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Abstract

We provide an explicit solution for the terms of the sequence (xn,k) defined by

xn,k = xn−1,k − (−1)b(n−2)/kcxn−2,k ,

for n > 3, setting x1,k = 1 and x2,k = 0. Several particular examples are considered.

Keywords: Chebyshev polynomials of the second kind; difference equations; Fibonacci numbers; in-
teger sequences; tridiagonal matrices

1. Introduction

Second order linear difference equations emerge in distinct areas of mathematics. For example, solutions 
of constant coefficient homogeneous equations consist of many sequences of numbers, such as Fibonacci. 
In many instances, finding explicit forms of homogeneous second order equations is a ceaseless problem 
in research. Moreover, many results are focused exclusively to this aim. For several relevant references 
the reader is refereed to (Koshy, T., 2018; Kızılateş, C., 2021; da Fonseca, C.M., 2014).

Recently, in (Andelić, M. et al., 2020) it was proposed to establish an explicit expression for the 
sequence (xn,k) where

xn,k = xn−1,k − (−1)b(n−2)/kcxn−2,k , for n > 3, (1)

setting x1,k = 1 and x2,k = 0. This problem was motivated by similar questions originally proposed in
(Trojovský, P., 2017), namely when the recurrence relations

yn,k = (−1)b(n−1)/kcyn−1,k − yn−2,k ,

and

zn,k = (−1)b(n−1)/kczn−1,k − (−1)b(n−2)/kczn−2,k

are satisfied. The solutions of these cases were obtained in terms of the Fibonacci sequence, defined by
the standard recurrence relation Fn+2 = Fn+1 + Fn, for n > 0, with F0 = 0 and F1 = 1.

In this note, we provide a close formula for Equation (1) and discuss some particular cases. In the
next section, we recall the formula of the determinant of a tridiagonal k-Toeplitz matrix. Then using a
similar approach we have seen for example in (Andelić, M. et al., 2020; Andelić, M et al., 2011; Du, Z.
et al., 2022), we establish the requested formula. We also consider in particular the cases k = 2, 3 in
detail. In the final section, we discuss several general instances.
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2. The formula

From (Rózsa, P., 1969), we know that the determinant of the tridiagonal k-Toeplitz matrix

An =



a1 b1

1
. . . . . .
. . . ak bk

1 a1 b1

1
. . . . . .
. . . ak bk

1 a1 b1

1
. . . . . .
. . .


n×n

, (2)

is given by

detAn = (
√
b1 · · ·

√
bk)q

(
∆1,...,r Uq(x) +

√
bk
√
b1 · · ·

√
br√

br+1 · · ·
√
bk−1

∆r+2,...,k−1 Uq−1(x)

)
,

where
x =

∆1,...,k − bk∆2,...,k−1

2
√
b1 · · ·

√
bk

,

with ∆1,...,k = detAk and whereUq(x) is the Chebyshev polynomials of the second kind and n = qk+r,
with 0 6 r 6 k − 1. In general, by ∆i,...,j we understand the determinant of the submatrix obtained Ak

with rows and columns indexed by {i, . . . , j}. An independent approach can be found in (Fonseca, C.M.
& Petronilho, J., 2005).

Now, let us define now

Tn,k =



1 1

1
. . . . . .
. . . . . . 1

1
. . . −1

1
. . . . . .
. . . . . . −1

1
. . . 1

1
. . . . . .
. . .


n×n

, (3)

where the superdiagonal is of the form

(1, . . . , 1︸ ︷︷ ︸
k×

,−1, . . . ,−1︸ ︷︷ ︸
k×

, 1, . . . , 1︸ ︷︷ ︸
k×

,−1, . . . ,−1︸ ︷︷ ︸
k×

, 1, . . .) . (4)

If we set
(b1, . . . , bk, bk−1 . . . , b2k) = (1, . . . , 1︸ ︷︷ ︸

k×

,−1, . . . ,−1︸ ︷︷ ︸
k×

)
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and replace k by 2k in (2), the matrix defined in Equation (3) can be seen as a tridiagonal 2k-Toeplitz
matrix. Hence, we have explicitly

detTn,k = xn,k = iqk

(
∆1,...,r Uq(x) +

√
b2k
√
b1 · · ·

√
br√

br+1 · · ·
√
b2k−1

∆r+2,...,2k−1 Uq−1(x)

)
,

where
x =

∆1,...,2k + ∆2,...,2k−1
2ik

, (5)

with n = 2qk + r, for 0 6 r 6 2k − 1.
Notice that Equation (5) can be rewritten in terms of Chebyshev polynomials of the second kind.

Namely, since

∆1,...,2k = ikUk

(
1

2

)
Uk

(
− i

2

)
− ik−1Uk−1

(
1

2

)
Uk−1

(
− i

2

)
,

one can conclude that

x =
1

2

(
Uk

(
1

2

)
Uk

(
− i

2

)
+ Uk−2

(
1

2

)
Uk−2

(
− i

2

))
.

3. The cases k = 2 and k = 3

As a first example, if we set k = 2, considering the table

r 0 1 2 3

∆r 1 1 0 −1

∆̃r 0 1 1 0

εr 1 1 1 −1

we obtain
detTn,k = (−1)q(∆rUq(1/2) + εr∆̃rUq−1(1/2)) ,

where n = 4q + r, with 0 6 r 6 3.
The term x4q+r,2 is given by

r = 0 r = 1 r = 2 r = 3

x4q+r,2 Uq(−1/2) Uq(−1/2)− Uq−1(−1/2) −Uq−1(−1/2) −Uq(−1/2)

Recall that

U`

(
−1

2

)
=


1 if ` ≡ 0 (mod 3)

−1 if ` ≡ 1 (mod 3)

0 if ` ≡ 2 (mod 3)

.

Another simple example is the case when k = 3. Let us consider the following table:
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r 0 1 2 3 4 5

∆r 1 1 0 −1 −1 −2

∆̃r −1 1 2 1 1 0

εr −i −i −i −i i −i

We obtain
detTn,k = (−i)q(∆rUq(−2i) + εr∆̃rUq−1(−2i)) ,

where n = 6q + r, with 0 6 r 6 5.
Since F3(n+1) = 2inUn(−2i) (cf. (Zhang, W., 2002)), the term x6q+r,3 is given by

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

(−1)qx6q+r,3 F3q+1 F3q+2 F3q −F3q+1 −F3q+2 −F3q+3

4. Some general examples

In this section we obtain some other particular solutions for Equation (1). Throughout the rest of the
note, we will use the Iverson bracket for a given statement S define as

[S] =

{
1 if S is true
0 otherwise

.

Our first result is straightforward.

Theorem 4.1. For n− k 6 1 and n > 3, the solution of Equation (1) is:

xn,k =

{
(−1)m if n 6≡ 2 (mod 3)
0 otherwise

,

where n = 3m+ t and 0 6 t 6 2.

Proof. We will use induction on m. For n = 3, t = 0 and m = 1, we have

x3,k = x2,k − (−1)b
1
kc x1,k = −1 = (−1)1 = (−1)m .

Assume that our assertion holds for n = 3m+ t. In this case, using the inductive hypothesis, we have

x3m,k = (−1)m , if t = 0,

x3m+1,k = (−1)m , if t = 1,

x3m+2,k = 0 , if t = 2.

Then, for n = 3 (m+ 1) + t, we have

x3m+3,k = x3m+2,k − (−1)b
3m+1

k c x3m+1,k = (−1)m+1 , if t = 0,

x3m+4,k = x3m+3,k − (−1)b
3m+2

k c x3m+2,k = (−1)m+1 , if t = 1,

x3m+5,k = x3m+4,k − (−1)b
3m+3

k c x3m+3,k = 0 , if t = 2.

The proof is now completed.

The following theorem provides general solutions for (1) when n− k > 1 and k ≡ 3 (mod 6).
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Theorem 4.2. Let k > 1 be an integer such that k ≡ 3 (mod 6). Then, for all n > 3, the solution of
Equation (1) has these forms:

1. For n ≡ 0 (mod 6) and n ≡ a (mod k),

xn,k =


(−1)

n(n+1)
2

+[a≡6 (mod 12)]Fn−a
2

+1 if a ≡ 0 (mod 6)

(−1)

 n(n+1)
2 + [k ≡ 3 (mod 12) and a ≡ 9 (mod 12)]
+ [k ≡ 9 (mod 12) and a ≡ 3 (mod 12)]


Fn−k+a

2
+1 if a ≡ 3 (mod 6)

.

2. For n ≡ 1 (mod 6) and n ≡ a (mod k),

xn,k =



(−1)
n(n+1)

2
+1−[a≡7 (mod 12)]Fn−a

2
+2

if a ≡ 1 (mod 6)

(−1)

 n(n+1)
2 + 1− [k ≡ 3 (mod 12) and a ≡ 10 (mod 12)]
− [k ≡ 9 (mod 12) and a ≡ 4 (mod 12)]


Fn−k+a

2
+1

if a ≡ 4 (mod 6)

.

3. For n ≡ 2 (mod 6) and n ≡ a (mod k),

xn,k =



(−1)
n(n+1)

2
+1−[a≡8 (mod 12)]Fn−a

2

if a ≡ 2 (mod 6)

(−1)

 n(n+1)
2 + 1− [k ≡ 3 (mod 12) and a ≡ 11 (mod 12)]
− [k ≡ 9 (mod 12) and a ≡ 5 (mod 12)]


Fn−k+a

2
+1

if a ≡ 5 (mod 6)

.

4. For n ≡ 3 (mod 6) and n ≡ a (mod k),

xn,k =


(−1)

 n(n+1)
2 + [k ≡ 3 (mod 12) and a ≡ 0 (mod 12)]
+ [k ≡ 9 (mod 12) and a ≡ 6 (mod 12)]


Fn−k+a

2
+1 if a ≡ 0 (mod 6)

(−1)
n(n+1)

2
+[a≡3 (mod 12)]Fn−a

2
+1 if a ≡ 3 (mod 6)

.

5. For n ≡ 4 (mod 6) and n ≡ a (mod k),

xn,k =



(−1)

 n(n+1)
2 + 1− [k ≡ 3 (mod 12) and a ≡ 7 (mod 12)]
− [k ≡ 9 (mod 12) and a ≡ 1 (mod 12)]


Fn−k+a

2
+1

if a ≡ 1 (mod 6)

(−1)
n(n+1)

2
+1−[a ≡10 (mod 12)]Fn−a

2
+2

if a ≡ 4 (mod 6)

.
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6. For n ≡ 5 (mod 6) and n ≡ a (mod k),

xn,k =


(−1)

 n(n+1)
2 + [k ≡ 3 (mod 12) and a ≡ 8 (mod 12)]
+ [k ≡ 9 (mod 12) and a ≡ 2 (mod 12)]


Fn−k+a

2
+1 if a ≡ 2 (mod 6)

(−1)
n(n+1)

2
+[a≡11 (mod 12)]Fn−a

2
if a ≡ 5 (mod 6)

.

Proof. Although there are several cases to be considered, we will prove here only one of them to avoid
unnecessary repetitions. We shall only prove item (1). Assume that n ≡ 0 (mod 6) and n ≡ a (mod k).
The proof will be done by strong induction on n. Let us consider the case n = 24, k = 9, namely: n ≡ 0
(mod 6), a ≡ 0 (mod 6) and a ≡ 6 (mod 12). Taking into account that

n− 1 ≡ 5 (mod 6), a− 1 ≡ 5 (mod 6) ,

and
n− 2 ≡ 4 (mod 6) , a− 2 ≡ 4 (mod 6),

we obtain
x24,9 = (−1)

24.25
2

+1F 24−6
2

+1 = −F10,

x23,9 = (−1)
23.24

2 F 23−5
2

= F9,

x22,9 = (−1)
22.23

2
+1F 22−4

2
+2 = F11.

Thus
x24,9 = x23,9 − (−1)b

22
9 c x22,9 = F9 − F11 = −F10.

Assume that our assertion holds for n = t. In this case, using the inductive hypothesis, we have

xt,k = (−1)
t(t+1)

2
+1F t−a

2
+1,

xt−1,k = (−1)
t(t−1)

2 F t−a
2
,

and
xt−2,k = (−1)

(t−2)(t−1)
2

+1F t−a
2

+2.

Then, for n = t+ 1, we have

xt,k − (−1)b
t−1
k c xt−1,k = (−1)

t(t+1)
2

+1F t−a
2

+1 − (−1)b
t−1
k c (−1)

t(t−1)
2 F t−a

2

= (−1)
(t+1)(t+2)

2

(
(−1)−t F t−a

2
+1 − (−1)b

t−1
k c (−1)−2t−1 F t−a

2

)
= (−1)

(t+1)(t+2)
2

(
F t−a

2
+1 + (−1)b

t−1
k c F t−a

2

)
= (−1)

(t+1)(t+2)
2 F t−a

2
+2

= xt+1,k,

where
t+ 1 ≡ 1 (mod 6) , a+ 1 ≡ 1 (mod 6) , a+ 1 ≡ 7 (mod 12),

t ≡ 0 (mod 6) , a ≡ 0 (mod 6) , a ≡ 6 (mod 12),

t− 1 ≡ 5 (mod 6) , a− 1 ≡ 5 (mod 6) , a− 1 ≡ 5 (mod 12),
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and
⌊
t−1
k

⌋
is even. So, the first part of item (1) is proved. We now prove the second part. For this, we

will again use the induction on n. Let us consider the case n = 48, k = 27, namely: n ≡ 0 (mod 6),
a ≡ 3 (mod 6), a ≡ 9 (mod 12). Using

n− 1 ≡ 5 (mod 6), a− 1 ≡ 2 (mod 6), a− 1 ≡ 8 (mod 12),

and
n− 2 ≡ 4 (mod 6), a− 2 ≡ 1 (mod 6), a− 2 ≡ 7 (mod 12),

we have
x48,27 = (−1)

48.49
2

+1F 48−27+21
2

+1 = −F22,

x47,27 = (−1)
47.48

2
+1F 47−27+20

2
+1 = −F21,

x46,27 = (−1)
46.47

2 F 46−27+19
2

+1 = −F20.

So, we get
x47,27 − (−1)b

46
27c x46,27 = −F21 − F20 = −F22 = x48,27.

Assume that our claim holds for n = t. In this case, using the induction hypothesis, we obtain

xt,k = (−1)

(
t(t+1)

2
+1
)
F t−k+a

2
+1,

xt−1,k = (−1)

(
(t−1)t

2
+1
)
F t−k+a

2
,

xt−2,k = (−1)

(
(t−2)(t−1)

2

)
F t−k+a

2
−1.

Then, for n = t+ 1, we get

xt,k − (−1)b
t−1
k c xt−1,k = (−1)

(
t(t+1)

2
+1
)
F t−k+a

2
+1 − (−1)b

t−1
k c (−1)

(
(t−1)t

2
+1
)
F t−k+a

2

= (−1)
(t+1)(t+2)

2

(
(−1)−tF t−k+a

2
+1 − (−1)b

t−1
k c (−1)−2tF t−k+a

2

)
= (−1)

(t+1)(t+2)
2

(
F t−k+a

2
+1 − (−1)b

t−1
k c F t−k+a

2

)
= (−1)

(t+1)(t+2)
2

(
F t−k+a

2
+1 + F t−k+a

2

)
= (−1)

(t+1)(t+2)
2 F t−k+a

2
+2

= xt+1,k,

where
t+ 1 ≡ 1 (mod 6) , a+ 1 ≡ 4 (mod 6) , a+ 1 ≡ 10 (mod 12),

t ≡ 0 (mod 6) , a ≡ 3 (mod 6) , a ≡ 9 (mod 12),

t− 1 ≡ 5 (mod 6) , a− 1 ≡ 2 (mod 6) , a− 1 ≡ 8 (mod 12),

and
⌊
t−1
k

⌋
is odd. Therefore, our proof is completed.

