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Abstract

The least trimmed squares (LTS) estimation has been successfully used in the robust linear 
regression models. This article extends the LTS estimation to the Jammalamadaka and Sarma 
(JS) circular regression model. The robustness of the proposed estimator is studied and the 
used algorithm for computation is discussed. Simulation studied, and real data show that the 
proposed robust circular estimator effectively fits JS circular models in the presence of vertical 
outliers and leverage points.
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1. Introduction

Circular data or directional data are having 
con- siderable broadly used in different 
areas such as natural science e.g: (Rivest, 
1997), medical sciences e.g: (Downs & 
Mardia, 2002), meterology e.g: (Kato et 
al., 2008), biology e.g: (Lund, 1999) and 
geophysics e.g: (Chang et al., 1990). Strong 
interests in circular regression model have 
also been shown see, (Gould, 1969; Mardia, 
1975; Laycock, 2003; Down et al., 1971) 
and (Hussin et al., 2004). Another model 
of our interest is proposed by (Sarma & 
Jammalamadaka, 1993) when both response 
variable v and explanatory variable u 
are circular. They used the conditional 
expectation of the vector eiv given u to 
represent the relationship between v and u.   
The properties of the models for the case 
of a single explanatory variable have been 
studied see, Section. 8.6 of (Jammalamadaka 
et al., 2001). (Ibrahim, 2013) extended the 
model by introducing p circular explanatory 
variables in the model and studied its ridge-
estimators  (Asar & Genc¸, 2017).
    The problem of outliers in the circular 
regres- sion context has been well discussed. 
Most of the outliers’ detection procedures 
were derived based on the simple circular 
regression model (Hussin et al., 2004) by 

extending the common methods from 
linear regression (Abuzaid et al., 2008) and 
(Abuzaid et al., 2013). This model assumed 
a linear relationship between the two 
circular variables, which is a conservative 
condition. Detection of outliers in JS model 
was considered in (Ibrahim et al., 2013), 
where they used the COV RATIO statistic 
to identify the outliers. Moreover, (Alkasadi 
et al., 2018) derived an outlier detection 
procedure for the multiple JS model with 
two independent circular variables.
    Recently, (Jha & Biswas, 2017) becomes the 
first paper to consider the robust estimation 
for the (Kato et al., 2008) circular regression 
model based on wrapped Cauchy distribution 
settings by proposing the maximum trimmed 
cosine estimator. There is no published 
work on the robust estimation of JS circular 
regression as far our knowledge goes.
   The trimming techniques introduced by 
(Rousseeuw, 1985) used in robust linear 
regression modeling, and several studies 
were used this estimator to overcome 
the problem of outliers instead of the 
classical estimator and illustrated excellent 
performance in linear regression models see, 
(Saleh, 2014). This article considers the 
JS circular regression model of (Sarma & 
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Jammalamadaka, 1993) which is known 
to have very interesting properties closely 
related to the theory of multiple linear 
regression and obtain the robust estimation 
using least trimmed square residual approach 
as mentioned in (Rousseeuw, 1985).
  The rest of the article is organized as 
follows: Section 2 reviews the formulation 
of the JS circular regression model, and its 
parameters estimates methods. Section 3 
formulates the effect of outliers in the JS 
model and discusses the robustness problem 
of this model based on the breakdown point. 
Section 4, the circular least trimmed squares 
(CLTS) estimator is defined, discusses 
its breakdown point and computational 
algorithm. A simulation study is conducted 
to study the performance of the proposed 
estimator in Section 5. Section 6 applies the 
robust estima- tors to the eye data set.

2. The JS circular regression model

2.1. Model formulation

For any two circular random variables U 
and V, (Sarma & Jammalamadaka, 1993) 
proposed a regression model to predict v for a 
given u, consider the conditional expectation 
of the vector eiv given u such that

where, eiv = cos v + i sin v, µ(u) represents the 
conditional mean direction of v given u and 
ρ(u) represents the conditional concentration 
parameter. Equivalently, we may write

Then, v can be predicted such that

Because g
1
(u) and g

2
(u) are periodic 

functions, thus they are approximated for 
a suitable degree m (Kufner, 1971), which 
have the following two observational 
regression-like models 

and

for j = 1, ..., n, where, ε =  (ε
1
, ε

2
) is the vector 

of random errors following the bivariate 
normal distribution with mean vector 0 
and un- known dispersion matrix Σ. The 
parameters A

k
, B

k
, C

k
, and D

k
, k = 0, 1, ..., m, 

the standard errors as well as the matrix Σ 
can then be esti- mated. Assume that B

0
 = D

0 

= 0 to ensure model’s identifiability.

