM ⊆ 
PΓM=K. Thus, 	�[N:M]ΓM	⊆ 𝑟𝑎𝑑�(N). 

         
Now, we give the concept of completely 
globally idempotent as follows: 
   
2.11. Definition.  
 
A Γ-semigroup S, is called completely 
globally idempotent if every Γ-ideal of S, is 
gl-idempotent. 

 
2.12. Example. 
 
Let S=Г= {i, 0, -i}. Then S is Γ-semigroup 
under the multiplication over complex 
numbers. Here, A(={0}and A+=S are the 
only Γ-ideals of S.  It's clear that  A(and	A+ 
are gl-idempotent. 
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3. Topological  gamma acts  
 
 In this section, we introduce the concept of 
a topological gamma"act and its basic 
properties discussed. In what follows, S 
will denote a Γ-semigroup with zero, and 
all SГ-acts contain the zero element. 

 
3.1. Definition. 
 
Let M be a SГ-act. The gamma spectrum      
(Γ-spectrum for short) of  M is the 
collection of prime SГ-subacts of M and 
denoted by 𝑆𝑝𝑒𝑐^(M). When S is an SГ-act, 
then		𝑆𝑝𝑒𝑐^(S) is the set of all prime         
Γ-ideals of  S.  
 
3.2. Definition.  
 
Let N be a SГ-subact of  SГ-act M. We define 
𝑉 (N) to be the set of all prime SГ-subacts 
of M containing N,  i.e 𝑉 (N)={P 
∈	𝑆𝑝𝑒𝑐^(M): N Í P}.  Note that, 𝑉 (M) is 
empty set and 𝑉 (θ) is 𝑆𝑝𝑒𝑐^(M).  
It's easy to see that for SГ-subacts N( and 
N+ of  M we have:  
i. If  N( Í N+,  then 𝑉 (N+) Í 𝑉 (N(). 
ii. If 𝑉 (N)={N}, then N is a prime. The 

converse is true if N is the unique prime 
SГ-subact of  M. 

iii.  𝑉 (N() ⋃ 𝑉 (N+) ⊆ 𝑉 (N(⋂ N+) . 
 

3.3. Proposition.  
 

Let S be a Γ-monoid and   M be a SГ-act. 
Then for the SГ-subacts N, N( and N+ of M, 
the following conditions hold: 
i. If M is a multiplication then, 𝑉 (N()⋃	
𝑉 (N+)=𝑉 (N( ∗ N+)=𝑉 (N(⋂ N+). 

ii. V^(𝑟𝑎𝑑^(N)) =	𝑉 (N). 
iii. If 𝑉 (N() Í 𝑉 (N+), then N+Í𝑟𝑎𝑑�(N().  
iv. 𝑉 (N()=𝑉 (N+) if and only if		𝑟𝑎𝑑�(N() 

=	𝑟𝑎𝑑^(N+). 
v. N(=N+ for any SГ-subacts N( , N+ of M 

whenever		𝑉 (N()=𝑉 (N+) is equivalent to 

every proper SГ-subact N is the intersection 
of primes. 

vi. If		{NG:	𝑖 ∈ I} is a nonempty collection of SГ-
subacts of M, then ⋂ 𝑉 (NG)G∈K =𝑉 (⋃ NG)G∈K .  

 

Proof:(i) Let P ∈ 𝑉 (N()⋃	𝑉 (N+). Then P∈ 
𝑉 (N()	or	P	 ∈ 𝑉 (N+) and hence N( Í P or  
N+ÍP. Since N( ∗ N+ÍN(	and N( ∗ N+Í N+ 
thus P ∈ 𝑉 (N( ∗ N+). Conversely, let Px∈	
	𝑉 (N( ∗ N+) then N( ∗ N+	Í Px. By 
Theorem (2.7), N(Í	Px	or	N+ Í Px that is, 
Px	∈ 𝑉 (N()	⋃	𝑉 (N+). For the other part let 
𝑄 ∈ 	𝑉 (N( ∗ N+) then N( ∗ N+		Í	𝑄. Thus 
N(Í 𝑄 or	N+ Í 𝑄 which implies that 𝑄 ∈ 
𝑉 (N(⋂ N+). The other direction is clear. 

 (ii) For P ∈ 𝑉 (N)	we have	N	Í	P and hence 
	𝑟𝑎𝑑^(N)⊆P. So P∈𝑉 (𝑟𝑎𝑑�(𝑁)). Conversely 
P'∈ 𝑉 (𝑟𝑎𝑑�(N))	then 	𝑟𝑎𝑑�(N)Í P'.  Since 
N Í	𝑟𝑎𝑑�(N). Thus,  P'∈𝑉 (N). Therefore, 
	𝑉 (𝑟𝑎𝑑�(N))=	𝑉 (N). 