Remark 4.1. In Section 3, we obtained the solutions of Equation (1) for n = 6q + r and k = 3 based
on the determinant of the matrix Tn,k. Now, if we take n = 6q + r and k = 3 in Theorem 4.2, we can
obtain the solutions of Equation (1) in a different method. Namely, if q is even, we have

Also, if q is odd, we get
Remark 4.2. For k 6≡ 0 (mod 3), the solutions of Equation (1) do not necessarily belong to the Fibonacci
sequence. For example

x34,7 = 169,

or
x99,32 = 3010349,

are not Fibonacci numbers.
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r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

x6q+r,3 F3q+1 F3q+2 F3q −F3q+1 −F3q+2 −F3q+3

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

−x6q+r,3 F3q+1 F3q+2 F3q −F3q+1 −F3q+2 −F3q+3
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Abstract

In the present paper, we develop an efficient second derivative free two-step optimal fourth-order iterative
method for nonlinear equations. We explore the convergence criteria of the proposed method and also ex-
hibit its validity and efficiency by considering some test problems. We present both numerical as well as
graphical comparisons. Further, the dynamical behavior of the proposed method is explored.

Keywords: Approximation scheme; iterative methods; nonlinear equations; order of convergence; poly-
nomiography.

1. Introduction

In everyday life, most of the phenomena lead to some kind of nonlinear equations. In general, these
nonlinear equations cannot be dealt analytically or for exact solutions. So, naturally, the scientists focused
on numerical methods for solving such type of equations, (Dogan, 2013; Uddin & Imdad, 2015; Bayat et
al., 2015; Karakaya et al., 2016; Demiray & Bulut, 2017; Al-jawary & Nabi, 2020; Ozer, 2021; Eze, 2022).
Particularly, finding the numerical solution of the nonlinear equation

f (x) = 0, (1)

has been a sweltering problem in the fields of science and engineering, e.g.(Babolian & Baizar, 2002; Ab-
basbandy, 2003; Bhalekar & Daftardar-Gejji, 2011; Chun, 2018; He, 2016; He et al., 2020; He et al., 2021;
He & El-Dib, 2020) and references therein. In the construction and performance of a numerical method for
nonlinear equations, its convergence order and the number of evaluations per iteration are significant.
Definition 1. Let {xn} be the sequence of approximations that converges to the root α of f (x) = 0 i.e.
lim
n→∞

xn = α . If there exist positive real numbers p and k such that lim
n→∞

|xn+1−α|
|xn−α|p = k, then p is called the order

of convergence of the method.
Definition 2. If p is the convergence order of an iterative method and m denotes the number of function
evaluations per iteration, then the efficiency index (E.I) of the method is p

1
m .

One of the most significant and well-known techniques, for solving nonlinear equations, is the Newton’s
method which converges quadratically, Ostrowski, (1973):

xn+1 = xn−
(

f (xn)

f ′ (xn)

)
, f

′
(xn) 6=0, n= 0,1,2, . . . . (2)
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Noor & Gupta, (2007) modified Householder iterative method and developed the following fourth-order
method which requires four evaluations per iteration i.e. its EI = 1.4141.

xn+1=yn−
(

f (yn)

f ′ (yn)

)
−
(

1
2

)[(
f (yn)

f ′ (yn)

)]2
[(

f
′
(xn)

f (xn)

)][(
f
′
(xn)+ f

′
(yn)

f ′ (yn)

)]
, n= 0,1,2,. . ., (3)

where, yn=xn−
(

f (xn)

f ′(xn)

)
, f

′
(xn) 6=0, n= 0,1,2, . . . .

An immense literature is available regarding third-order and fourth-order iterative methods for solving
nonlinear equations, (Chun, 2007; Herceg & Herceg, 2008; Saeed & Khthr, 2011; Thukral, 2013; Singh &
Jaiswal, 2014; Jaiswal, 2014; Ali et al., 2018; Huang et al., 2018; Naseem et al., 2020; Sana et al. 2021)
and references therein.
Keeping in view the importance of convergence order and the number of evaluations per iteration required
in an iterative method, Kung & Turab, (1974) gave a conjecture. According to this conjecture, an iterative
method is said to be an optimal one if it needs (n+ 1) evaluations per iteration and posses convergence
order 2n. Some useful optimal fourth-order iterative methods have been constructed by various researchers
(Sharma et al., 2020; Ali et al., 2020; Shams et al., 2020; Cordero et al., 2021; Hafiz & Khirallah, 2021).

Cordero et al., (2010) introduced the following optimal fourth-order method:

xn+1 = xn−
(

f (xn)+ f (yn)

f ′ (xn)

)
−
[

f (yn)

f ′ (xn)

]2[2 f (xn)+ f (yn)

f ′ (xn)

]
, (4)

where, yn = xn−
(

f (xn)

f ′(xn)

)
, f

′
(xn) 6= 0, n = 0,1,2, . . . .

Obviously, the above method is of order 22 = 4 and requires (2+1) = 3 evaluations per iteration, so it
is an optimal fourth-order iterative method with EI = 1.5874 .

Sherma & Bahl, (2015) also developed an optimal fourth-order method:

xn+1=xn−

[
−
(

1
2

)
+

(
9 f
′
(xn)

8 f ′ (yn)

)
+

(
3 f
′
(yn)

8 f ′ (xn)

)](
f (xn)

f ′ (xn)

)
, n= 0,1,2, . . . , (5)

where, yn=xn−
(2

3

)( f (xn)

f ′(xn)

)
, f

′
(xn) 6=0, n= 0,1,2, . . . .

A second derivative free optimal fourth-order method was introduced by Shengfeng Li, (2019):

xn+1=xn−
(

[ f (xn)− f (yn)] f (xn)

[ f (xn)−2 f (yn)] f ′ (xn)

)
, n= 0,1,2, . . . , (6)

where, yn=xn−
(

f (xn)

f ′(xn)

)
, f

′
(xn) 6=0, n= 0,1,2, . . . .

In this paper, being inspired from the literature regarding optimal iterative methods for nonlinear equations, 
we present a rapidly convergent and efficient optimal fourth-order iterative method. In order to demonstrate 
the validity and effectiveness of the proposed method, we explore the numerical as well as graphical com-
parisons. We also consider some complex polynomials to study the dynamics of the suggested method. We 
present four polynomiographs against four different polynomials. These polynomiographs clearly exhibit 
the corresponding roots along with the region of convergence according to the chosen initial guess.
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2. Construction of Iterative Method

Noor et al., (2007) presented the following sixth-order iterative method which involves the second derivative
of the function and needs five evaluations per iteration, i.e. its EI = 1.4309.

xn+1=yn−
f (yn)

f ′ (yn)
−

(
( f (yn))

2 f
′′
(yn)

2
(

f ′ (yn)
)3

)
, (7)

where, yn=xn−
(

f (xn)

f ′(xn)

)
, f

′
(xn) 6=0, n= 0,1,2, . . . .

We consider the following interpolation scheme, Rehman et al., (2021):

H (t) = a+b(t− yk)+ c(t− yk)
2 +d(t− yk)

3, (8)

where a, b, c and d are unknowns and can be determined by applying the following conditions:

H(xk) = f (xk) , H(yk) = f (yk) , H
′
(xk) = f

′
(xk) , H

′
(yk) = f

′
(yk) , H

′′
(yk) = f

′′
(yk) . (9)

Using the above conditions, we obtain the following system of equations:

f (yk) = a, (10)

f (xk) = a+b(xk− yk)+ c(xk− yk)
2 +d(xk− yk)

3, (11)

f
′
(xk) = b+2c(xk− yk)+3d(xk− yk)

2, (12)

f
′
(yk) = b, (13)

f
′′
(yk) = 2c+6d (xk− yk) . (14)

Solving equations (10)-(14), simultaneously, we obtain

f
′′
(yk)=

6 [ f (xk)− f (yk)]−2(xk−yk)[2 f
′
(xk)+ f

′
(yk)]

(xk−yk)
2 = P(xk , yk) . (15)

Let us now consider the following interpolation scheme:

G(t) = a+b(t− yk)+ c(t− yk)
2, (16)

where a, b and c are the unknowns, which can be determined by applying the following conditions:

G(xk) = f (xk) , G(yk) = f (yk) , G
′
(xk) = f

′
(xk) , G

′
(yk) = f

′
(yk) . (17)
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Using the above conditions, we obtain the following system of equations:

f (yk) = a, (18)

f (xk) = a+b(xk− yk)+ c(xk− yk)
2, (19)

f
′
(xk) = b+2c(xk− yk) , (20)

f
′
(yk) = b. (21)

Solving equations (18)-(21), simultaneously, we get

f
′
(yk)=

2 [ f (xk)− f (yk)]

(xk− yk)
− f

′
(xk)= Q(xk , yk) . (22)

From equations (15) and (22), we get

f
′′
(yk)=

6 [ f (xk)− f (yk)]−2(xk−yk)[2 f
′
(xk)+Q(xk , yk)]

(xk−yk)
2 = R(xk , yk) . (23)

Thus, using equations (7), (22) and (23), we are in a position to formulate the following optimal fourth-
order second derivative free iterative method for solving nonlinear equation (1).
2.1 Algorithm For a given x0, compute the approximate solution xn+1by the following iterative scheme:

xn+1=yn−
f (yn)

Q(xn , yn)
−
(

f 2 (yn)R(xn , yn)

2Q3 (xn , yn)

)
, (24)

where, yn=xn−
(

f (xn)

f ′(xn)

)
, f

′
(xn) 6=0, n= 0,1,2, . . . .

3. Convergence Analysis

The convergence criteria for the newly proposed iterative method i.e. algorithm 2.1 is described in the
following theorem.

3.1 Theorem
Assume that the function f :I⊂R→R (where I is an open interval) has a simple root α∈I. If f (x) is a
sufficiently differentiable function in the neighborhood of α , then the method given in algorithm 2.1 has
the convergence order at least 4.
Proof Since f (x) is sufficiently differentiable, therefore, the Taylor’s series expansions of f (xn) and f

′
(xn)

about α are given by:

f (xn)= f
′
(α)

{
en+c2e2

n+c3e3
n+c4e4

n+c2e5
n+O

(
e6

n

)}
, (25)
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and

f ′ (xn) = f
′
(α)

{
1+2c2en +3c3e2

n +4c4e3
n +5c5e4

n +6c6e5
n +O

(
e6

n

)}
, (26)

where, en=xn−α and c j=
(

1
j!

)(
f ( j)(α)

f ′(α)

)
, j= 2,3, . . . .

From equations (25) and (26), we get

f (xn)

f ′(xn)
=en−c2e2

n+2
(
c2

2−c3
)

e3
n+
(
−4c3

2+7c2c3−3c4
)

e4
n+(8c4

2−20c2
2c3+10c2c4+6c2

3−4c5)e5
n+O

(
e6

n

)
.(27)

Using equation (27), we get

yn = xn−
f (xn)

f ′ (xn)
=α+c2c2

n−2
(
c2

2−c3
)

e3
n +
(
4c3

2−7c2c3+3c4
)

e4
n

+(−8c4
2+20c2

2c3−10c2c4−6c2
3+4c5)e5

n +O
(

e6
n

)
. (28)

Using equation (28), the Taylor’s series of f (yn) is given by

f (yn) =c2e2
n−2

(
c2

2−c3
)

e3
n+
(
5c3

2−7c2c3+3c4
)

e4
n+(−12c4

2+24c2
2c3−10c2c4−6c2

3+4c5)e5
n+O

(
e6

n

)
. (29)

Using equations (25), (26), (28) and (29), we get

Q(xn , yn)= 1+
(
2c2

2−c3
)

e2
n+
(
−4c3

2+6c2c3−2c4
)

e3
n+(8c4

2−16e2
2c3+8c2c4+4c2

3−3c5)e4
n+O

(
e5

n

)
. (30)

Using equations (25), (26), (28) and (29), we get

R(xn , yn)=2c2+4c3en+(2c2c3+6c4)e2
n+
(
−4c2

2c3+4c2c4+4c2
3+8c5

)
e3

n+O
(
e4

n
)
. (31)

Thus, using equations (28)-(31), the error term for algorithm 2.1 becomes:

en+1=−c2c3e4
n+
(
2c2

2c3−2c2c4−2c2
3
)

e5
n+O

(
e6

n

)
. (32)

This completes the proof.

4. Numerical Examples

In order to exhibit the validity and effectiveness of the newly proposed optimal fourth-order iterative 
method given in algorithm 2.1 (AM), we compare the same, numerically as well as graphically, with the 
standard Newton’s method (NM), Sharma & Bahl, (2015) method (equation 5) (RM), Noor & Gupta, (2007) 
method (equation 3) (HM), Cardero et al., (2010) method (equation 4) (CM), recently developed method 
by Shengfeng Li, (2019) (equation 6) (LM) and Noor et al., (2000) method (equation 7) (NR) in the context 
of standard nonlinear equations. The numerical comparison, by using the software Maple-18, is presented 
in the following table, in which NFE column represents the number of function evaluations, whereas figure 
1 to figure 8 exhibit the graphical comparison, performed with the help of Matlab software. In order to stop 
the iteration process, we use the condition |xn+1−xn|<ε with ε = 10−15. Both comparative studies clearly 
indicate that the newly developed method performs more efficiently.
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Table 1: Numerical Examples

f (x) x0 Method n xk | f (xn)| |xn+1− xn| NFE
x3− x−8 0.5 NM 21 2.1663127473977890 2.906126e−16 1.213442e−10 42