2.2. Estimation of JS circular regression 
parameters

There are two methods of estimating the 
parameters of the JS circular regression 
model, namely, the least squares (LS) see, 
(Ceylan & Parlakyıldız, 2017) and likelihood 
estimation method (MLE).

2.2.1. Least squares estimation

Let (u
1
, v

1
), ..., (u

n
, v

n
) be a random circular 

sample of size n. The observational Equations 
(4) can be written in matrix form

Therefore, Equations (4) can be summarized 
as V(1) = (V

11
; :::; V

1n
)1 ;
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and 

The least squares estimates turn out to be

and

These equations can be combined into the 
following single matrixes 

2.2.2 Maximum likelihood estimation

An alternative estimation method JS circular 
regression models is the MLE method. For 
simplicity, we consider the case when m = 1.
Hence, from Equations ( 4), we expand the 
error term and obtain

The function log L is then differentiated 
concerning each parameter and equated 
to zero. Hence, we obtain the following 
estimates of the parameters:

and 

Both LS and MLE methods should give 
similar estimates of the parameters A0, A1, 
B1, C0, C1, and D1, under the assumption 
that the error terms are normally distributed. 
The following section explains the effect of 
outliers on the JS circular regression model.

3. Outliers in the JS circular regression 
model

Outliers are a common problem in 
the statistical analysis. It is defined as 
observations that are very different from the 
other observations in a set of data. (Ibrahim 
et al., 2013) investigated the robustness 
of the JS model by a simulation study and 
concluded that the JS model is sensitive  for 
outliers exitance, and the presence of outliers
has potentially several effects on LS 
estimation. Then (Ibrahim, 2013) proposed a 
COV RATIO statistic to define outliers in the 
y-vertical. This paper defines two types of 
outliers, outliers in V (vertical outliers), and 
outliers with respect to U (leverage points).

3.1 Effect of outliers on LS estimation of JS 
circular regression parameters

In order to illustrate the effect of outliers on 
LS estimation, we introduce the following 
two ways:
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However, it is clear that the circular 
parameters is very sensitive to the presence of 
outlying, and it will be affected dramatically 
according to the types of outliers. Therefore, 
before address the robustness issue in the JS 
circular regression model, it is necessary to 
discuss the finite sample breakdown point 
(BDP).

3.2 Breakdown point

The BDP was first introduced in (Donoho &
Huber, 2016). The BDP is defined in terms of 
the smallest fraction of observations which 
can be contaminated such that the estimator 
goes arbitrarily far from the estimator based 
on all the observations. Formally,

where, T(X) is the estimator based on all the 
n observations, while T1(X) is the estimator 
when h out of n observations are contaminated 
arbitrarily.
The BDP of LS in the simple linear regression 
is 1 n, it means that one outlier can affect the 
LS estimation. For the JS circular regression 
model, we conclude the same result of BDP for 
circular LS estimation.
Similarly, the contamination in (V, U) can make 
the MLE of circular parameters unbounded. 
The BDP define in terms of . Following the 
definition of BDP, the BDP of MLE is

4. Circular least trimmed squares (CLTS)
estimators

In linear regression, the LS estimator has BDP 
= 1=n. Thus, there was necessary to improve 
the robustness of the estimator because a 
single outlier has the power to change the 
value of the LS estimate arbitrarily. In terms
of the BDP, the issue rest with the introduction
of robust estimators such as the least median
of squares estimator proposed by (Rousseeuw, 
1984) and M-estimator see, (Huber, 2011). 
Thus, a more robust estimator with a higher
BDP was needed.
In follow-up of such a robust estimator, 
(Rousseeuw, 1985) introduced LTS estimator
which has BDP = ([n=2+1]=n) for simple 
linear regression; this section extends 
the LTS estimator idea to JS circular 
regression case, and proposes the circular 
least trimmed squares estimators (CLTS). 
In the linear regression, the prediction 
accuracy of an estimator computed by the 
difference between the observed values and 
the predicted values, smaller values of the 
squares of the distance between the observed 
and predicted values, is the best fitting. 
Considering the linear regression case, this 
discrepancy in the JS circular regression can 
be measured by taking the distance between 
the observed V and predicting the responses  
V . The JS circular residual is defined as ε(1) 
(i)
 = V(1)-U(1) and ε(2) 