(iii) By hypothesis, N+ Í P for every P ∈	
	𝑉 (N(). Thus N+	Í ⋂�∈��(��)P and hence 
N+	Í 𝑟𝑎𝑑�(N(). 

(iv) Clearly, 𝑟𝑎𝑑�(N()=⋂R�⊆�P=⋂�∈��(��)P 
=⋂�∈��(��)P=𝑟𝑎𝑑�(N+). Conversely, by (ii) 
𝑉 (N()=𝑉 (𝑟𝑎𝑑�(N()=𝑉 (𝑟𝑎𝑑�(N+)=𝑉 (N+).                                           

(v)(⟹)Suppose N( is a proper SГ-subact of 
M. If		𝑉 (N()=∅, then 𝑉 (N()=𝑉 (M). By 
hypothesis N1=M, a contradiction. Thus 𝑉 (N() 
≠∅, we obtain N+=⋂�∈��(��)P=𝑟𝑎𝑑�(N().  
Then, 𝑉 (N+)=𝑉 (𝑟𝑎𝑑�(N()=𝑉 (N(), since 
N(=N+. Hence, N(	is an intersection of 
prime SГ-subacts.                         .                                                   
(⟸) Assume that	𝑉 (N()=𝑉 (N+). It's clear 
by hypothesis every SГ-subact N of M is an 
intersection of prime SГ-subacts if and only 
if N=⋂ P�∈��(�) .  Now,		N(=⋂ P	�∈��(��)  and  
N+=⋂ 𝑃�∈��(��) . It follows that	N(= N+. 

(vi) Let P"∈ ⋂ 𝑉 (NG)G∈K . Then P ∈ 𝑉 (NG) and 
hence	NGÍP for all 𝑖 ∈ 𝐼. Thus, ⋃ 𝑁GG∈K ÍP. So, 
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P∈ 𝑉 (⋃ 𝑁G)G∈K . Conversely, let Q∈𝑉 (⋃ 𝑁G)G∈K . 
Then, ⋃ 𝑁GG∈K 	Í	Q. We conclude that NGÍ Q 
and hence Q∈ 𝑉 (NG) for every 𝑖∈I. Thus, Q∈ 
⋂ 𝑉 (NG)	G∈K . Hence, ⋂ 𝑉 (NG)	G∈K =𝑉 (⋃ NG)G∈K . 

Now, we introduce the definition of topological 
gamma act as follows: 

3.4. Definition.  
 

Let M be a SГ-act,  and 𝜏(M)={𝑉 (N): N	is 
SГ-subact of M}. If 𝜏(M) is closed under 
finite unions,  then the family 𝜏(M) satisfies 
the axioms for the closed subsets of a 
topological space. Thus, 
𝜏(M) is a topology on 𝑆𝑝𝑒𝑐^(M) called the 
gamma act topology. 
 
3.5. Examples.  
 

1. Let S=M={𝑤,	𝑥,	𝑦, 𝑧} and Γ any 
nonempty set. Then, M is an      SΓ-act 
under the multiplication mapping:  S×Γ×M 
⟶ M defined by aαb=ab, which given in 
the following table: 

 
 
 
     
 
 
          

Here {𝑤},{𝑤,	𝑥},{𝑤,	𝑦}and{𝑤,	𝑥,𝑦}are the  
SГ-  subacts of M. But, {𝑤,	𝑥,	𝑦} is the only 
prime SΓ-subact of M. So, 
𝑆𝑝𝑒𝑐^(M)={{𝑤, 𝑥, 𝑦}}, 
𝑉 ({𝑤})=𝑉 ({𝑤, 𝑥})=𝑉 ({𝑤, 𝑦})=𝑆𝑝𝑒𝑐^(M)and 
𝑉 (M)=∅. So,	𝜏(M)={∅, 𝑆𝑝𝑒𝑐^(M)}.In this case 
𝜏(M) is the indiscrete topological SГ-act.  
 
2.  Let S = ℤ�, Γ={1�, 3�}, and M=S. Clearly, 
M is an SΓ-act under multiplication mod 6. 
The SГ-subacts of M are N(={0�},	N+={0�, 2�, 
4�}, N.={0�, 3�}, and N�={0�, 2�, 3�, 4�}. It's 
clear that N+ ,N.	, N� are the only prime  
SГ-subacts—of---M.  