RM 7 2.1663127473977890 2.906126e−16 3.999760e−10 28
HM 14 2.1663127473977890 2.906126e−16 1.721625e−7 56
LM 14 2.1663127473977890 2.906126e−16 1.604659e−8 42
CM 50 -22713.26588077619 2.906126e−16 2.264950e4 150
NR 8 2.1663127473977890 2.906126e−16 8.622847e−9 40
AM 6 2.1663127473977890 2.906126e−16 2.998342e−10 18

x3 − e(sinx)−1.3 0.43 NM 13 1.5897513629099752 1.028154e−16 1.597951e−9 26
RM 7 1.5897513629099752 1.028154e−16 5.554208e−12 21
HM 6 1.5897513629099752 1.028154e−16 2.063160e−10 24
LM 21 1.5897513629099752 1.028154e−16 3.616346e−6 23
CM 41 1.5897513629099752 2.187217e−15 1.130202e−4 123
NR 6 1.5897513629099752 1.028154e−16 1.769922e−14 30
AM 5 1.5897513629099752 1.028154e−16 1.728701e−12 15

x3 + sinx−0.5 -.70 NM 11 0.4324702259081946 1.486126e−18 1.290499e−14 22
RM 20 0.4324702259081946 1.486126e−18 1.379866e−12 60
HM 5 0.4324702259081946 1.486126e−18 1.284167e−8 20
LM 5 0.4324702259081946 1.486126e−18 2.552682e−6 15
CM 6 0.4324702259081946 1.486126e−18 1.626361e−6 18
NR 5 0.4324702259081946 1.486126e−18 7.327305e−15 25
AM 4 0.4324702259081946 1.486126e−18 9.966395e−08 12

x4−2tan−1
(x)-1 -5.5 NM 11 -0.5048496838915417 1.013082e−17 4.613243e−11 22

RM 43 -0.5048496838915417 1.095395e−17 5.949597e−9 129
HM 5 -0.5048496838915417 1.013082e−17 2.401892e−13 20
LM 6 -0.5048496838915417 1.013082e−17 9.637054e−15 18
CM 6 -0.5048496838915417 1.095395e−17 5.956829e−05 18
NR 5 -0.5048496838915417 1.013082e−17 2.898906e−11 25
AM 4 -0.5048496838915417 1.013082e−17 1.850485e−11 12

x5 + xsin(x−1) -.65 NM 17 0.7230912060028413 8.893281e−18 5.426442e−11 34
RM 9 0.7230912060028413 8.893281e−18 1.796728e−14 36
HM 7 0.7230912060028413 8.893281e−18 3.322140e−07 28
LM 7 0.7230912060028413 8.893281e−18 3.440059e−07 21
CM 50 227793617.43987802 6.133491e41 1.050057e08 150
NR 7 0.7230912060028413 8.893281e−18 9.934670e−6 35
AM 5 0.7230912060028452 6.950625e−15 7.280912e−06 15
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f (x) x0 Method n xk | f (xn)| |xn+1− xn| NFE
x3 + x+ ex +5 9.00 NM 14 -1.5426515636094549 2.718112e−15 2.413960e−8 28

RM 25 -1.5426515636094549 2.121712e−16 3.274434e−12 75
HM 6 -1.5426515636094549 2.121712e−16 1.070996e−6 24
LM 7 -1.5426515636094549 5.224052e−15 2.834313e−4 21
CM 8 -1.5426515636094549 2.121712e−16 8.797138e−15 24
NR 6 -1.5426515636094549 2.121712e−16 8.510917e−9 30
AM 5 -1.5426515636094549 2.121712e−16 2.213423e−12 15

x3 +4x2 +1 0.7 NM 21 -4.0606470275541425 2.121712e−16 1.345687e−08 42
RM 7 -4.0606470275541425 7.712486e−16 1.241081e−13 28
HM 12 -4.0606470275541425 7.712486e−16 2.098410e−10 48
LM 32 -4.0606470275541425 7.712486e−16 1.607614e−12 96
CM 27 -4.0606470275541425 7.712486e−16 6.873173e−12 81
NR 12 -4.0606470275541425 7.712486e−16 1.353735e−10 60
AM 6 -4.0606470275541425 7.712486e−16 4.036553e−15 18

x10−1 2.50 NM 14 1.0000000000000000 0.000000e0 1.203329e−14 28
RM 50 390114007548790110 8.164234e645 1.334660e64 150
HM 6 1.0000000000000000 0.000000e0 2.197544e−11 24
LM 6 1.0000000000000000 0.000000e0 1.922172e−05 18
CM 8 1.0000000000000000 0.000000e0 9.125819e−09 24
NR 6 1.0000000000000000 0.000000e0 5.712945e−11 30
AM 5 1.0000000000000000 0.000000e0 7.647115e−09 15

Ghulam Akbar Nadeem, Waqas Aslam, Faisal Ali

15



In the above Table 1, we consider 8 examples involving different types of functions i.e. trigonometric func-
tions, inverse trigonometric functions and exponential function. It is notable that, in each case, proposed
method converges to the actual root in least number of iterations with minimum number of function evalu-
ations.
The following figures i.e. figure 1 to figure 8 exhibit the plots of number of iterations against log of resid-
uals in the context of each example considered in Table 1. Clearly, the proposed method converges in least
number of iterations.

4.1 Graphical Comparison
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Fig. 1. (f (x) = x2− x−8) Fig. 2. (f (x) = x3− esinx−1.3)
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Fig. 3. (f (x) = x3 + sinx−0.5) Fig. 4. (f (x) = x4−2tan−1 (x)−1)
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Fig. 5. (f (x) = x5 + xsin(x−1)) Fig. 6. (f (x) = x3 + x+ ex +5)
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Fig. 7. (f (x) = x3 +4x2 +1) Fig. 8. (f (x) = x10−1)

5. Polynomiography

Kalantary, 2009, introduced the concept of polynomiography, which is an art and science of visual-
ization of the zeros of complex polynomials through fractal and non-fractal images obtained by using the 
convergence properties of iteration functions. Through polynomiography, nice looking graphics are gen-
erated. An individual image is known as polynomiograph. Polynomiography is a modern technique to 
solve problems with the help of computer technology. It has vast and diverse applications in science, art, 
design, industry; especially in textile industry. Fundamental theorem of algebra describes that a polynomial
of degree n > 1 has n roots. In the study of polynomiography, the degree of a polynomial describes the
number of basins of attraction. The colors of polynomiograph indicate the number of iterations required to 
achieve the approximate root of a certain polynomial with a given accuracy corresponding to a chosen initial 
guess. For further description and applications of polynomiography, we refer (Kalantary, 2005a; Kalantary,
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2005b; Kotarski et al., 2012) The following figures i.e. figure 9 to figure 12 display the polynomiographs
and basins of attraction of some standard complex polynomials in the context of newly proposed method.
We have used Matlab software for the purpose.

Fig. 9. Polynomiograph of z2+1
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Fig. 10. Polynomiograph of z3+8

Fig. 11. Polynomiograph of z4+1 
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Fig. 12. Polynomiograph of z6+64

6. Conclusion

A second derivative free optimal fourth-order iterative method has been established in this paper. The 
numerical and graphical comparisons clearly indicate that the newly constructed method performs effi-
ciently with least computational cost compared to other existing iterative methods. Dynamical behavior of 
the developed method has also been explored to envisage the visualization of the roots of complex polyno-
mials and is of significant interest.
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Abstract

In this paper, we characterize the classes (L,Lk) , (Lk,L) and (L∞,Lk) , 1 ≤ k < ∞, of all four dimen-
sional infinite matrices, where Lk and L∞ are the spaces of all absolutely k-summable and bounded dou-
ble sequences, respectively. Using them, we establish some relations between

∣∣N, pn, qn
∣∣ and

∣∣N, p′n, q
′
n

∣∣
k

summability methods which extend some results of Bosanquet (1950), Sarıgöl (1993), Sarıgöl & Bor
(1995), and Sunouchi (1949) to double summability methods, and give a relation between single and
double summability methods.

Keywords: Banach space, double matrix mapping, double summability, four dimensional matrix, in-
clusion theorem

1. Introduction

Let us consider an infinite single series Σxv of complex (or real) numbers with partial sums sn, and let
(σα

n) denote the n-th Cesàro means of order α with α > −1 of the sequence (sn) . The series Σxv is said
to be summable |C,α|k , k ≥ 1, in Flett’s notation (Flett, 1957), if

(
n1/k∗∆σα

n

)
∈ ℓk, where ℓk is the

space of the set of absolutely k-summable single sequences and 1/k∗+1/k = 1. Let (pn) be a sequence
of positive numbers satisfying

Pn =

n∑
v=0

pv → ∞ as n → ∞, P−1 = p−1 = 0. (1)

The sequence-to-sequence transformation un =
∑n

v=0 pvsv/Pn defines the sequence (un) of the weighted
mean or simply

(
N, pn

)
mean of the sequence (sn), generated by the sequence of coefficients (pn)

(Hardy, 1949). The series Σxv is said to be summable
∣∣N, pn

∣∣
k
, k ≥ 1, if

{(
p−1
n Pn

)1/k∗
∆un

}
∈ ℓk,

where ∆un = pn (PnPn−1)
−1∑n

v=1 Pv−1xv (Bor, 2016), which, for pn = 1, includes the method
|C, 1|k.

Throughout the paper, (pn) , (qn) , (p
′
n) and (q′n) will denote the sequences of positive numbers

satisfying equation 1 and

µmn(k) =


1

Pm−1

(
pm
Pm

)1/k
, n = 0,m ≥ 1

1
Qn−1

(
qn
Qn

)1/k
, m = 0, n ≥ 1

1
Pm−1Qn−1

(
pmqn
PmQn

)1/k
,m ≥ 1, n ≥ 1.

(2)

A summability method Y is stronger than another method X if each series summable by X implies
its summability by Y (not necessarily to the same sum). Hereof, there are many papers in the literature
done by various authors, e.g. (see, (Bor, 2016), (Bor & Thorpe, 1987), (Borwein & Cass, 1968), (Bosan-
quet, 1950), (Das et al., 1967), (Flett, 1957), (Hardy, 1949), (Güleç, 2019), (Mazhar, 1972), (Mishra

Kuwait J.Sci., Vol.50, No.(2A),April.2023,pp(1-12)
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et al., 2018), (Mohapatra, 1967), (Rhoades, 1998), (Rhoades, 1999), (Rhoades, 2003), (Sarıgöl, 1991),
(Sarıgöl, 1992), (Sarıgöl, 1993), (Sarıgöl & Bor, 1995), (Sarıgöl, 2021), (Sarıgöl & Mursaleen, 2021),
(Sunouchi, 1949), (Thorpe, 1972), (Zraiqat, 2019)). Among them, in the special case k = 1 the following
known result is due to Sunouchi (Sunouchi, 1949).

Theorem 1.1. In order that every
∣∣N, pn

∣∣ summable series should be
∣∣N, p′n

∣∣ summable, it is suffi-
cient that

p′nPn

P ′
npn

= O (1) . (3)

Reviewing this paper, Bosanquet observed that equation 3 is also necessary for the conclusion and
so completed Theorem 1.1 in necessary and sufficient form (see (Bosanquet, 1950)).

In (Sarıgöl, 1993), Theorem 1.1 has been extended to the case 1 ≤ k < ∞ as follows.

Theorem 1.2. Let 1 ≤ k < ∞. Then, in order that every
∣∣N, pn

∣∣ summable series should be
∣∣N, p′n

∣∣
k

summable, it is necessary and sufficient that

p′n
P ′
n

(
Pn

pn

)k

= O (1) .

Also, it has been showed in (Sarıgöl & Bor, 1995) that the converse of the implication is not true.
Theorem 1.3. Let 1 < k < ∞. Then, for every sequences (pn) and (p′n) , there exists a series which

is summable
∣∣N, pn

∣∣
k

but is not summable by
∣∣N, p′n

∣∣ .
First, we recall related notations. Let

∑∞
r=0

∑∞
s=0 xrs be an infinite double series of real or complex

numbers with partial sums smn, i.e.,

smn =
m∑
r=0

n∑
s=0

xrs. (4)

For the sake of brevity, we denote the summations
∑∞

r=0

∑∞
s=0 and

∑m
r=0

∑n
s=0 by

∑∞
r,s=0 and∑m,n

r,s=0, respectively. By Tmn, we denote the double Riesz mean transformation
(
N, pm, qn

)
of the

double sequence (smn) , i.e.,

Tmn =
1

PmQn

m,n∑
r,s=0

prqssrs. (5)

The series
∑∞

r,s=0 xrs is said to be summable
∣∣N, pm, qn

∣∣
k
, k ≥ 1, if (see (Sarıgöl, 2021))

∞∑
m,n=0

(
PmQn

pmqn

)k−1 ∣∣∆Tmn

∣∣k < ∞ (6)

where ∆T00 = s00 = x00, and, for m,n ≥ 1,

∆Tm0 = Tm0 − Tm−1,0, ∆T0n = T0n − T0,n−1,

∆Tmn = Tmn − Tm−1,n − Tm,n−1 + Tm−1,n−1.

We note that, in the special case pn = qn = 1, the summability
∣∣N, pm, qn

∣∣
k

reduces to the absolute
double Cesàro summability |C, 1, 1|k , given by Rhoades (1998).

There is a close relationship between the method
∣∣N, pm, qn

∣∣
k

and the space Lk, 1 ≤ k < ∞, defined
by the set of all double sequences x = (xrs) of complex numbers such that

∑∞
r,s=0 |xrs|

k < ∞, which
reduces to L for k = 1, studied by Zeltser (2001). Also, Lk is the Banach space (Başar & Sever, 2009)
according to its natural norm

∥x∥Lk
=

 ∞∑
r,s=0

|xrs|k
1/k

, 1 ≤ k < ∞.
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Further, the space L∞ consists of all bounded double sequences and it is a Banach space with the norm
∥x∥L∞

= supr,s |xrs| .
Let x = (xrs) be a double sequence of complex numbers. If for every ε > 0 there exists a natural

integer n0(ε) and real number l such that |xrs − l| < ε for all r, s ≥ n0(ε), then, the double sequence x
is said to be convergent in the Pringsheim sense. Also, a double series

∑∞
r,s=0 xrs is convergent if and

only if the double sequence (smn) in equation 4 is convergent.

Let U and V be two double sequence spaces, and A = (amnrs) be a four dimensional infinite
matrix of complex (or, real) numbers. Then, A defines a matrix transformation from U into V , written
A ∈ (U, V ) , if for every sequence x = (xrs) ∈ U , the A-transform A (x) = (Amn(x)) of x exists and
belongs to V, where

Amn(x) =

∞∑
r,s=0

amnrsxrs

provided the double series on right side converges for m,n ≥ 0.
The transpose At = (arsmn) of the matrix A = (amnrs) is defined by

At
rs(x) =

∞∑
m,n=0

amnrsxmn for m,n ≥ 0.

The β-dual Uβ of the space U is the set of all double sequences (brs) such that
∑∞

r,s=0 brsxrs
converges for all x ∈ U.

In this paper we characterize the classes (L,Lk) , (Lk,L) and (L∞,Lk) , k ≥ 1, of all four dimen-
sional infinite matrices, and extend Theorem 1.1, Theorem 1.2 and Theorem 1.3 to double summability
methods, and also establish a relation between single and double summability methods.

2. Needed Lemmas

We require the following lemmas for the proofs of our theorems.

Lemma 2.1 (Zaanen 1953, p.134) A linear mapping T from a Banach space U into another Banach
space V is continuous if and only if it is bounded, i.e., there exists a constant L such that ∥T (x)∥V ≤
L ∥x∥U for all x ∈ U .

Lemma 2.2 (Sarıgöl, 1991) Let k > 0. Then, there exists two strictly positive constans M1 and M2,
depending only on k, such that

M1

P k
r−1

≤
∞∑

m=r

µk
m0 (k) ≤

M2

P k
r−1

(7)

for all r ≥ 1, where M1 and M2 are independent of (pn) .

Lemma 2.3 (Sarıgöl, 2021) Let k > 0. Then, there exists two strictly positive constans N1 and N2,
depending only on k, such that

N1

P k
r−1Q

k
s−1

≤
∞∑

m,n=r,s

µk
mn (k) ≤

N2

P k
r−1Q

k
s−1

(8)

for all r, s ≥ 1, where N1 and N2 are independent of (pn) and (qn) .

3. Main Result

Our results are as follows.