(i)
 = V(2)-U(2), the lowest 

value of this residual is the best fitting
.

where, [n/2 ] + 1>h> n. This estimator is based
on h observations out of n. Typically, the 
valueof h is taken to be greater than [n/2 ] 
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because a lower value of h means that more 
than half of the observations are contaminated, 
which does not create considerable meaning. In 
this paper we suggest that h = n+4/2 analogous 
to (Jha & Biswas, 2017). However, the CLTS 
is the value of the parameter, which fits h 
observations out of the total n in the best way. 
This is gained in the selfsame as the maximum 
LTS likelihood estimator was obtained as the 
robust answer from the classical maximum 
likelihood estimator (MLE). See, e.g., (Vandev 
& Neykov, 1993), (Bednarski et al., 1993), 
(Vandev & Neykov, 1998) and (Cuesta et 
al., 2008) for the descriptions, rationale and 
applicability of the maximum LTS likelihood 
estimator. For circular data, the maximum 
LTS likelihood estimator will be the same as 
the CLTS. However, the residual is the natural 
technique of demonstrating the goodness of fit 
in circular data. Hence this paper focuses on 
the CLTS instead of the circular maximum LTS 
likelihood estimator.

5. Simulation study

A simulation study was achieved to examine
the proposed CLTS estimates performance 
and compare it with classical LS of JS circular 
regression models. For simplicity, we consider 
the case when m = 1, so the six coefficients 
are to be estimated; A

0
, A

1
, B

1
, C

0
, C

1
, and D

1
. 

Specifically, we consider the set of uncorrelated 
random errors (ε

1
; ε

2
) from the bivariate Normal 

distribution with mean vector 0 and variances 
(a

1
;a

2
) to be (0.03,0.03). For simplicity and 

illustrative purposes, the true values of  A
0 

and C
0
 being zero, while A

1
, B

1
, C

0
, and D

1
 

are obtained by using the standard additive 
trigonometric polynomial equations cos(a+ 
u) and  sin(a + u): For example, when a = 2, 
cos(2 + u) = -0:0416 cos u -0:9093 sin u and 
sin(2+u) = 0:9093 cos u -0:04161 sin u: Then 
by comparing with equation (4), the true values 
of A

1
, B

1
, C

1
, and D

1 
are -0.04161, -0.09093, 

0.09093, and -0.04161, respectively. Similarly, 

we can also get different sets of true values 
by choosing different values of a. Here, we 
consider the values of a = -6 and 2. We then 
introduce outliers into the data such that the 
percentages of contamination used is c%= 10%, 
20%, and 30% from the sample size n =20, 50, 
100. The complete steps of the simulation are 
described below:
Step 1. Generate a fixed variable U of size n 
from VM( ; 2).
Step 2. Generate ε1 and ε2 of size n from N 
((0

0
);,(0:03 0 

0 0:03
)). For a fixed a, obtain the true 

values of A
1
, B

1
, C

1
 and D

1
, then calculate V

1j
 

and V
2j
.

Step 3. Obtain the variable vj = arctan V
2j 
V

1j
.

Step 4. Fit the generated circular data to the
JS circular regression model to give the LS 
and CLTS parameter estimates ^ A

0
, ^ A

1
, ^B

1
, 

^ C
0
, ^ C

1
, and ^D

1
.The process is carried out 

1000 times for each combination of sample 
size n and different values of a. To investigate 
the robustness of the estimators against vertical 
outliers and leverage points, the following 
scenarios were considered:

1. No contamination.

2. Vertical outliers (outliers in the V only).

3. Leverage points (outliers in some U only).

For the c% vertical outliers scenario, we replace 
the first cxn/100 observations v with the newly 
generated values v� such that the errors ε1 and 
ε2 are now generated from N((0 