Thus, 𝑆𝑝𝑒𝑐^(M)={N+, N., N�}, 
𝑉 (N()=𝑆𝑝𝑒𝑐^(M),	𝑉 (M)=∅,	𝑉 (N+)={N+N�}, 
	𝑉 (N.)={N.,N�}	and	𝑉 (N�)={N�}. Hence, 
𝜏(M)={∅,𝑆𝑝𝑒𝑐^(M),	{N+, N�}, {N., N�},{N4}}. 
 
3. Let S=M={𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and Γ be a 
nonempty set. Then M is an SΓ-act under 
the mapping: S×Γ×M ⟶ M, which defined 
by: 

𝑥	𝛼	𝑦 =

⎩
⎪
⎨

⎪
⎧
𝑎				𝑖𝑓				𝑥	 = 	𝑓, 𝑦	 = 	𝑎																
𝑏				𝑖𝑓				𝑥	 = 	𝑓, 𝑦	 = 	𝑏																
𝑐					𝑖𝑓				𝑥	 = 𝑓, 𝑦	 = 	𝑐																	
𝑓				𝑖𝑓		𝑥	 = 		𝑓	 = 	𝑦																						
	𝑒			𝑖𝑓		𝑥	 ∈ 	M	, 𝑦	 = 	𝑏	𝑜𝑟	𝑦	 = 	𝑒
𝑑						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																													

			 

Here, the SΓ-subacts of M are: N(={𝑎, 𝑑, 𝑒, 𝑓}, 
N+={𝑏, 𝑑, 𝑒, 𝑓}, N.={𝑐, 𝑑, 𝑒, 𝑓}, N�= {𝑏, 𝑐,𝑑, 
𝑒, 𝑓} , N£={𝑎, 𝑐, 𝑑, 𝑒, 𝑓}, N�={𝑎, 𝑏, 	𝑑,	𝑒, 𝑓}  
and N¤=M. Then it can be easily verified 
that, 𝑉 (N()={	𝑁(, 𝑁�, 𝑁£}, 𝑉 (N+)={N+, N�,  
N�},𝑉 (N.)={	N., N�, N£},𝑉 (N�)={N�}, 
𝑉 (N£)={N£}and 𝑉 (N�)= {N�}.  
But 𝑉 (	N£)	⋃𝑉 (N�)={	N�, N£}≠𝑉 (	NG)   
for all 𝑖=1,2,3,4 ,5,6 and 
𝑉 (N£)⋃𝑉 (N�)≠𝑉 (N£⋂N�). 
Now, we identify some cases for which 
𝜏(M) is a topological gamma act. Before 
this, we need the following definitions.  

 
3.6. Definition.  

 

An SΓ-subact N of SГ--act M is called 
semiprime if N is an intersection of prime 
SΓ-subacts of M.  
 
3.7. Definition.  

 

A prime SΓ--subact N of SГ--act M is said to 
be extraordinary if whenever K and L are 
semiprime SΓ--subacts of M with K⋂L Í N 
then K Í N or L Í N. 
 
3.8. Example.  
 

Let S = Γ =ℤ and M = 6ℤ. Then M is a SГ-
act under the usual multiplication of integer 
numbers.  

. 𝑤 𝑥 𝑦 𝑧 
𝑤 𝑤 𝑤 𝑤 𝑤 
𝑥 𝑤 𝑤 𝑤 𝑥 
𝑦 𝑤 𝑤 𝑤 𝑤 
𝑧 𝑤 𝑤 𝑦 𝑧 
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It is clear that 𝑆𝑝𝑒𝑐^(M)={(6𝑝)Γ𝑆: 𝑝∈ℙ 
where ℙ is the		set of prime numbers}. 
Thus, any semiprime SΓ-subact N of M has 
a form   N=⋂ (6𝑝G)ΓSG∈H , for some 𝑝G ∈ ℙ. 
Also, the prime SΓ-subact P=(12)ΓS of M is 
extraordinary. Let K and L be semiprime 
SΓ-subacts of M, such that"K=⋂(6𝑝)ΓS and 
L=⋂(6𝑞)ΓS, where the intersection runs 
among some 𝑝, 𝑞	in	ℙ. Thus, K=(6𝑚)ΓS 
and L=(6𝑛)ΓS where 𝑚, 𝑛 ∈ ℤ.  Hence, K⋂L 
=(6𝑛𝑚)ΓSÍP=6(2)ΓS.So, we have 2 divides 
𝑛𝑚 then 2 divides 𝑛 or 2 divides 𝑚. This, 
implies that K Í P or L Í P. 