Theorem 3.1 Let k ≥ 1 and A = (amnrs) be a four dimensional infinite matrix of complex numbers.
Then, in order that A ∈ (L,Lk) it is necessary and sufficient that

∞∑
m,n=0

|amnrs|k = O(1). (9)
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Proof. Assume equation 9 holds. Then, we should show that A (x)= (Amn(x)) ∈ Lk for every
x = (xrs) ∈ L. Now, using equation 9, it follows from Minkowski’s inequality that

∥A(x)∥Lk
=

 ∞∑
m,n=0

|Amn(x)|k
1/k

≤

 ∞∑
m,n=0

 ∞∑
r,s=0

|amnrsxrs|

k


1/k

=

∞∑
r,s=0

|xrs|

 ∞∑
m,n=0

|amnrs|k
1/k

= O(1) ∥x∥L < ∞.

which gives the desired conclusion.
Conversely, let A ∈ (L,Lk) . Then, for k ≥ 1, since Lk is a Banach space (see (Başar & Sever,

2009)), by Lemma 2.1, there exists a constant K such that ∥A(x)∥Lk
≤ K ∥x∥L , i.e., ∞∑

m,n=0

∣∣∣∣∣∣
∞∑

r,s=0

amnrsxrs

∣∣∣∣∣∣
k


1/k

≤ K ∥x∥L (10)

for all x ∈ L. So, by applying the double sequence x ∈ L to equation 10, where xij = 1 for i = r, j = s,
zero otherwise, we obtain

∞∑
m,n=0

|amnrs|k ≤ K, for r, s ≥ 0, (11)

which gives equation 9.
This step concludes the proof.
Theorem 3.2 Let 1 < k < ∞ and A=(amnij) be an four dimensional infinite matrix of complex

numbers. Define Wk(A) and wk(A) by

Wk(A) =
∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|

k

, (12)

wk(A) = sup
MXN

∞∑
r,s=0

∣∣∣∣∣∣
∑

(m,n)∈MXN

amnrs

∣∣∣∣∣∣
k

(13)

where M and N are finite subsets of natural numbers. Then, the following statements are equivalent:

(i) Wk∗(A) < ∞ (ii) A ∈ (Lk,L)

(iii) At ∈ (L∞,Lk∗) (iv) wk∗(A) < ∞.

where k∗ is the conjugate of k, i.e., 1/k + 1/k∗ = 1.

Proof. To prove the Theorem, it is enough to show that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i) .
(i) ⇒ (ii) . Assume (i) holds. Then, for all x ∈ Lk, it follows from Hölder’s inequality that

∥A(x)∥L =

∞∑
m,n=0

∣∣∣∣∣∣
∞∑

r,s=0

amnrsxrs

∣∣∣∣∣∣ ≤
∞∑

r,s=0

∞∑
m,n=0

|amnrsxrs|

≤


∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|

k∗


1/k∗

∥x∥Lk
(14)

≤ (Wk∗(A))1/k
∗
∥x∥Lk

< ∞,
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which gives (ii) .

(ii) ⇒ (iii) . Suppose A ∈ (Lk,L) . Then, since Lk is a Banach space, where k ≥ 1, by Lemma
2.1, there exists a constant L such that

∥A(x)∥L =
∞∑

m,n=0

∣∣∣∣∣∣
∞∑

r,s=0

amnrsxrs

∣∣∣∣∣∣ ≤ L ∥x∥Lk
(15)

for all x ∈ Lk. Also, it is observed by putting xrssgnamnrs instead of xrs that

∞∑
m,n=0

∞∑
r,s=0

|amnrsxrs| ≤ L ∥x∥Lk
. (16)

Now, let u ∈ L∞ be given. Then, by equation 15,∣∣∣∣∣∣
∞∑

m,n=0

∞∑
r,s=0

umnamnrsxrs

∣∣∣∣∣∣ ≤ ∥u∥L∞
∞∑

m,n=0

∞∑
r,s=0

|amnrsxrs| (17)

≤ L ∥u∥L∞ ∥x∥Lk
.

In equation 17, taking xrs = 1 for (r, s) = (i, j) , and zero otherwise, it is easily seen that∣∣∣∣∣∣
∞∑

m,n=0

amnrsumn

∣∣∣∣∣∣ ≤
∞∑

m,n=0

|amnrsumn| ≤ L ∥u∥L∞
,

which gives that At(u) is defined for all r, s ≥ 0, where the double sequence At(u) =
(
At

rs(u)
)

is given
by

At
rs(u) =

∞∑
m,n=0

amnrsumn : m,n ≥ 0 (18)

Again, it follows by considering equation 17 that∣∣∣∣∣
∞∑
r=0

∞∑
s=0

At
rs(u)xrs

∣∣∣∣∣ ≤ L ∥u∥L∞ ∥x∥Lk
(19)

which implies that the series in the left side hand of equation 19 converges. Therefore, since the dual of
space Lk is the space Lk∗(see (Başar & Sever, 2009)), we obtain At(u) ∈ Lk∗ , i.e., A

t ∈ (L∞,Lk∗) .

(iii) ⇒ (iv) . If At ∈ (L∞,Lk∗) , then, by Lemma 2.1, there exists a constant K such that∥∥At(x)
∥∥
Lk∗

≤ K ∥x∥L∞
for all x ∈ L∞, i.e.,

 ∞∑
r,s=0

∣∣∣∣∣∣
∞∑

m,n=0

amnrsxmn

∣∣∣∣∣∣
k∗


1/k∗

≤ K ∥x∥L∞
. (20)

Let M and N be any finite subsets of all nature numbers. Take a sequence x = (xmn) as xmn = 1 for
(r, s) ∈ MXN, and zero otherwise. Then, equation 20 is reduced to. ∞∑

r,s=0

∣∣∣∣∣∣
∑

(m,n)∈MXN

amnrs

∣∣∣∣∣∣
k∗


1/k∗

≤ K

which proves wk∗(A) < ∞.
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(iii) ⇒ (iv) . Suppose (iii) is satisfied and amnrs are real numbers. Then, for every finite subsets
M and N of nature numbers,

∞∑
r,s=0

∣∣∣∣∣∣
∑

(m,n)∈MXN

amnrs

∣∣∣∣∣∣
k∗

≤ wk∗(A).

Let H+ = {(m,n) ∈ MXN : amnrs ≥ 0} and H− = {(m,n) ∈ MXN : amnrs < 0}. Then, by con-
sidering the inequality |a+ b|k

∗
≤ 2k

∗
(
|a|k

∗
+ |b|k

∗
)

, where a and b are complex numbers, we have

Wk∗(A) =
∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|

k∗

=
∞∑

r,s=0


∞∑

(m,n)∈H+

amnrs +
∞∑

(m,n)∈H−

−amnrs


k∗

≤ 2k
∗

∞∑
r,s=0


 ∞∑

(m,n)∈H+

amnrs

k∗

+

 ∞∑
(m,n)∈H−

−amnrs

k∗


≤ 2k
∗+1wk(A).

If amnrs is complex number for m,n, r, s ≥ 0, it is easily seen that Wk∗(A) ≤ 22k
∗+3wk(A) < ∞,

which implies (iv) .
Thus the proof of the Theorem is completed.
Theorem 3.3 Let k ≥ 1. Then, in order that every

∣∣N, pm, qn
∣∣ summable double series should be

summable
∣∣N, p′m, q′n

∣∣
k
, it is necessary and sufficient that

(i)
p′m
P ′
m

(
Pm

pm

)k

= O(1) and (ii)
q′n
Q′

n

(
Qn

qn

)k

= O(1). (21)

Proof. Suppose that euation 21i and equation 21ii are satisfied. Let (Tmn) and (T ′
mn) be the double

sequences of
(
N, pn, qn

)
and

(
N, p′n, q

′
n

)
means of the series

∑∞
r,s=0 xrs , respectively, i.e.,

Tmn =
1

PmQn

m,n∑
r,s=0

prqs

r,s∑
v,µ=0

xvµ, (22)

T ′
mn =

1

P ′
mQ′

n

m,n∑
r,s=0

p′rq
′
s

r,s∑
v,µ=0

xvµ. (23)

Then, since P−1 = Q−1 = 0, it can be written that

Tmn =
1

PmQn

m,n∑
v,µ=0

pvqµ

v,µ∑
r,s=0

xr,s

=
1

PmQn

m,n∑
r,s=0

xr,s

m,n∑
v,µ=r,s

pvqµ

=
1

PmQn

m,n∑
r,s=0

xr,s (Pm − Pr−1) (Qn −Qs−1)

=

m,n∑
r,s=0

xrs

(
1− Pr−1

Pm

)(
1− Qs−1

Qn

)
,
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which implies

y00 = ∆T00 = x00

ym0 = ∆Tm0 =
pm

PmPm−1

m∑
r=1

Pr−1xr0

y0n = ∆T0n =
qn

QnQn−1

n∑
s=1

Qs−1x0s (24)

ymn = ∆Tmn =
pmqn

PmPm−1QnQn−1

m,n∑
r=1,s

Pr−1Qs−1xrs.

Also, similarly, we get

∆T ′
m,n =

p′mq′n
P ′
mP ′

m−1Q
′
nQ

′
n−1

m,n∑
r,s=1

P ′
r−1Q

′
s−1xrs. (25)

The double series
∑∞

r,s=0 xr,s is summable
∣∣N, pm, qn

∣∣ iff y = (ymn) ∈ L, and also we obtain by
solving equation 25 for xrs that, for m,n ≥ 1,

x00 = y00

xm0 =
Pm

pm
ym0 −

Pm−2

pm−1
ym−1,0

x0n =
Qn

qn
y0n − Qn−2

qn−1
y0,n−1 (26)

xmn =
PmQn

pmqn
ymn − Pm−2Qn

pm−1qn
ym−1,n −

Qn−2Pm

qn−1pm
ym,n−1 +

Pm−2Qn−2

pm−1qn−1
ym−1,n−1

Let

y′mn =

(
P ′
mQ′

n

p′mq′n

)1−1/k

∆T ′
mn = µ′

mn(k)

m,n∑
r,s=1

P ′
r−1Q

′
s−1xrs (27)

where ∆T ′
mn is defined by equation 25, and µ′

mn(k) is obtained from µmn(k) interchanging pm and
pm by p′m and q′n, respectively . Then, by equation 27, the double series

∑∞
r,s=0 xrs is summable∣∣N, p′n, p

′
n

∣∣
k

iff y′ = (y′mn) ∈ Lk. Further, it follows from equation 26 and equation 27 that, for
m,n ≥ 1,

y′m0 = µ′
m0(k)

m−1∑
r=1

prP
′
r − p′rPr

pr
yr0 +

µ′
m0(k)P

′
m−1Pm

pm
ym0,

y′0n = µ′
0n(k)

n−1∑
s=1

qsQ
′
s − q′sQs

qs
y0s +

µ′
0n(k)Q

′
n−1Qn

qn
y0n,
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y′mn = µ′
mn(k)

m,n∑
r,s=1

P ′
r−1Q

′
s−1

(
PrQs

prqs
yrs −

Pr−2Qs

pr−1qs
yr−1,s

−PrQs−2

prqs−1
yr,s−1 +

Pr−2Qs−2

pr−1qs−1
yr−1,s−1

)

= µ′
mn(k)


m,n∑
r,s=1

P ′
r−1Q

′
s−1

PrQs

prqs
yrs −

m−1,n∑
r,s=1

P ′
rQ

′
s−1

Pr−1Qs

prqs
yrs

−
m,n−1∑
r,s=1

P ′
r−1Q

′
s

PrQs−1

prqs
yrs +

m−1,n−1∑
r,s=1

P ′
rQ

′
s

Pr−1Qs−1

prqs
yrs


= µ′

mn(k)

{
P ′
m−1PmQ′

n−1Qn

pmqn
ymn +

P ′
m−1Pm

pm

n−1∑
s=1

qsQ
′
s−1 − q′sQs−1

qs
yms

+
Q′

n−1Qn

qn

m−1∑
r=1

prP
′
r−1 − p′rPr−1

pr
yrn +

m−1,n−1∑
r,s=1

(
qsQ

′
s−1 − q′sQs−1

) (
prP

′
r−1 − p′rPr−1

)
qspr

 yrs.

Therefore we can state

y′mn =

m,n∑
r,s=0

amnrsyrs = Amn(y),

that is, y′ = (y′mn) is the A−transform sequence of the sequence y = (yrs) , where the matrix A =
(amnrs) is defined by

amnrs =



µ′
0n(k)Q

′
n−1Qn

qn
, s = n, m = r = 0

µ′
0n(k)(qsQ

′
s−q′sQs)

qs
, 1 ≤ s < n, m = r = 0

µ′
m0(k)P

′
m−1Pm

pm
, r = m, n = s = 0

µ′
m0(k)(prP

′
r−p′rPr)

pr
, 1 ≤ r < m, n = s = 0

µ′
mn(k)P

′
m−1Pm(qsQ′

s−1−q′sQs−1)
pm

, 1 ≤ s < n
µ′
mn(k)Q

′
n−1Qn(prP ′

r−1−p′rPr−1)
qnpr

, 1 ≤ r < m
µ′
mn(k)(qsQ′

s−1−q′sQs−1)(prP ′
r−1−p′rPr−1)

qspr
, 1 ≤ s < n, 1 ≤ r < m

µ′
mn(k)P

′
m−1PmQ′

n−1Qn

pmqn
, r = m, s = n

0, otherwise

This gives that
∣∣N, pm, qn

∣∣ ⇒ ∣∣N, p′m, q′n
∣∣
k

iff (y′mn) ∈ Lk for every (ymn) ∈ L, i.e.,A ∈ (L,Lk) .
Now, by Theorem 3.1, we should show that equation 21i and equation 21ii are equivalent to the equation
9. To do this, let us write

∞∑
m,n=r,s

|amnrs|k =

∞∑
m=r

(
|amsrs|k +

∞∑
n=s+1

|amnrs|k
)

= |arsrs|k +
∞∑

m=r+1

|amsrs|k +
∞∑

n=s+1

|arnrs|k +
∞∑

m,n=r+1,s+1

|amnrs|k

= L1 + L2 + L3 + L4, say.
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Then, equation 9 holds iff L1 = O(1), L2 = O(1), L3 = O(1) and L4 = O(1). Now, it is written that

L′
1 = |a0s0s| =

(
q′s
Q′

s

)1/k Qs

qs

L′′
1 = |ar0r0| =

(
p′r
P ′
r

)1/k Pr

pr

L′′′
1 = |arsrs| =

(
p′rq

′
s

P ′
rQ

′
s

)1/k PrQs

prqs
.