0
)(0:5 0

0 0:5
)) Then, 

the generated contaminated circular data are 
fitted using LS and CLTS. For the c% leverage 
point scenario, we replace the first cxn/100 
observations u by the newly generated values u

d
 

VM(2,6) instead of the original generated data 
from VM(; 2). For each parameter estimates, the 
estimated mean, bias, standard error (SE) and 
root mean squared error (RMSE) are calculated 
using the following formulas:
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The simulations were performed by the 
statistical software R. Two R-packages are 
used, ‘CircStats’ is used to generate circular 
variables, the function ‘rvm0’is used to generate 
a set of circular random variables from the von 
Mises distribution VM(µ,κ). ‘MASS’ is used to 
run the proposed estimator CLTS, the function 
‘ltsreg’ is used to fit a linear regression model; 
this function is adopted to fit a JS circular 

regression model.
The results are tabulated in Tables 1 to 6 for 
each value of a considered. We find that the 
power performance of the CLTS estimator. 
As expected, For outlier-free data set, both LS 
and CLTS estimated mean for all parameter 
estimates are consistently close to the actual 
values. When the percentage of contamination 
increases from 10% to 30%, the LS value of 
the bias increases. Otherwise, CLTS shows 
relatively small bias results. The SE for all 
parameters LS estimates are generally small 
for uncontaminated data but get larger as the 
percentages of contamination increase. The 
RMSE of each LS parameter estimates increases 
when the percentages of contamination 
increase. On the other hand, we find that the 
performance of the CLTS estimator is an 
increasing function of n and becomes similar 
when the percentage of contamination 

Table 1. Simulation results of LS and CLTS estimators for uncontaminated data when a=-6
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Table 2. Simulation results of LS and CLTS estimators for data with verticals when a=-6
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Table 4. Simulation results of LS and CLTS estimators for uncontaminated data when a=2

Table 3. Simulation results of LS and CLTS estimators for data with leverage point when a=-6
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Table 5. Simulation results of LS and CLTS estimators for data with verticals when a=2

9

Shokrya Saleh Alshqaq



Table 7. Results of fitting the JS circular regression model for eye data

Table 6. Simulation results of LS and CLTS estimators for data with leverage points when a=2
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increases. Generally, for contaminated data,  LS 
leads to a poor estimation of the coefficients. 
However, the LS method is affected by the 
presence of outliers in the data. The effect 
worsens with the presence of a higher 
percentage of contaminated observations in the 
data. However, the proposed CLTS outperform 
the LS. 

6. Practical example (eye data)

This section illustrates the proposed CLTS on 
eye data collected from University Malaya 
Medical Centre. The eye data consist of 23 
observations of glaucoma patients (unit in 
radians) recorded using Optical coherence 
tomography (OCT) at the University Malaya 
Medical Centre (UMMC). OCT technology 
originally is used in ophthalmology to image 
the posterior segment and has also been used 
to image anterior segment structures such as 
the cornea. The angle imaging of the anterior 
segment OCT in UMMC patients’ eyes was 
obtained with Anterior Segment OCT (AS-
OCT). The measurements selected are the 
angle of the posterior corneal curvature (u) 
and the angle of the eye (between posterior 
corneal curvature to iris) (v). The Mean 
Circular Error (DMCE) statistic was applied 
to the data after fitting the JS model (Ibrahim, 
2013). They showed that there are two 
vertical outliers with observation numbers 
2 and 15. Both LS and CLTS estimates of 
parameters are shown in Table 7. We find 
that the CLTS significantly change the value 
of ^ A

0
, ^ A

1
, ^B 

1
, ^ C

0,
 ^ C

1
, ^D 

1
, ^

1
, and ^

2
 

Otherwise, the values of the standard errors 
for all the parameter estimates of CLTS 
smaller than LS. Meanwhile, the estimated 
concentration parameter has increased from 
0.9774 to 0.9827, and A(^) is increased from 
0.9775 to 0.9951, as well as ^ increased 
from 22.5056 to 37.3676. Therefore, the 
estimation is more accurate, and we may 
have a better model fitting using the CLTS 
estimator.

7. Conclusion

The least trimmed squares estimator (LTS) 
is a robust regression methods frequently 
used in practice. Nevertheless, it is not used 
for JS circular model. This paper introduced 
the robust estimator CLTS, which is robust 
against vertical outliers and leverage points. 
The simula tion result illustrated the excellent 
performance of CLTS for contaminated 
circular data sets. This paper focused on the 
LTS estimation; one might be interested in 
extending other robust estimation to advanced 
robust breakdown points estimation methods, 
such as M,MM, or BS estimators. Also, this 
paper has considered a JS circular regression 
model with one independent circular variable; 
however, future studies might extend the 
robust CLTS estimator in multiple circular 
regression models.
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