 
3.9. Theorem.  
 

For a SГ-act M. The following conditions are 
equivalent:  
i. M is a Top SГ-act.  
ii. Every prime SΓ-subact of M is extraordinary  
iii. 𝑉 (N)⋃𝑉 (K)=𝑉 (N⋂K) for all semiprime 

SΓ-subacts N and K of M. 
Proof:(i)⟹(ii) Let K be a prime SΓ-subact 
of M and N, L be semiprime SΓ-subacts of 
M such that N⋂LÍK.  By assumption, 
there  is an SΓ-subact T of M such that" 
𝑉 (N)⋃𝑉 (L)=𝑉 (T).  Since N is semiprime, 
then there exists a collection of prime SΓ-
subacts 𝐾G	, (𝑖∈ I) such that, N=⋂ 𝐾GG∈K . So, 
for all 𝑖 ∈I, 𝐾G∈ 𝑉 (N)	Í𝑉 (T), and hence 
TÍ 𝐾G for all 𝑖 ∈ 𝐼. Thus, TÍ⋂ 𝐾GG∈K =N . 
Similarly T Í L. So TÍN⋂L. Now,    
𝑉 (N)⋃𝑉 (L)Í𝑉 (N⋂L)Í𝑉 (T)=𝑉 (N)⋃	𝑉 (L).  
We conclude that  𝑉 (N)⋃𝑉 (L)	=𝑉 (N⋂L). 
But, K∈𝑉 (N⋂L). Thus, K	 ∈	𝑉 (N)	or K∈	
	𝑉 (L). Hence,  N ÍK or NÍL. Therefore,  
K is extraordinary. 
(ii)⟹(iii) Suppose that 𝑁	and 𝐾 semiprime 
SΓ-subacts of M. It's clear that 𝑉 (𝑁)	⋃	
𝑉 (𝐾)Í𝑉 (𝑁⋂𝐾). Let L ∈ 𝑉 (𝑁⋂𝐾). Then,  
𝑁⋂𝐾Í L. Since L is prime then by (ii),   
𝑁ÍL or 𝐾Í L, 𝑖. 𝑒	L ∈ 𝑉 (𝑁) or L∈ 𝑉 (𝐾). 
This shows that 𝑉 (𝑁⋂𝐾)Í 𝑉 (N)	⋃	𝑉 (K). 
Hence,		𝑉 (N)	⋃	𝑉 (K)	=  𝑉 (N⋂K). 

(iii) ⟹(i) Let 𝐾(	 and 𝐾+	be any SΓ-subacts  
of M. If 𝑉 (𝐾(	) is empty, then 𝑉 (𝐾(	)⋃	
𝑉 (𝐾+	)= 𝑉 (𝐾+	). Assume  that 𝑉 (𝐾(	)	and 
𝑉 (𝐾+	) are both nonempty. Then, 	𝑉 (𝐾(	)		
⋃	𝑉 (𝐾+	)=𝑉 (	𝑟𝑎𝑑�(𝐾(	))⋃	𝑉 (𝑟𝑎𝑑�(𝐾+	)) 
=𝑉 (	𝑟𝑎𝑑�(𝐾(	)⋂𝑟𝑎𝑑�(𝐾+	)). Thus, M is a 
Top SГ-act. 
 
If {jAG, 1£𝑖£𝑛} is any nonempty family of 
Γ-ideals of Γ-semigroup S, then ,  A1ΓA2Γ 
... ΓA¬⊆ A1⋂ A2⋂ ... ⋂	A¬	.  

 
3.10. Corollary. 
 

 Let M be a SГ-act with the property that for 
every prime SГ-subact N of M, 
[K:M]⊆[N:M] implies that K⊆N for each 
semiprime SГ-subact  K of M. Then M is a 
Top SГ-act.                                                                                                                     
Proof: Let K(, K+	be a semiprime SГ-subacts 
of M with 𝐾(	⋂𝐾+	 ⊆ N.		It follows that 
[K(	:M]⋂[K+	:M]=[K(	⋂K+	:M]Í[N:M], since 
[N:M] is a prime Г-ideal of S, then either 
[K(	:M]Í[N:M] or [K+	:M]Í[N:M]. Now, 
by hypothesis, we have K(	 ⊆ N or K+	Í N, 
that is, N is extraordinary. Hence, M is a 
Top SГ-act by Theorem (3.9). 
 