Hence, if L′
1 = O(1) and L′′

1 = O(1), then, since pr ≤ Pr and qs ≤ Qs for all r, s, then, p′rPr/P
′
rpr =

O(1) and q′sQs/Q
′
sqs = O(1), and so we have L′′′

1 = O(1). This shows that L1 = O(1) if and only if
L′
1 = O(1) and L′′

1 = O(1), or, equivalently, equation 21i and equation 21ii hold. Also, using equation
21i and equation 21ii, it follows from Lemma 2.2 and Lemma 2.3 that

L2 =
∞∑

m=r+1

|amsrs|k ≤
∞∑

m=r+1

(
|am0r0|k + |amsrs|k

)

=


∣∣∣∣(P ′

r − p′r
Pr

pr

)∣∣∣∣k +
∣∣∣∣∣
(

q′s
Q′

s

)1/k Qs

qs

(
P ′
r−1 −

p′rPr−1

pr

)∣∣∣∣∣
k
 1

P ′k
r

=

∣∣∣∣(1− p′rPr

P ′
rpr

)∣∣∣∣k + q′s
Q′

s

(
Qs

qs

)k ∣∣∣∣(1− p′rPr

P ′
rpr

)∣∣∣∣k = O(1),

L3 =

∞∑
n=s+1

|arnrs|k ≤
∞∑

n=s+1

(
|a0n0s|k + |arnrs|k

)

=


∣∣∣∣Q′

s − q′s
Qs

qs

∣∣∣∣k +
∣∣∣∣∣
(
p′r
P ′
r

)1/k Pr

pr

(
Q′

s−1 −
q′sQs−1

qs

)∣∣∣∣∣
k
 1

Q′k
s

=

∣∣∣∣1− q′sQs

Q′
sqs

∣∣∣∣k + p′r
P ′
r

(
Pr

pr

)k ∣∣∣∣(1− q′sQs

Q′
sqs

)∣∣∣∣k = O(1),

L4 =
∞∑

m,n=r+1,s+1

|amnrs|k

=

∞∑
m,n=r+1,s+1

∣∣∣∣µ′
mn(k)

(
Q′

s−1 −
q′sQs−1

qs

)(
P ′
r−1 −

p′rPr−1

pr

)∣∣∣∣k
=

∣∣∣∣(Q′
s−1 −

q′sQs−1

qs

)(
P ′
r−1 −

p′rPr−1

pr

)∣∣∣∣k ∞∑
m,n=r+1,s+1

µ′k
mn(k)

=

∣∣∣∣(Q′
s−1 −

q′sQs−1

qs

)(
P ′
r−1 −

p′rPr−1

pr

)∣∣∣∣k 1

P ′k
r Q′k

s

= O(1)

(
q′sQs

Q′
sqs

p′rPr

P ′
rpr

)k

= O(1).

This completes the proof.
Theorem 1.2 and Theorem 3.3 lead to the following result which gives a important relation between

single and double absolute Riesz summability methods.
Corollary 3.4 Let k ≥ 1. Then, in order that every

∣∣N, pm, qn
∣∣ summable double series should be

summable
∣∣N, p′m, q′n

∣∣
k

it is necessary and sufficient that every
∣∣N, pm

∣∣ and
∣∣N, qn

∣∣ summable simple
series are summable

∣∣N, p′m
∣∣
k

and
∣∣N, q′n

∣∣
k
, respectively.
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For k = 1, Theorem 3.3 also extends the result of Bosanquet (1950) and Sunouchi (1949) to double
summability as follows.

Corollary 3.5 In order that every
∣∣N, pm, qn

∣∣ summable double series should be summable
∣∣N, p′m, q′n

∣∣
k

it is necessary and sufficient that

(i)
p′mPm

P ′
mpm

= O(1) and (ii)
q′nQn

Q′
nqn

= O(1).

For pn = qn = 1,
∣∣N, pn, pn

∣∣
k

reduces to |C, 1, 1|k and hence one can obtain some new results as:

Corollary 3.6 Let k ≥ 1.Then, in order that every
∣∣N, pm, qn

∣∣ summable double series should be
summable |C, 1, 1|k it is necessary and sufficient that

(i)
1

m

(
Pm

pm

)k

= O(1) and (ii)
1

n

(
Qn

qn

)k

= O(1).

Corollary 3.7 Let k ≥ 1.Then, in order that every |C, 1, 1| summable double series should be
summable

∣∣N, pm, qn
∣∣
k

it is necessary and sufficient that

(i) mk pm
Pm

= O(1) and (ii) nk qn
Qn

= O(1).

However the following result shows that converse implication of Theorem 3.3 is not true.

Theorem 3.8 Let k > 1. Then, for every sequences (pm) , (qn) , (p
′
m) and (q′n) , there exists a series

which is summable
∣∣N, pm, qn

∣∣
k

but not summable
∣∣N, p′m, q′n

∣∣ .
Proof. Let us consider (Tmn) and (T ′

mn) defined by equation 22 and equation 23. Write

Ymn = µmn(k)∆Tmn for m,n ≥ 0 (28)

where ∆T =
(
∆Tmn

)
is defined by equation 24. Then the double series

∑∞
r,s=0 xr,s is summable∣∣N, pm, qn

∣∣
k

and
∣∣N, p′m, q′n

∣∣ if and only if Y = (Ymn) ∈ Lk and ∆T ′ =
(
∆T ′

m,n

)
∈ L, respectively,

where ∆T ′
m,n is given by equation 25 . Further, by equation 2 and equation 28, for m,n ≥ 1,

∆T ′
m,0 = µ′

m0(1)

m−1∑
r=1

(
P ′
r−1Pr − P ′

rPr−1

)
Yr0

prµr0(k)
+

P ′
m−1Pmµ′

m0(1)Ym0

pmµm0(k)

∆T ′
0,n = µ′

0n(1)
n−1∑
s=1

(
Q′

s−1Qs −Q′
sQs−1

)
Y0s

qsµ0s(k)
+

Q′
n−1Qnµ

′
0n(1)Y0n

qnµ0n(k)

and

∆T ′
m,n = µ′

mn(1)

{
P ′
m−1PmQ′

n−1Qn

pmqnµmn (k)
Ymn +

P ′
m−1Pm

pm

n−1∑
s=1

(
Q′

s−1Qs −Q′
sQs−1

)
Yms

qsµms(k)

+
Q′

n−1Qn

qn

m−1∑
r=1

(
P ′
r−1Pr − P ′

rPr−1

)
Yrn

prµrn(k)

+

m−1,n−1∑
r,s=1

{
P ′
rPr−1

(
Q′

sQs−1 −Q′
s−1Qs

)
− P ′

r−1Pr

(
Q′

sQs−1 −Q′
s−1Qs

)}
Yrs

prqsµrs (k)


Therefore it can be written that

∆T ′
m,n =

m,n∑
r,s=0

amnrsYrs,= Amn(Y )
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where the matrix A = (amnrs) is given by

amnrs =



µ′
m0(1)P

′
m−1Pm

pmµm0(k)
, r = m, n = s = 0

µ′
m0(1)(P ′

r−1Pr−P ′
rPr−1)

prµr0(k)
, 1 ≤ r < m, n = s = 0

µ′
0n(1)Q

′
n−1Qn

qnµ0n(k)
, s = n, m = r = 0

µ′
0n(1)(Q′

s−1Qs−Q′
sQs−1)

qsµ0s(k)
, 1 ≤ s < n,m = r = 0

µ′
mn(1)P

′
m−1Pm(Q′

s−1Qs−Q′
sQs−1)

pmqsµms(k)
, 1 ≤ s < n,m ≥ 1

µ′
mn(1)Q

′
n−1Qn(P ′

r−1Pr−P ′
rPr−1)Yrn

qnprµrn(k)
, 1 ≤ r < m, n ≥ 1

µ′
mn(1){P ′

rPr−1(Q′
sQs−1−Q′

s−1Qs)−P ′
r−1Pr(Q′

sQs−1−Q′
s−1Qs)}

prqsµrs(k)
, 1 ≤ s < n, 1 ≤ r < m

µ′
mn(1)P

′
m−1PmQ′

n−1Qn

pmqnµmn(k)
, s = n, r = m,

0, otherwise

This gives that
∣∣N, pm, qn

∣∣
k
⇒
∣∣N, p′m, q′n

∣∣ if and only if A ∈ (Lk,L) . But, it follows from the definition
of the matrix that

Wk∗(A) =
∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|

k∗

≥
∞∑
r=0

|ar0r0|k
∗

=

∞∑
r=0

∣∣∣∣∣
(
p′rPr

P ′
rpr

)(
Pr

pr

)1/k

Pr−1

∣∣∣∣∣
k∗

≥
∞∑
r=0

P k∗
r−1 = ∞.

Therefore, the proof is completed by Theorem 3.2.
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irrt(G) = 1
2

∑
u,v∈V |dG(u)− dG(v)|,

where dG(u) indicates the degree of the vertex u, where u ∈ V (G). In this paper, we have
determined the first minimum, second minimum and third minimum total irregularity index of
the tricyclic graphs on the n vertices.

Keywords: Irregularity; topological index; total irregularity index; λ-transformation; tricyclic
graphs.

1. Introduction

Let G = (V,E) be a graph with edge and vertex sets as denoted by E and V respectively.
The number of edges attached on a vertex v of a graph G is the degree dG(v) of vertex v.
If V = {vi}ni=1, then sequence (d1, d2, d3, . . . dn) is called degree sequence of G (Bondy &
Murty, 1976), where di is the degree of ith vertex of G. We assume the sequence (dG(vi))

n
i=1

is in decreasing order i.e. for i < z, (d(vz) ≤ d(vi)). For convenience, we will use DS as the
notation for degree sequence of a graph G.
With recent advances in graph theory in different areas, chemical graph theory is one of the
most active area of research. Chemical graph theory or the theory of chemical graphs is a
sub-branch of mathematical chemistry that describes non-trivial graph theory applications for
solving molecular problems where the chemical structure is transformed into a mathematical
structure. A representation of an object only provides information on the number of elements it
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The quantitative characterization of the topological structures of irregular graphs has been 
demonstrated through several irregularity measures. In the literature, not only different chem-
ical and physical properties can be well comprehended but also quantitative structure-activity 
relationship (QSPR) and quantitative structure-property relationship (QSAR) are documented 
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comprises, and its connectivity is defined as the graph’s topological representation.
A topological index is a numerical value that is used primarily for predicting chemical and
physical properties of various compounds and structures. A molecular graph is called a topo-
logical representation of a molecule. Significant number of topological indices during the last
two decades have been documented. Many existing topological indices based on degrees can
be classified as BID index, whose general form is

BID(G) =
∑
uv∈E

f(du, dv), (1)

where uv is the edge connecting vertices u and v of the graph. There are numerous indices
introduced such as the ABC index, Zagreb index, Randic index, etc. Some information can be
found in the articles ((Akbar & Akhlaq, 2016), (Akbar & Akhlaq, 2017), (Hassan et al., 2019)
cited therein. Currently, the study of such types of indices has become a very active research
area in the theory of chemical graphs. One such area is the quantitative analysis of different
topological structures of irregular graphs.
The graph that has the same degree of all its vertices is regular, otherwise, it is irregular. Several
approaches have been proposed which characterize the irregularity of a graph. Albertson in
(Albertson, 1997) introduced |dG(u) − dG(v)| as an imbalance of an edge e = uv ∈ E and
defined

irr(G) =
∑
uv∈E

|dG(u)− dG(v)| (2)

as an irregularity of a graphG. More results about the above-mentioned concepts are mentioned
in ((Dimitrov & Skrekovski, 2015), (Abdo et al., 2014b), (L.H. You et al., 2014a), (L.H. You
et al., 2014b), (Henning & Rautenbach, 2007), (Albertson, 1997), (Hensen & Mélot, 2005)).
Taking inspiration from the structure and significance of Equation 2, a new irregularity measure
was introduced by the authors in (Abdo et al., 2014a) termed the total irregularity index, defined
as

irrt(G) =
1

2

∑
u,v∈V

|dG(u)− dG(v)| (3)

Even though both graph invariants compute irregularity, the irregularity is captured by one
parameter, i.e. the vertex degree, but in some respects the later is preferable to the old one.
For instance, equation (3) has the known characteristic of an irregularity computation that the
graphs with identical total irregularity have the same DS, whereas equation (2) does not pos-
sess this property. Clearly, equation (3) is an upper bound of equation (2). In (Dimitrov &
Skrekovski, 2015), the relationship between irr(G) and irrt(G) for the connected graph on
n vertices have been derived, that is, irrt(G) ≤ n2{ irr(G)

4
}. Furthermore, for any tree, they

also computed that irrt(T ) ≤ (n − 2)irr(T ). In (Abdo et al., 2014a) the bounds on irrt(G)
on cycle, path, and the star graph, denoted as Cn, Pn, and Sn, on the n vertices respectively,
were computed. They also proved that the graph with maximal total irregularity on n vertices
between all the trees is the star graph. Following result is due to (Abdo et al., 2014a).

Theorem 1.1. Let G be an n-vertex simple and undirected graph. Then

(i) irrt(G) ≤ (2n3 − 3n2 − 2n+ 3).

(ii) irrt(G) ≤ (n− 1)(n− 2) if G is a tree, with equality iff G ∼= Sn.
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The authors in (L.H. You et al., 2014a) and (Hensen & Mélot, 2005) examined the total irreg-
ularity of the unicyclic and bicyclic graphs and defined graphs with n2 − n − 6 as maximum
total irregularity among all the unicyclic graphs and graphs with n2 +n− 16 as maximum total
irregularity among all bicyclic graphs on n vertices respectively. By using the Gini index in (M.
Eliasi, 2015), the author obtained the ordering of the total irregularity index for some classes
of connected graphs, with the same number of vertices. Recently, the authors in (F. Gao et
al., 2021) characterized trees T of order n and triangulation graphs with respect to difference
of Mostar index and irregularity of graphs. For more related research, readers are requested to
see (Xu & Das, 2016).
In Section 2, we have described an important transformation in the current note to examine the
minimum total irregularity of tricyclic graphs. We have also determined first, second and third
minimum total irregularity of tricyclic graphs on n vertices in Section 3. Lastly, summary of
the note is mentioned in Section 4.

2. λ-Transformation

An important transformation in this section is explained to explore the minimum total irreg-
ularity of graphs. Before introduction of transformation, let us define induced subgraph and
hanging tree (Yingxue Zhu et al., 2014).
Let G be an n-vertex graph then a subset of the vertices of G having edges incident on the
vertices in the subset as endpoints is known as vertex-induced or simply induced subgraph of
G. Let T be induced sub-tree of G, if G can be obtained back by connecting T to a vertex of
G \ T . Then T is a hanging tree of G. Now we introduce the λ-Transformation as:
λ-Transformation: Let G be a simple graph with at least two leaves. Let u be a vertex of
dG(u) ≥ 3 and T be hanging tree of G connecting to u with |V (T )| ≥ 1, and v be the leaf of
G with v /∈ T . By removing T from u and connecting it to the vertex v and the graph obtained
be denoted as G∗. Then this transformation from vertex u to v is a λ-transformation on G (see
Figure 1).

Fig. 1. G and G∗(obtained from λ-Transformation)

The following result is due to (Yingxue Zhu et al., 2014), after λ-Transformation and it
will be used in the main results as it will help us to compute total irregularity index of tricyclic
graphs.

Lemma 2.1. (Yingxue Zhu et al., 2014) LetG be an n−vertex graph then irrt(G) > irrt(G
∗),

where G∗ is the graph obtained from G, after λ-Transformation from u to v.