3.11. Corollary.  

 

Any homomorphic image of a Top SГ-act is 
a Top SГ-act. 
Proof: Consider the SΓ-epimorphism 𝜋:M⟶	 
M/𝜌,  where 𝜌 a congruence on M. Let N/𝜌R 
be a prime SГ-subact of SГ-act M /ρ, where 
N is a prime SГ-subact of M (by Proposition 
(2.5)). Consequently, any semiprime SГ-
subact of  M/ρ is of the form K/𝜌® for which 
K is semiprime SГ-subact of M. Let 𝐾(/𝜌®� 
and 𝐾+/𝜌®�be semiprime SГ-subac of M/ρ 
such that"(𝐾(/𝜌®�⋂ 𝐾+/𝜌®�)Í N/𝜌R. Then , 
	𝜋¯((𝐾(/𝜌®�	⋂ 𝐾+/𝜌®�) ⊆ 𝜋¯((N/𝜌R).	So 
	𝜋¯((𝐾(/𝜌®�)⋂𝜋

¯((𝐾+/𝜌®�)	⊆ 𝜋¯((N	/𝜌R). 
Thus,		K(	⋂K+	ÍN. It follows that  K(	ÍN	or	 
𝐾+	ÍN and hence, 𝜋(	K()	Í		𝜋(N)		or 
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	𝜋(	𝐾+	)	Í	𝜋(	N). Thus, K(/𝜌®�⊆	N/𝜌R			 or	 
𝐾+/𝜌®�Í	N/𝜌R. Hence, N/𝜌R	is extraordinary. 
So, by Theorem (3.9),  M/ρ is Top SГ-act.  
Now, let P be a prime Γ-ideal of Γ-semigroup 
S and  A1, A2 be a semiprime Γ-ideals of S 
with A1⋂A2 Í P. Since A1ΓA2 ⊆ A1⋂A2 Í 
P,  then  A1⊆ P or A2  ⊆ P and hence P is 
extraordinary. Thus, by Theorem (3.9) any 
Γ-semigroup S is a Top SГ-act .  
Recall, if M and N are SГ-acts, 𝑓:M → N 
SГ-homomorphism, then M/ker(𝑓)≅Im(𝑓). 
(Kamal, 2016)                                               
Now, we study the relation between cyclic 
and topological gamma acts. For this reason, 
we give the following Proposition. 
 

3.12. Proposition.  
 

Let M be a SГ-act. If M is cyclic, then 
M≅S/ℓS(𝑚) for some 𝑚∈ M. Proof: Let M 
be a cyclic SГ-act. Then, there exists 𝑚∈ M 
such that M=SΓ𝑚. Define, 𝑓: 𝑆 ⟶ M by 
𝑓(s)= s𝛼𝑚 for every s∈ S and 𝛼	∈ Г. Now, 
let s, s'∈ S and 𝛽	∈Г, thus 
𝑓(s𝛽s')=(s𝛽s')α𝑚=s𝛽(s'α𝑚)=s𝛽𝑓(s') and hence 
𝑓 is a SΓ-homomorphism. Also, let 𝑚x∈M, then 
𝑚x=𝑡𝛾𝑚=𝑓(𝑡). Hence, M≅ S/ker(𝑓) .Since 
ker(ƒ)={(𝑠, 𝑡)∈S×S|𝑓(𝑠)=𝑓(𝑡)}={(𝑠, 𝑡)∈S×S| 
𝑠𝛼𝑚=𝑡𝛼𝑚}= ℓS(𝑚). Thus,  M≅S/ℓS(𝑚). 
 
3.13. Corollary.  
 

Any cyclic SГ-act is a Top SГ-act.                                                                                              
Proof: It's clear by Corollary (3.11) and  
Proposition (3.12). 
                         

But the converse of Corollary (3.13) may 
not be true, as we can see in the first part of 
example (3.5). 

 

3.14. Corollary.   
 

Let S be a  Γ-semigroup and T be a                
Γ-sub-semigroup of S". If M is a Top       
TГ-act, then M" is a Top SГ-act.                  .                                                                                                                                     
Proof: Let K be a prime SГ-subact of M. 
Then K is a proper TГ-subact of M. If  𝑡, 𝑠∈T,  

𝑚 ∈ M and 𝛼, 𝛽 ∈Γ satisfy		𝑡𝛼𝑠𝛽𝑚∈K  then 
𝑚 ∈ K		or		𝑡ΓM Í K. Thus K is a prime  
TГ-subact of M. Let L1 and L2 be semiprime 
SГ-subacts of M with L(	⋂L+	Í K. By the 
same way above, we have L(	 and L+	 are 
semiprime TГ-subact of M. Since M" is a 
Top TГ-act then, L(	Í K or 𝐿+	Í K. Thus, K 
is extraordinary. Hence, by Theorem (3.9), 
M is a Top SГ-act. 
 

3.15.  Proposition.  
 

Let A be a Γ-ideal of Γ- monoid S and N be a 
SГ-subact of SΓ-act M. Then 
𝑉 (N)⋃𝑉 (AΓM)=𝑉 (AΓN)=𝑉 (N⋂AΓM).                                                                                                                                              
Proof: It's clear that, 𝑉 (N)⋃𝑉 (AΓM) ⊆
𝑉 (N⋂AΓM) ⊆ 𝑉 (AΓN). Let P∈𝑉 (AΓN) . 
Then AΓNÍP. This implies that AΓ1ΓN Í 
P and hence AΓSΓNÍP. Since P is a prime, 
then N Í P or AΓMÍP. So, P∈𝑉 (N) or P∈ 
𝑉 (AΓM). Thus, P∈𝑉 (N)⋃𝑉 (AΓM).    
Therefore,		𝑉 (AΓM)Í	𝑉Γ(N)	⋃	𝑉 (AΓM) . 
 

3.16. Corollary.  
 

Let A and B be a Γ-ideals of Γ-monoid S 
and M" be a SΓ-act. Then 
	𝑉 (AΓM)⋃𝑉 (BΓM)=𝑉 [(AΓB)ΓM]. 
Now, if {AG}G∈K	is a collection of Γ-ideals of 
S, then it's easy to show that, ⋂ 𝑉 (	AGΓM)G∈K    
= 𝑉 (⋃ AGΓM)G∈K . Thus, by using this fact 
with Corollary (3.16), we get the subset 
𝜏(AΓM)={𝑉 (AΓM): where A is Γ-ideal of 
S} of 𝜏(M) is a topological space, and if M 
is a Top SГ-act,  then 𝜏(AΓM) is a subspace 
of 𝜏(M). In particular, if M is a 
multiplication then M" is a Top SГ-act. 
Thus, we have the following result: 

 

3.17.  Proposition.  
 

Ever multiplication SГ-act is a Top SГ-act.     
 

3.18. Corollary.  
 

If S is completely globally idempotent      
Γ-semigroup then any Γ-ideal of S is a Top 
SΓ-act.  
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Proof: Let A and B be Г-ideals of S, such 
that B ⊆ A. Then B = BΓB ⊆ BΓA ⊆ B. 
Hence, B=BΓA. Thus, A is a multiplication. 
By Proposition (3.17), A is Top SΓ-act . 
 
We denote the complement of 𝑉 (N) in 
𝜏(M) for any SГ-subact N of M by 𝐷^(N), 
i.e. 𝐷^(N) =	𝑆𝑝𝑒𝑐^(M)\𝑉 (N). Note that 
𝐷^(𝑚) = 𝐷^(SΓ𝑚) for every 𝑚 ∈ M. 
 

3.19. Proposition.  
 

If M is a multiplication  SΓ-act,  then the 
following conditions hold: 
i. 𝐷^(𝑚)⋂𝐷^(𝑛)=𝐷^(𝑚 ∗ 𝑛) for any 𝑚, 𝑛∈M.  
ii. Let NÌM with every proper SГ-subact of 

M is the intersection of primes. If 𝐷^(N) 
=∅, then N is Γ-nilpotent .  

Proof:(i) Let 𝑚, 𝑛 ∈ M. Then SΓ𝑚=AΓM 
and SΓ𝑛=BΓM for some Γ-ideals A and B 
of S. By Corollary (3.16),		𝐷^(𝑚)	⋂𝐷^(𝑛)= 
𝐷^(AΓM)⋂𝐷^(BΓM)=[𝑆𝑝𝑒𝑐^(M)\𝑉 (AΓM)] 
⋂[𝑆𝑝𝑒𝑐^(M)\VΓ(BΓM)]=𝑆𝑝𝑒𝑐^(M)\[𝑉 (AΓM) 
⋃	𝑉 (BΓM)] = 𝑆𝑝𝑒𝑐^(M)\𝑉 ((AΓB)ΓM) 
=	𝑆𝑝𝑒𝑐^(M)\𝑉 (𝑚 ∗ n) =𝐷^(𝑚 ∗ 𝑛) . 
(ii) Let 𝐷^(𝑁)=∅. Then, 𝑆𝑝𝑒𝑐^(M)\𝑉 (N)= ∅ 
thus 𝑆𝑝𝑒𝑐^(M)=𝑉 (N) and hence 𝑉 (N)=𝑉 (θ). 
By Proposition (3.3)(v), N=θ. Therefore, N 
is a Γ-nilpotent. 
                                                                                                                                                       