Proof. Let G = (V,E), consider the vertex set V = V 1 ∪ V 2 ∪ V 3 such that

V 1 = {x|dG(x) ≥ dG(u), x ∈ V }

V 2 = {x|dG(x) = 1, x ∈ V }

V 3 = {x|2 ≤ dG(x) < dG(u), x ∈ V }
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Clearly, u ∈ V 1, v ∈ V 2. Let |V 1| = j, |V 2| = k, |V 3| = l, then j ≥ 1, k ≥ 2 and j+k+ l = n.
Note by λ-transformation, the degrees of v and u become dG∗(v) = dG(v) + 1 = 2, dG∗(u) =
dG(u)− 1 and dG∗(w) = dG(w) for any w ∈ V \ {u, v}. Let U = V \ {u, v}. Then

|dG∗(u)− dG∗(v)| − |dG(u)− dG(v)| = −2,∑
w∈U

(|dG∗(u)− dG∗(w)| − |dG(u)− dG(w)|) = (j − 1)− (l + k − 1) = j − l − k,

∑
w∈U

(|dG∗(v)− dG∗(w)| − |dG(v)− dG(w)|) = −(j − 1)− l + (k − 1)

= −j − l + k.
Thus, we have irrt(G∗)− irrt(G) = −2 + (j − l − k) + (−j − l + k) = −2l − 2 < 0.

Remark. Let λ-transformation be performed on G from the vertex u to v and G∗ be the result-
ing graph. Then by λ-transformation and Lemma 2.1, we have dG∗(u) = dG(u) − 1 ≥ 2 and
dG∗(v) = dG(v) + 1 = 2. If dG∗(u) ≥ 3, G∗ has at least two leaves, and there’s a hanging
tree of G∗ connecting to vertex u, we can repeat λ-transformation from vertex u on G∗, till the
degree of u equals 2, or the resulting graph consists of just one leaf, or no hanging tree connects
to vertex u.

We can see from the above arguments that λ-transformation can be achieved on G iff three
conditions hold mentioned below:

(i) There exists a vertex u with degree greater or equal to 3;

(ii) There is a hanging tree of G, connecting to vertex u;

(iii) G has at least two leaves.

Following trivial result will be useful to establish our main results.

Lemma 2.2. ((Bondy & Murty, 1976)) Let G = (V,E) be a graph and |E| = m. Then∑
v∈V

dG(v) = 2m.

�

In the following section, we establish the main results by describing different classes in tricyclic
graphs on n vertices.

3. The Total Irregularity of Tricyclic Graphs

A connected (n,m) graph G is said to be a tricyclic graph if m = n + 2. Within this section,
the extremal graphs are described by computing, the first, second and third minimum total
irregularity of n-vertex tricyclic graphs.
Tricyclic graphs can be divided into three types: ξ − graph, Ω− graph, and ϑ− graph.
The class of ξ − graph, denoted by ξ(p, q, r, s, i) contains three types of tricyclic graphs (see
Figure 2). The first one is obtained from three cycles Cp, Cq, and Cr having one common vertex
(say u), between Cp and Cq, and one (say v), between Cq and Cr (i.e. having no paths between
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the cycles see Figure 2(a)). It is denoted by ξ1(p, q, r, s, i) = ξ1. The second is obtained having
one common vertex u between Cp and Cq a path between Cq and Cr to any vertex w ∈ V \ u
(see Figure 2(b). It is denoted by ξ2(p, q, r, s, i) = ξ2. Lastly, third is obtained by attaching
two disjoint paths Ps and Pi between Cp and Cq and one between Cq and Cr respectively (see
Figure 2(c)), where p, q, r ≥ 3. It is denoted by ξ3(p, q, r, s, i) = ξ3.

Fig. 2. Tricyclic graphs: (a) ξ1(p, q, r, s, i); (b) ξ2(p, q, r, s, i); (c) ξ3(p, q, r, s, i)

An Ω − graph denoted by Ω(p, q, r, s, i, y), contains four types of tricyclic graphs (see
Figure 3 and 4). The first graph, denoted by Ω1 = Ω1(p, q, r, s, i, y), with only one common
vertex, (say u), attached to Cp, Cq and Cr (see Figure 3(a)). The second graph, denoted by
Ω2 = Ω2(p, q, r, s, i, y) is obtained from Ω1 by attaching a path Py of length y ≥ 1 between
vertex u and Cr (see Figure 3(b)). The third graph, denoted by Ω3 = Ω3(p, q, r, s, i, y), obtained
from Ω2 by attaching a path Pi of length i ≥ 1 between vertex u andCq (see Figure 4(a)). Lastly,
the fourth graph, denoted by Ω4 = Ω4(p, q, r, s, i, y) is obtained from Ω3 by attaching a path Ps

of length s ≥ 1 between vertex u and Cp (see Figure 4(b)), where p, q, r ≥ 3.

Fig. 3. Tricyclic graphs: (a) Ω1; (b) Ω2

A ϑ − graph, denoted by ϑ(p, q, r, s, i) contains four types of tricyclic graphs (see Figure
5 ). The first graph, denoted by ϑ1 = ϑ1(p, q, r, s, i), is a graph with three cycles (namely,
Cp, Cq, Cr) on p + q + r − s − i vertices, having (s + i) vertices as common with each other
(see Figure 5(a)). In the second case, the graph denoted by ϑ2 = ϑ2(p, q, r, s, i), is obtained
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Fig. 4. Tricyclic graphs: (a) Ω3; (b) Ω4

from ϑ1 by removing Cr from Cq and attaching it to one of the end vertices {f1, fs} (see Figure
5(b)). In the third case, the graph is obtained from ϑ1 by attaching a path Pr−i from one of
the end vertices {e1, ep−s, h1, hi} with a vertex of disjoint cycle Cr(see Figure 5(c)), let it be
denoted by ϑ3 = ϑ3(p, q, r, s, i). Lastly, the graph denoted by ϑ4 = ϑ4(p, q, r, s, i) is obtained
by attaching a path between the cycle Cr and one of the end vertices {f1, fs} (see Figure 5(d)),
where p, q, r ≥ 3 and s, i ≥ 2.

Fig. 5. Tricyclic graphs: (a) ϑ1; (b) ϑ2; (c) ϑ3; (d) ϑ4;
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Let the set of all tricyclic graphs on n vertices be denoted by Tn. As defined above Tn is
based on three types of graphs ξ − graph, Ω− graphs, and ϑ− graph.

3.1. Graphs having minimum total irregularity in ξ(p, q, r, s, i)
In this section, we determine the minimum total irregularity of tricyclic graphs in ξ(p, q, r, s, i).

Let ξ1 = ξ1(p, q, r, s, i) having no paths (see Figure 2(a)), ξ2 = ξ2(p, q, r, s, i) with a one path
Pi with length i ≥ 1 (see Figure 2(b)) and ξ3 = ξ3(p, q, r, s, i) with two paths Ps and Pi with
lengths s, i ≥ 1 respectively (see Figure 2(c)).

Theorem 3.1. Let n ≥ 7, G ∈ ξ1 = ξ1(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 8 and equality holds iff (4, 4, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 4, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 14, with equality iff the DS
of G is (4, 4, 3, 2, 2, . . . , 2, 1).

Proof. We know that
∑
v∈V

dG(v) = 2(n + 2) from Lemma 2.2. Let us divide the vertex set as

follows,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,

t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ ξ1 = ξ1(p, q, r, s, i), then j ≥ 2, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 4. Note G ∈ ξ1
if j = 2,∆G ≥ 5 or j ≥ 3 so vertex u with dG(u) ≥ 3 exists and hanging tree of G which
connects to u exists. We complete the proof by considering following cases:
Case 1. If j = 2, then there are three subcases mentioned below:
Subcase (i): If ∆G = 4, then k = 0 and the DS is (4, 4, 2, 2, . . . , 2) as 2(n+ 2) =

∑
v∈V

dG(v) =

8 + 2(n− 2− k) + k, then irrt(G) = 4n− 8.
Subcase (ii): If ∆G = 5, then k = 1 and the DS is (5, 4, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) = 5 + 4 + 2(n− 2− k) + k, then irrt(G) = 6n− 10 > 6n− 14.

Subcase (iii): If ∆G ≥ 6, then k ≥ ∆G − 4 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥ ∆G + 4 +

2(n − 2 − k) + k and λ-transformation can be done (k − 1)− times on G till the DS of the
graph obtained becomes (5, 4, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F1, then
irrt(G) > irrt(F1) = 6n− 10 > 6n− 14 by Lemma 2.1.
Case 2. Now if j ≥ 3, then consider following subcases:
Subcase (i): If j + ∆G = 7, then j = 3,∆G = 4, 2 ≤ t ≤ 3.
If t = 2, then k = 1 and the DS is (4, 4, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =

∑
v∈V

dG(v) =

4 + 4 + 3 + 2(n− 3− k) + k = 11 + 2(n− 3− k) + k, so irrt(G) = 6n− 14.
If t = 3, then k = 2 as 2(n + 2) =

∑
v∈V

dG(v) = 4t + 2(n− 3 − k) + k, and λ-transformation

can be done once on G so the DS of obtained graph is (4, 4, 3, 2, 2, . . . , 2, 1). Let the obtained
graph be denoted as F2, then irrt(G) > irrt(F2) = 6n− 14 by Lemma 2.1.
Subcase (ii): If j + ∆G ≥ 8, then k ≥ ∆G + j − 6 ≥ 2 as 2(n + 2) =

∑
v∈V

dG(v) ≥
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∆G + 3(j−1) + 2(n− j−k) +k and λ-transformation can be done (k−1)−times on G till the
DS of graph obtained is (4, 4, 3, 2, 2, . . . , 2, 1). Let the obtained graph be denoted as F3, then
irrt(G) > irrt(F3) = 6n− 14 by Lemma 2.1.

Theorem 3.2. Let n ≥ 8, G ∈ ξ2 = ξ2(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 10 and equality holds iff (4, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 3, 3, 2, 2, . . . , 2) is not theDS of G, then irrt(G) ≥ 6n−18, with equality iff theDS
of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1).

Proof. It is easy to see that
∑
v∈V

dG(v) = 2(n+ 2) from Lemma 2.2.

Let us divide the vertex set as,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,

t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ ξ2 = ξ2(p, q, r, s, i) then j ≥ 3, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 4.
Note G ∈ ξ2 if j = 3, ∆G ≥ 4 or j ≥ 4 so there exists a vertex u with dG(u) ≥ 3 and
there exists a hanging tree of G which connects to u. We complete the proof by considering
following cases:

Case 1. If j = 3, then consider following subcases:
Subcase (i): If ∆G = 4, then k = 0 and theDS is (4, 3, 3, 2, 2, . . . , 2) as 2(n+2) =

∑
v∈V

dG(v) =

4 + 3 + 3 + 2(n− 3− k) + k, then irrt(G) = 4n− 10.
Subcase (ii): If ∆G = 5, then 1 ≤ t ≤ 3
If t = 1, then k = 1 and k = 2. For k = 1 the DS is (5, 3, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3 + 3 + 2(n − 3 − k) + k and irrt(G) = 6n − 12 > 6n − 18. For

k = 2 λ-transformation can be done on G once and the DS of the graph obtained becomes
(5, 3, 3, 2, 2, . . . , 2, 1). Let the obtained graph denoted by F4, then irrt(G) > irrt(F4) =
6n− 12 > 6n− 18 from Lemma 2.1.
If t ≥ 2, then k ≥ 3 as 2(n+ 2) =

∑
v∈V

dG(v) ≥ 5 + 5 + 3 + 2(n− 3− k) + k λ-transformation

can be done (k − 1)−times on G till the DS of obtained graph becomes (5, 3, 3, 2, 2, . . . , 2, 1).
Let the obtained graph denoted by F5, then irrt(G) > irrt(F5) = 6n−12 > 6n−18 by Lemma
2.1.
Subcase (iii): If ∆G ≥ 6, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =

∑
v∈V

dG(v) ≥ ∆G +

3(j − 1) + 2(n − j − k) + k and λ-transformation can be done (k − 1)−times on G till the
DS of obtained graph is (5, 4, 2, 2, . . . , 2, 1). Let the obtained graph be denoted as F6, then
irrt(G) > irrt(F6) = 6n− 10 > 6n− 14 by Lemma 2.1.
Case 2. If j ≥ 4, then consider following subcases:
Subcase (i): If j + ∆G = 8, then k = 1, and the DS of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1) as
2(n+ 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, then irrt(G) = 6n− 18.
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Subcase (ii): If j + ∆G ≥ 9, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and λ-transformation can be done (k − 1)−times on G till
the DS of obtained graph is (4, 3, 3, 3, 2, 2, . . . , 2, 1). Let the obtained graph be denoted as F7,
then irrt(G) > irrt(F7) = 6n− 18 by Lemma 2.1.

Theorem 3.3. Let n ≥ 9, G ∈ ξ3 = ξ3(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 16 and equality holds iff (3, 3, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (3, 3, 3, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n− 26, with equality iff the
DS of G is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1).

Proof. It is easy to see that
∑
v∈V

dG(v) = 2(n+ 2) from Lemma 2.2.

Let us divide vertex set as below,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,

t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ ξ3 = ξ3(p, q, r, s, i) then j ≥ 4, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 3.
Note G ∈ ξ3 = ξ3(p, q, r, s, i) if j = 4, ∆G ≥ 3 or j ≥ 5 so there exists a vertex u with
dG(u) ≥ 3 and there exists hanging tree of G which connects to u. We have completed the
proof by considering the following cases:
Case 1. If j = 4, then consider following subcases:
Subcase (i): If ∆G = 3, then k = 0 and the DS is (3, 3, 3, 3, 2, 2, . . . , 2) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, then irrt(G) = 4n− 16.

Subcase (ii): If ∆G = 4, then 1 ≤ t ≤ 4.
If t = 1, then k = 1. For k = 1 the DS is (4, 3, 3, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =

∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and irrt(G) = 6n− 18 > 6n− 26.
If t ≥ 2, then k ≥ 2 as 2(n + 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n − j − k) + k

and λ-transformation can be done (k − 1)−times on G till the DS of obtained graph becomes
(4, 3, 3, 3, 2, 2, . . . , 2, 1). Let the obtained graph denoted by F8, thus irrt(G) > irrt(F8) =
6n− 18 > 6n− 26 by Lemma 2.1.
Subcase (iii): If ∆G ≥ 5,
then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n − j − k) +

k and λ-transformation can be done (k − 1)−times on G till the DS of obtained graph is
(4, 3, 3, 3, 2, 2, . . . , 2, 1). Let the obtained graph be denoted as F9, thus irrt(G) > irrt(F9) =
6n− 18 > 6n− 26 by Lemma 2.1.
Case 2. If j ≥ 5, then consider the following subcases:
Subcase (i): If j + ∆G = 8, then k = 1, and the DS of G is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1) as
2(n+ 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, then irrt(G) = 6n− 26.
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Subcase (ii): If j + ∆G ≥ 9, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and λ-transformation can be done (k − 1)−times on G till
the DS of obtained graph is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as
F10, then irrt(G) > irrt(F10) = 6n− 26 by Lemma 2.1.

3.2. The graphs with minimum total irregularity in Ω− graph
In this section, we determine the first minimum, second minimum, and third minimum total

irregularity of tricyclic graphs in Ω(p, q, r, s, i, y).

Theorem 3.4. Let n ≥ 7, G ∈ Ω1 = Ω1(p, q, r, s, i, y) then

(i) irrt(G) ≥ 4n− 4 and equality holds iff (6, 2, 2, . . . , 2) is the DS of G.

(ii) If (6, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n− 8, with equality iff the DS of G
is (6, 3, 2, 2, . . . , 2, 1).