3.20. Proposition.  
 

Let M be a SΓ-act. Then  
the sets {𝐷^(𝑚G):	𝑖∈𝐼} forms a base of the 
gamma act topology on M.                                                                                                                                                 
Proof: Any nonempty open set in the 
gamma act topology contains 𝐷^(K) for some 
SΓ-subact K of M. Now, any such K= ⋃ {𝑚G}G∈K 	
, 𝑚G∈K. Then,	𝐷^(K)=𝐷^(⋃ 𝑚GG∈K )=𝑆𝑝𝑒𝑐^(M)\ 
𝑉 (⋃ 𝑚GG∈H )=𝑆𝑝𝑒𝑐^(M)\⋂ 𝑉 (𝑚GG∈H )=⋃ 𝐷^(𝑚GG∈K ). 
 
3.21. Definition 
 

(Erdogan, 2003) Let	𝒜 ={ 𝐴G: 𝑖 ∈ 𝐼} be a 
collection of sets. Then 𝒜 is said to have 
the finite intersection property if for every 

finite collection {𝐴(, … , 𝐴¬}	of 𝒜,  we have 
that ⋂ 𝐴G¬

G·(  ≠	∅	. 
 

3.22. Theorem 
 

(Erdogan, 2003) A topologicalspace X is 
compact if and only if for every collection 
of closed sets 𝒜	of X, with 𝒜 has the finite 
intersection property then, ⋂ 𝐴¸∈𝒜 ≠ ∅. 
 

3.23. Theorem.  
 
If M is finitely generated multiplication SΓ-act, 
then 𝑆𝑝𝑒𝑐^(M) is compact.                                                                                                                                    
Proof: Let {𝑉 (𝑁G):𝑖∈I} be any collation of 
closed subsets of 𝑆𝑝𝑒𝑐^(M) where 𝑁G  is a 
SΓ-subact of M for each  𝑖∈I such that" 
⋂ 𝑉 (NG)G∈K =∅. Thus, by Theorem (3.3)(vi),  
⋂ 𝑉 (NG)G∈K =𝑉 (⋃ NG)G∈K = 𝑉 (⋃ [NG:M]ΓM)G∈K   
and hence 𝑉 (⋃ [NG:M]ΓM)G∈K =∅. Now, 
suppose that M ≠ ⋃ [NG:M]ΓMG∈K  then 𝑉 (M) 
≠ 𝑉Γ(⋃ [N𝑖: M]ΓM)𝑖∈𝐼 . This implies that		∅ 
≠ 𝑉 (⋃ [NG:M]ΓM)G∈K , a contradiction. Thus, 
⋃ [NG:M]ΓM =G∈K M. Since M is finitely 
generated, there exists a finite subset Ixof I 
such that M=	⋃ [NG:M]ΓMG∈Kº .  Therefore , 
⋂ 𝑉 (NG)G∈Kº =𝑉 (⋃ NG)G∈Kº =𝑉 (⋃ [NG:M]ΓG∈Kº M
=∅. Which contradicts the finite intersection 
property. By Theorem (3.22), 	𝑆𝑝𝑒𝑐^(M) is 
compact. 
Now, we study some of the separation 
axioms and the density of topological 
gamma acts. 

 
3.24. Definition.  
 

Let M be a SΓ-act and X be a nonempty 
subset of 𝑆𝑝𝑒𝑐^(M). Then the Jacobson 
radical of X is the intersection of all prime 
SΓ-subacts of M which belong to X  and 
denoted by 𝐽 (X). We denote the closure of 
a subset X of  𝑆𝑝𝑒𝑐^(M) by X½ . 
 

3.25. Theorem.  
 
Let M be a Top SΓ-act. Then,  
 X½ = 𝑉  ((𝐽 (X)).  
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Proof: Let 𝑉 (N) be a closed set containing X, 
and  P be a prime SΓ-subact in X. Then N	⊆P, 
and hence N⊆𝐽 (X) .Thus, 𝑉 (𝐽 (X ))⊆𝑉 (N). 
Since X ⊆ 𝑉  (𝐽 (X)), then 𝑉 ((𝐽 (X)) is the 
smallest closed subset of 𝑆𝑝𝑒𝑐^(M) containing 
X. So, X½=𝑉 ((𝐽 (X)). 
 

Recall that a topological space is a T0-space 
if and only if the closures of distinct points 
are distinct. A subset A of a topological 
space X is called dense in X  if  X½=A. 
(Erdogan 2003 & Oner  2020) 
 
3.26. Corollary.  

 
If (θ) ∈ X, then X is dense  
in		𝑆𝑝𝑒𝑐^(M).                                                                                                     
Proof: By Theorem (3.25), X½ = 𝑉  ((𝐽 (X)) 
= 𝑉 (𝜃)=𝑆𝑝𝑒𝑐^(M).  Hence,  X is dense.  

 
3.27. Corollary.  
 
 𝑆𝑝𝑒𝑐^(M) is a T0-space  
for every Top SГ-act M.                                                                                                            
Proof: Let 𝑁( and 𝑁+ be two distinct points of 
𝑆𝑝𝑒𝑐^(M). Then,  {𝑁(}������=𝑉 (𝑁()≠𝑉 (𝑁+)={𝑁+}������.  
(By Theorem (3.25)). We deduce that,	𝑆𝑝𝑒𝑐Г 
(M)	is a T0-space.	 
 
A topological space X is a T1-space if and 
only if all points of X are closed in X (i.e., 
given any x in X,  the singleton set {x} is a 
closed set. (Erdoğan 2003&Öner 2020). 
 
3.28. Theorem.  
 
Let M be a SΓ-act. Then	𝑆𝑝𝑒𝑐^ 
 (M) is T1-space if and only if each prime 
SΓ-subact  in 𝑆𝑝𝑒𝑐^(M) is maximal.                                                                                                                                                                
Proof:(⟸)Let{P}Í	𝑆𝑝𝑒𝑐^(M).Then, {𝑃}����=𝑉     
((𝐽 ({P}))=𝑉 (P). Since {P} is maximal. Thus, 
	{𝑃}���� = 𝑉 (P) ={P}. 
(⟹) Let P"be a prime SΓ-subact of  M.  By  
hypothesis {P} is a closed subset of  
𝑆𝑝𝑒𝑐^(M). Thus 𝑉 (𝑃)=𝑉          

((𝐽 (P))={𝑃}���� = P. Hence,  P is maximal in 
𝑆𝑝𝑒𝑐^(M). 
Recall, if N is a prime SГ-subact of SГ-act 
M, then [N:M] is a prime Γ-ideal"of S. This 
idea motivates us to introduce and study the 
following mapping that gives a relationship 
between 𝑆𝑝𝑒𝑐^(M) and 𝑆𝑝𝑒𝑐^(S).  Before this 
we need the following Lemma. 

3.29. Lemma.  
 
Let S be a commutative"Γ- 
monoid and M be a SΓ-act. Then [SΓP:M] 
=SΓ[P:M] for all SΓ-subact P of M.            ,                                                                                                                                 
Proof: Clear.  
 

3.30. Definition.  
 
Let S be a Γ-monoid and M  
be a SΓ-act. Define a mapping  𝜓: 𝑆𝑝𝑒𝑐^(M) ⟶
𝑆𝑝𝑒𝑐^(S), by P ⟼	[P:M] for all P	∈		𝑆𝑝𝑒𝑐^(M). 
. 
Clearly,  by Lemma (3.30) 	𝜓 is well-defined 
and SΓ-homomorphism. The next Proposition 
present some properties of the mapping 	𝜓 .  

 

3.31. Proposition.  
 

Let S be a Г–monoid, and M be a 
multiplication SΓ-act, then  
i. If M is faithful, then mapping 𝜓	is surjective.   
ii. The mapping 𝜓	is injective.  
Proof:(i) Let P ∈ 𝑆𝑝𝑒𝑐^(S). By Proposition 
(2.4), PГM is a prime SΓ-subact. Now, 
	𝜓(PГM)=[PГM:M]=P. 
(ii) Let N(, N+∈𝑆𝑝𝑒𝑐^(M) with 𝜓(N()=𝜓(N+) . 
Then, [N(:M]=[N+:M] and hence [N(:M]ГM    
= [N+:M]ГM. So, N(=N+ . 
Thus, the mapping	𝜓	plays an important 
role in studying algebraic properties of the 
SГ-act M when we have a related topology.  
For an example,  if M is a faithful 
multiplication"SΓ-act, then 𝑆𝑝𝑒𝑐^(S) and 
𝑆𝑝𝑒𝑐^(M) are homeomorphic, and hence 
we can transfer some of known topological 
properties of 𝑆𝑝𝑒𝑐^(M) to 𝑆𝑝𝑒𝑐^(S) .  
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