Proof. It is obvious that
∑
v∈V

dG(v) = 2(n+ 2) from Lemma 2.2.

Let us consider the vertex set as,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,

t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ Ω1 = Ω1(p, q, r, s, i, y), then j ≥ 1, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 6.
Note G ∈ Ω1 if j = 1, ∆G ≥ 6 or j ≥ 2 so there exists a vertex u with dG(u) ≥ 3 and
there exists hanging tree of G which connects to u. We complete the proof by considering the
following cases:
Case 1. If j = 1, then consider the following subcases:
Subcase (i): If ∆G = 6, then k = 0 and the DS is (6, 2, 2, . . . , 2) as 2(n + 2) =

∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k, thus irrt(G) = 4n− 4.
Subcase (ii): If ∆G = 7, then k = 1. For k = 1, DS is (7, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k and irrt(G) = 6n− 6 > 6n− 8.

Subcase (iii): If ∆G ≥ 7, then k ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j −

k) + k and λ-transformation can be done (k − 1)−times on G till the DS of graph obtained
is (7, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F11, then irrt(G) > irrt(F11) =
6n− 6 > 6n− 8 by Lemma 2.1.
Case 2. If j ≥ 2, then consider the following subcases:
Subcase (i): If ∆G = 6, then 1 ≤ t ≤ 2,
If t = 1 then 1 ≤ k ≤ 3,. For k = 1 the DS of G is (6, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, thus irrt(G) = 6n− 8. For k ≥ 2 and we can

do λ-transformation (k − 1)−times on G till the DS of graph obtained is (6, 3, 2, 2, . . . , 2, 1).
Let the graph obtained be denoted as F12, then irrt(G) > irrt(F12) = 6n− 8 by Lemma 2.1.
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Subcase (ii): If ∆G ≥ 7, then 1 ≤ t ≤ 2 and k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and λ-transformation can be done (k − 1)−times on G till
theDS of graph obtained is (6, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F13, then
irrt(G) > irrt(F13) = 6n− 8 by Lemma 2.1.

By following the same pattern as above we get the following results by direct calculations.

Theorem 3.5. Let n ≥ 8, G ∈ Ω2 = Ω2(p, q, r, s, i, y) then

(i) irrt(G) ≥ 4n− 6 and equality holds iff (5, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (5, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 12, with equality iff the DS
of G is (5, 3, 3, 2, 2, . . . , 2, 1).

Theorem 3.6. Let n ≥ 9, G ∈ Ω3 = Ω3(p, q, r, s, i, y) then

(i) irrt(G) ≥ 4n− 10 and equality holds iff (4, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 3, 3, 2, 2, . . . , 2) is not theDS of G, then irrt(G) ≥ 6n−18, with equality iff theDS
of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1).

Theorem 3.7. Let n ≥ 10, G ∈ Ω4 = Ω4(p, q, r, s, i, y)

(i) irrt(G) ≥ 4n− 16 and equality holds in case (3, 3, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (3, 3, 3, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 12, with equality iff the
DS of G is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1).

3.3. The graphs with minimum total irregularity in ϑ− graph
In this section, we have determined first minimum, second minimum, and third minimum

total irregularity of tricyclic graphs in ϑ(p, q, r, s, i).

Theorem 3.8. Let n ≥ 5, G ∈ ϑ1 = ϑ1(p, q, r, s, i)

(i) irrt(G) ≥ 4n− 10 and equality holds iff (4, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 3, 3, 2, 2, . . . , 2) is not theDS of G, then irrt(G) ≥ 6n−18, with equality iff theDS
of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1).

Proof. We know that
∑
v∈V

dG(v) = 2(n+ 2) from Lemma 2.2.

Consider the following distribution of vertex set as,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,
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t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ ϑ1 = ϑ1(p, q, r, s, i, ) then j ≥ 3, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 4.
Note G ∈ ϑ1 if j = 3, ∆G ≥ 4 or j ≥ 4 so there exists a vertex u with dG(u) ≥ 3 and there
exists hanging tree of G which connects to u. We prove by considering the following cases:
Case 1. If j = 3, then consider the following cases:
Subcase (i): If ∆G = 4,
then 1 ≤ t ≤ 3. If t = 1 then k = 0 and the DS is (4, 3, 3, 2, 2, . . . , 2) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, then irrt(G) = 4n− 10.

If t = 2 then k = 1 and the DS is (4, 4, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =
∑
v∈V

dG(v) ≥ ∆G +

3(j − 1) + 2(n− j − k) + k, thus irrt(G) = 6n− 14 > 6n− 18.
If t = 3 then k = 2 and λ-transformation can be done once on G s.t. the DS of graph obtained
is (4, 4, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted by F14, thus irrt(G) ≥ irrt(F14) =
6n− 14 > 6n− 18.
Subcase (ii): If ∆G = 5, then k = 1. For k = 1 DS is (5, 3, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k and irrt(G) = 6n− 12 > 6n− 18.

Subcase (iii): If ∆G ≥ 6, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥ ∆G +

3(j − 1) + 2(n − j − k) + k and λ-transformation can be done (k − 1)−times on G till the
DS of graph obtained is (5, 3, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F15, then
irrt(G) > irrt(F15) = 6n− 12 > 6n− 18 by Lemma 2.1.
Case 2. If j ≥ 4, then consider the following subcases:
Subcase (i): If j + ∆G = 8, then k = 1. For k = 1 the DS of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1) as
2(n+ 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, thus irrt(G) = 6n− 18.

Subcase (ii): If j + ∆G ≥ 9, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and λ-transformation can be done (k − 1)−times on G till
the DS of graph obtained is (4, 3, 3, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F16,
thus irrt(G) > irrt(F16) = 6n− 18 by Lemma 2.1.

Similarly, by direct calculation, we have the following results.

Theorem 3.9. Let n ≥ 6, G ∈ ϑ2 = ϑ2(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 6 and equality holds iff (5, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (5, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 12, with equality iff the DS
of G is (5, 3, 3, 2, 2, . . . , 2, 1).

Theorem 3.10. Let n ≥ 7, G ∈ ϑ3 = ϑ3(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 16 and equality holds iff (3, 3, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (3, 3, 3, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 26, with equality iff the
DS of G is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1).
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Theorem 3.11. Let n ≥ 7, G ∈ ϑ4 = ϑ4(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 10 and equality holds iff (4, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 3, 3, 2, 2, . . . , 2) is not theDS of G, then irrt(G) ≥ 6n−18, with equality iff theDS
of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1).

4. The graphs with minimum total irregularity in Tn

By section 3 we have determined first minimum, second minimum and the third minimum total
irregularity in Tn immediately.

Theorem 4.1. Let n ≥ 7, G ∈ Tn then

(i) irrt(G) ≥ 4n− 16 and equality holds iff (3, 3, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (3, 3, 3, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 4n − 10, with equality iff the
DS of G is (4, 3, 3, 3, 2, 2, . . . , 2).

(iii) If neither (3, 3, 3, 3, 2, 2, . . . , 2) nor (4, 3, 3, 3, 2, 2, . . . , 2) is the DS of G, then irrt(G) ≥
6n− 26, with equality iff the DS of G is (3, 3, 3, 3, 2, 2, . . . , 2, 1).
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IX

Another motivation of the FitzGerald’s work is that the representation of T in I∗X is more influential than 
that of in IX (see, e.g., (FitzGerald, 2020)).

Left restriction semigroups are non-regular semigroups and are generalizations of inverse 
semigroups. They arise very naturally from partial transformation monoids in the same way that inverse 
semigroups arise from symmetric inverse monoids. Since the 1960s, left restriction semigroups 
occurred with various names and from diverse points of view in literature. For the first time in 1973, left 
restriction semigroups appeared in their own right in the paper (Trokhimenko, 1973). Also, they were 
studied in the setting of SL2 γ-semigroups in (Batbedat, 1981; Batbedat & Fountain, 1981). These 
semigroups were also studied as the idempotent connected Ehresmann semigroups in (Lawson, 1991). 
Later, left restriction semigroups arose in (Jackson & Stokes, 2001) as (left) twisted C-semigroups. In 
(Manes, 2006), they were studied as guarded semigroups, which appeared from the restriction 
categories in (Cockett & Lack, 2002). Recall that for any set X , the partial transformation monoid 
PT X becomes left restriction semigroup under the unary operation α 7→ Idom α. We also recall that left 
restriction semigroups are precisely the (2, 1)-subalgebras of some PT X . Left restriction semigroups 
were termed as weakly left E-ample semigroups—the (former) York terminology. For weakly left 
E-ample semigroups, see, e.g., (Hollings, 2007). The reader is referred to (Gould, 2010) for the history 
of (left) restriction semigroups and their basic properties.
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Abstract

In this article, we give the notion of left restriction meet-semigroup, and establish some results 
regarding atomistic left restriction semigroups. Then we discuss decompositions of (non-zero) 
semigroups with zero by proving a decomposition theorem. We also show that every atomistic left 
restriction semigroup S can be decomposed as an orthogonal sum of atomistic left restriction 
semigroups Ni, where each summand Ni is an irreducible ideal of S. Finally, properties of the 
summands Ni, when S embeds in some PT X the partial transformation monoid on a set X , are 
investigated.

Keywords: Atomistic left restriction semigroup; irreducible ideal; left restriction meet-semigroup; left 
restriction semigroup; orthogonal sum.

1. Introduction
A semigroup T is an inverse semigroup, if for all v ∈ T , there is a unique element w in T such that vwv = 
v and wvw = w. Recently, in (FitzGerald, 2020), the author presented the theory of representations of 
inverse semigroups via homomorphisms into complete atomistic inverse meet-semigroups. The class
of inverse meet-semigroups contains IX the symmetric inverse monoid on X , ∗ (the dual of IX ) 
and partial automorphism monoids of structures, namely modules, vector spaces and graphs. Some 
remarkable theorems of decompositions of various representations were proved in (FitzGerald, 2020).
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We shall make use of LR-semigroup, ALR-semigroup, LR-meet-semigroup and
CALR-meet-semigroup as the abbreviations of left restriction semigroup, atomistic left restriction
semigroup, left restriction meet-semigroup and complete atomistic left restriction meet-semigroup
respectively unless stated otherwise.

The remaining article is adorned with four more sections. In Section 2, some helpful definitions,
related facts are provided. In Section 3, the notion of LR-meet-semigroup is given, and some results
associated with ALR-semigroups are proved. Note that LR-semigroups and LR-meet-semigroups
generalize inverse semigroups and inverse meet-semigroups respectively. In Section 4, we establish a
decomposition theorem for (non-zero) semigroups with zero, and then we prove that every
ALR-semigroup S can be decomposed as an orthogonal sum of ALR-semigroups Ni, where each
summand Ni is an irreducible ideal of S. In Section 5, we explore properties of the summands Ni,
when S is an LR-subsemigroup of some PT X .

2. Preliminaries

For rudimentary notions related to semigroup theory, and Green’s relations R, L, we suggest (Howie,
1995). First, we recall generalized Green’s relations.

In (Lawson, 1991), the author introduced the generalized Green’s relations, i.e., R̃F , L̃F on a
semigroup S, where F is a subset of E(S) the set of idempotents of S. For any v, w ∈ S, R̃F can be
defined as:

v R̃F w⇐⇒
[
( ∀ f ∈ F ) fv = v⇔fw = w

]
.

The relation L̃F is defined dually. The relation R̃F (L̃F ) is an equivalence relation. Green’s relation R
(L) is left (right) compatible. On the contrary, R̃F (L̃F ) needs not be left (right) compatible. Note that
R ⊆ R̃F (L ⊆ L̃F ).

Let v ∈ S and f ∈ F . Let v R̃F f . Then as f ∈ F ,

ff = f ⇒ fv = v. (1)

Moreover, for any v ∈ S, f ∈ F ,

v R̃F f ⇐⇒ fv = v and ∀ h ∈ F [hv = v ⇒ hf = f ]. (2)

Therefore, f is the minimum element of LIv(F ), where LIv(F ) is the set of all left identities of v
belonging to F .

Let F be a semilattice (a semigroup of idempotents in which every two elements commute) such that
f, g ∈ F . If v R̃F f and v R̃F g, then f R̃F g. Since gg = g, by Equation 1, we have gf = f . Since
g R̃F f and ff = f , by Equation 1, we have fg = g. Since gf = fg, we deduce f = g. Therefore, f
is unique in the R̃F -class of v if F is a semilattice. For R̃F , L̃F , see, e.g., (Zenab, 2018).

Second, our necessity is to remind the notion of LR-semigroup and related facts. For LR-semigroups,
their right sided and two-sided versions, we prescribe (Gould, 2010; Zenab, 2018).

Definition 2.1. (Zenab, 2018) An LR-semigroup is a unary semigroup (S, ·,†) such that the unary
operation † satisfies the following identities:

v†v = v, (3)

v†w† = w†v†, (4)

(v†w)† = v†w†, (5)

vw† = (vw)†v. (6)
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If we put ES = S† = {w† | w ∈ S}, then one can check that ES is a semilattice. For every w† ∈ ES ,
(w†)† = w†. Each element of ES is called a projection of S. The set ES is known as the semilattice of
projections of S. A partial order ≤ on S is defined by the rule that for all v, w ∈ S, v ≤ w if and only
if v =v†w. This relation is the natural partial order on S, and restricts to the usual partial order on ES .
Moreover,≤ is compatible with multiplication. If V is the class of all LR-semigroups, then V is a variety
of algebras of type (2, 1). An inverse semigroup Y is an LR-semigroup, if † is defined by y† = yy−1.

Now we define LR-semigroup with zero as follows.

Definition 2.2. An LR-semigroup with zero is a unary semigroup (S, ·,†), where (S, ·) is a semigroup with
zero 0S , † is a unary operation with 0†

S
= 0S , and † satisfies Equation 3−Equation 6.

In the above definition, for all w ∈ S such that w 6= 0S , w† 6= 0S . Also, for all w ∈ S, 0S ≤ w.
An alternative characterization for LR-semigroups is given by Lemma 2.3.

Lemma 2.3. (Zenab, 2018) Suppose that (S, ·,†) is a unary semigroup. Then S is an LR-semigroup with
semilattice of projections ES if and only if

(i) ES is a semilattice;

(ii) every R̃E
S

-class has an idempotent of ES ;

(iii) R̃E
S

is a left congruence;

(iv) the left ample condition holds, i.e., for all t ∈ S, e ∈ ES , te = (te)†t.

Note that, by Lemma 2.3, the LR-semigroup S with semilattice of projections ES is a weakly left
ES -ample semigroup, and vice versa. Also, in S, for any t ∈ S, the R̃E

S
-class of t contains a unique

idempotent of ES , which we denote by t†. Then by Equation 2, t†t = t. Remember that t† is the
minimum element of LIt(ES ) the set of all left identities of t in ES . It can be observed that in S,

s R̃E
S
t⇐⇒ s† = t†. (7)

Example 2.4. (Hollings, 2007) Suppose that T is a weakly left E-ample semigroup, namely
LR-semigroup T with semilattice of projections E, and suppose that J is a non-empty set. Denote by P
the J × J identity matrix and consider the Rees matrix semigroup M := M0(T ; J, J ;P ). Define a
multiplication onM by

(j, t, k)0 = 0(j, t, k) = 00 = 0

and

(j, t, k)(l, u,m) =

{
(j, tu,m) if k = l,

0 if k 6= l.

The set of idempotents ofM is E(M) = {(j, f, j) | f ∈ E(T )} ∪ {0}. In (Hollings, 2007), Example
2.7.3 shows thatM is a weakly left E-ample semigroup such that 0† = 0 and (j, t, k)† = (j, t†, j), where
E = {(j, f, j) ∈ E(M) | f ∈ E} ∪ {0}.

Definition 2.5. (FitzGerald, 2020; Petrich, 1984) Let W be a semigroup containing zero. Let {Wλ}λ∈I
be the class of subsemigroups such that W =

⋃
λ∈I

Wλ. If for all λ, µ ∈ I with λ 6= µ, Wλ ∩Wµ =

WλWµ = {0}, then W is an orthogonal sum of subsemigroups Wλ, denoted by W =
∑
λ∈I

Wλ.

In the above definition, each Wλ is said to be a summand in the orthogonal sum W .
Next we remind the following definitions, utmost useful, and taken from (Erné & Joshi, 2015; Howie,

1995).
Let (P,≤) be a partial ordered set (poset). Then P is called a meet-semilattice if for any m,n ∈ P ,

m ∧ n (meet of m and n) exists in P . Let P = P ∪ {0} be a poset, where 0 is the least element of P .
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If 0 6= w ∈ P , then w is called an atom if w is a minimal element of P \ {0}. The set P is an atomistic
poset if for all 0 6= w ∈ P , w is a join of a set of atoms (i.e., of the set of all atoms it dominates).

In the rest of the paper, every LR-semigroup S is an LR-semigroup with zero 0S unless explicitly
stated. Denote by ES the semilattice of projections of an LR-semigroup S. Moreover, r∧s (r∨s) means
the meet (join) of a set {r, s}, while

∧
A (

∨
A) means the meet (join) of a non-empty set A.

3. Left restriction meet-semigroups

We furnish the notion of LR-meet-semigroup, and prove some results associated with ALR-semigroups.
In the beginning, let us define the following.

Definition 3.1. An LR-meet-semigroup (M, ·,† ,∧) is an LR-semigroup (M, ·,†) such that M is a meet-
semilattice with respect to (w.r.t.) the natural partial order ≤ on (M, ·,†).

In the above definition, (M,∧) is a semilattice, and for any u1, u2 ∈M ,

u1 ≤ u2 ⇐⇒ u1 ∧ u2 = u1.

Hence, ≤ is also a natural ordering on (M,∧).

Definition 3.2. A complete left restriction meet-semigroup (M, ·,† ,∧) is an LR-semigroup (M, ·,†) such
that for any ∅ 6= B ⊆M ,

∧
B exists w.r.t. ≤ on (M, ·,†).

Definition 3.3. An LR-semigroup (M, ·,†) is an ALR-semigroup ifM is an atomistic poset w.r.t. its natural
partial order.

Definition 3.4. Let (M, ·,†) be an ALR-semigroup. If for any ∅ 6= B ⊆M ,
∧
B exists w.r.t. ≤ on (M, ·,†),

then M is called a CALR-meet-semigroup.

Proposition 3.5. Let M be an ALR-semigroup with zero 0M . Let Pt† = t†Mt†, where t† ∈ EM \ {0M }.
Then

(i) Pt† is an LR-subsemigroup of M with zero, and containing an identity t†;

(ii) every non-zero element of Pt† dominates an atom of Pt†;

(iii) for all non-zero x, y ∈ Pt† such that x � y, a non-zero element k exists in Pt† such that k ≤ x
and k ∧ y = 0P

t†
;

(iv) Pt† is an ALR-subsemigroup of M with zero, and containing an identity t†.

Proof. (i) It is simple to verify that Pt† is a subsemigroup of M with zero 0P
t†

= 0M . We put 0 =

0P
t†

= 0M . It can be seen that t† is an identity element of Pt† . Now we show that Pt† is closed under
†. If d ∈ Pt† is such that d 6= 0, then t†d = d. We can write (t†d)†=d†. Since M is an LR-semigroup,
by Equation 5, we deduce t†d† = d†. Then we have d† = t†t†d†. Since projections of M commute, we
deduce d† = t†d†t†. Therefore, d† ∈ Pt† . Also, 0† = 0. So Pt† is closed under †. Hence, Pt† is an
LR-subsemigroup of M with zero, and containing an identity t†.

(ii) Let x ∈ Pt† be such that x 6= 0. Since x ∈ M and M is atomistic, there exists an atom a of M
such that a ≤ x. Since ≤ is compatible with multiplication, we obtain t†at† ≤ t†xt†. Since x ∈ Pt† , we
have t†at† ≤ x. Now we prove that t†at† is an atom of Pt† . As a ≤ x, we have t†at† = t†a†xt†. Then
t†at† = a†t†xt† = a†x = a. Since a > 0, t†at† > 0. Suppose that for all r ∈ Pt† , 0 ≤ r < t†at†. Since
a = t†at†, we have 0 ≤ r < a. Since a is an atom of M and r ∈ M , we obtain r = 0. Consequently,
t†at† is an atom of Pt† . Thus, every non-zero element of Pt† dominates an atom of Pt† .

(iii) For any non-zero v ∈ M , let Mv = {m | m is an atom of M,m ≤ v}. Let x, y ∈ Pt† be such
that x, y 6= 0 and x � y. Since x, y ∈ M , there exists an atom (a non-zero element) c ∈ M such that
c ∈ Mx and c /∈ My. Therefore, we have c ≤ x and c ∧ y = 0. Since c ≤ x, by compatibility, we
have t†ct† ≤ t†xt†. As x ∈ Pt† , we obtain t†ct† ≤ x. Now we prove that t†ct† 6= 0. Suppose that
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t†ct† = 0. As c ≤ x, we obtain t†c†xt† = 0. Then we have c†t†xt† = 0. Then c†x = 0. Therefore,
c = 0—a contradiction. Hence, t†ct† 6= 0. Next we prove that t†ct† ∧ y = 0. Certainly, one lower
bound of {t†ct†, y} is 0. If ` is any lower bound of {t†ct†, y}, then ` ≤ t†ct† and ` ≤ y. By Equation
5, (t†ct†)†c = t†(ct†)†c. By Equation 6, we have (t†ct†)†c = t†c(t†)†. Then (t†ct†)†c = t†ct†. So
t†ct† ≤ c. Since ` ≤ t†ct†, we have ` ≤ c. Since ` is the lower bound of {c, y} and c∧y = 0, we deduce
` = 0. Thus, t†ct† ∧ y = 0. Hence, for all non-zero x, y ∈ Pt† such that x � y, a non-zero element k
exists in Pt† such that k ≤ x and k ∧ y = 0.

(iv) By (i), Pt† is an LR-subsemigroup of M with zero, and containing an identity t†. Now we prove
that Pt† is atomistic. For this purpose, we show that every non-zero element of Pt† is a join of a set of
atoms of Pt† . For any non-zero x ∈ Pt† , let Px = {p | p is an atom of Pt† , p ≤ x}. We require to show
that for any non-zero x ∈ Pt† , x ≤ y, where y ∈ Pt† such that y is any upper bound of Px. On the
contrary, suppose that x � y. By (iii), there exists a non-zero c ∈ Pt† such that c ≤ x and c ∧ y = 0.
By (ii), there exists an atom p of Pt† such that p ≤ c. Then we have p ≤ x. Therefore, p ∈ Px. Since
c ∧ y = 0, we deduce p ∧ y = 0. Since p ∈ Px and y is any upper bound of Px, we deduce p ≤ y.
Since p ∧ y = 0, we have p � y—a contradiction. Hence, x ≤ y. Therefore, x =

∨
Px. Therefore, Pt†

is atomistic. Thus, Pt† is an ALR-subsemigroup of M with zero, and containing an identity t†.

Proposition 3.6. Let M be a CALR-meet-semigroup with zero 0M . Let Pt† = t†Mt†, where t† ∈ EM \
{0M }. Then Pt† is a CALR-meet-subsemigroup of M with zero, and containing an identity t†.

Proof. By Proposition 3.5 (iv), Pt† is an ALR-subsemigroup of M with zero 0P
t†

= 0M and an identity

t†. We put 0 = 0P
t†

= 0M . Let ∅ 6= B ⊆ Pt† . If 0 ∈ B, then
∧
B = 0. Suppose that 0 /∈ B.

Since Pt† ⊆ M and M is a CALR-meet-semigroup with zero, it follows that
∧
B exists in M . Let

g =
∧
B, where g ∈ M . Then for all b ∈ B, g ≤ b. Since ≤ is compatible with multiplication, we

obtain t†gt† ≤ t†bt†. Since b ∈ Pt† , we have t†gt† ≤ b. Accordingly, t†gt† is a lower bound of B,
belonging to Pt† . Let ` be any lower bound of B such that ` ∈ Pt† . Since ` ∈ M and g is a meet of B
in M , we deduce ` ≤ g. By compatibility, we have t†`t† ≤ t†gt†. Since ` ∈ Pt† , we have ` ≤ t†gt†.
Consequently, t†gt† =

∧
B. Hence, Pt† is a CALR-meet-subsemigroup of M with zero, and containing

an identity t†.

From now on, for ease of notation, for any semigroup A with zero, we will drop the subscript from
zero element 0A and write simply 0.

4. Decompositions of semigroups with zero

In this section, we prove a theorem of decomposition for (non-zero) semigroups with zero.
Let us define the following.

Definition 4.1. Let S be a semigroup with zero. Let N be a non-zero ideal of S. Then N is called
reducible if there exist non-zero ideals N1, N2 of S such that N = N1 ∪N2 and N1 ∩N2 = {0}, in this

case, we denote it by N = N1

0∐
N2; otherwise N is called irreducible.

Lemma 4.2. Let S be a semigroup with zero. Let {Ni}i∈I be a family of irreducible ideals of S. Suppose
that

⋂
i∈I

Ni 6= {0}. Then
⋃
i∈I

Ni is an irreducible ideal of S.

Proof. Clearly,
⋃
i∈I

Ni is an ideal of S. On the contrary, suppose that
⋃
i∈I

Ni = C
0∐
D such that C

and D are non-zero ideals of S. By Definition 4.1, we have
⋃
i∈I

Ni = C ∪ D and C ∩ D = {0}.

Take N0 ∈ {Ni | i ∈ I}. This implies that N0 = N0 ∩
[ ⋃
i∈I

Ni

]
. Since

⋃
i∈I

Ni = C ∪ D, we have

N0 = N0 ∩ (C ∪ D). Then we have N0 = (N0 ∩ C) ∪ (N0 ∩ D). Since N0 is irreducible, it follows
that either N0 ∩ C = {0} or N0 ∩D = {0}. Assume that N0 ∩D = {0}. Then N0 = N0 ∩ C. Then
N0 ⊆ C. Now assume that there exist i, j such that i 6= j with Ni ⊆ C and Nj ⊆ D. Then we have
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{0} 6=
⋂
i∈I

Ni ⊆ Ni ∩Nj ⊆ C ∩D = {0}—a contradiction. Then either
⋃
i∈I

Ni ⊆ C or
⋃
i∈I

Ni ⊆ D. So

either
⋃
i∈I

Ni = C or
⋃
i∈I

Ni = D. If
⋃
i∈I

Ni = C, then D = 0, which is a contradiction, or if
⋃
i∈I

Ni = D,

then C = 0—a contradiction. Thus,
⋃
i∈I

Ni is an irreducible ideal of S.

Theorem 4.3. Let S be a semigroup with zero. Then S has a unique decomposition S =
∑
i∈I

Ni, where

each Ni is an irreducible ideal of S.

Proof. We divide our proof into the following steps.
Step (1). We know that for all 0 6= x ∈ S, 〈x〉 := {x}∪xS∪Sx∪SxS is the ideal of S generated by

x. First, we need to show that 〈x〉 is irreducible. On the contrary, suppose that 〈x〉 = A
0∐
B, where A

and B are non-zero ideals of S. Then x ∈ A∪B and either x ∈ A or x ∈ B. Without loss of generality,
assume that x ∈ A. As A is an ideal of S, it follows that {x}, xS, Sx, SxS ⊆ A. Therefore, 〈x〉 ⊆ A.
Since A ∩B = {0}, we obtain B = {0}—a contradiction. Hence, 〈x〉 is irreducible.

Step (2). For all 0 6= x ∈ S, define

Ωx = {V | x ∈ V and V is an irreducible ideal of S}.

By the proof of Step (1), 〈x〉 ∈ Ωx. Therefore, Ωx 6= ∅. Let Tx =
⋃

V ∈Ωx

V . Since
⋂

V ∈Ωx

V 6= {0}, by

Lemma 4.2, Tx is an irreducible ideal of S.
Step (3). Now we show that for all x, y ∈ S, either Tx ∩ Ty = {0} or Tx = Ty. If Tx ∩ Ty = {0},

then we are done. If Tx ∩ Ty 6= {0}, then by Lemma 4.2, Tx ∪ Ty is an irreducible ideal of S. Since
x ∈ Tx∪Ty, it follows that Tx∪Ty ∈ Ωx. Since Tx =

⋃
V ∈Ωx

V , we have Tx∪Ty ⊆ Tx. As Tx ⊆ Tx∪Ty,

we obtain Tx = Tx ∪ Ty. Similarly, Ty = Tx ∪ Ty. Hence Tx = Ty.
Step (4). By the proof of Step (3), there exists an index set I such that S =

⋃
i∈I

Txi and for any

i, j ∈ I with i 6= j, Txi ∩ Txj = {0}. In particular, for i 6= j, we have TxiTxj ⊆ Txi ∩ Txj = {0}. Thus,

S =
∑
i∈I

Txi .

Step (5). Suppose that S has another decomposition S =
∑
j∈J

Mj . For all i ∈ I , Txi = Txi ∩ S =

Txi ∩
[ ⋃
j∈J

Mj

]
=

⋃
j∈J

(Txi ∩Mj). Since Txi is irreducible, it follows that there exists exactly one k ∈ J

such that
Txi ∩Mk 6= {0}. (8)

Then we have Txi = Txi ∩Mk. Then Txi ⊆ Mk. Now Mk = Mk ∩ S =
⋃
i∈I

(Mk ∩ Txi). Since Mk

is irreducible, it follows that there exists exactly one l ∈ I such that Mk ∩ Txl 6= {0}. By Equation 8,
we deduce l = i. Thus, Mk = Mk ∩ Txi . Then we have Mk ⊆ Txi . Hence Txi = Mk. The proof is
completed.

Now we explore some properties of the orthogonal sum S =
∑
i∈I

Ni as in the above theorem when S

is an LR-semigroup.

Proposition 4.4. Suppose that S is an LR-semigroup with zero, where S =
∑
i∈I

Ni, the orthogonal sum

as in Theorem 4.3. Then the following hold:

(i) every Ni is an LR-subsemigroup of S;

(ii) for all i ∈ I , 0 6= x ∈ Ni and 0 6= y ∈ S, if y ≤ x, then y ∈ Ni;

(iii) for all i ∈ I and 0 6= c ∈ Ni, c is an atom of Ni if and only if c is an atom of S;
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(iv) for all i ∈ I and 0 6= x ∈ Ni, define Ax = {c | c is an atom of S, c ≤ x} and Bx = {c |
c is an atom of Ni, c ≤ x}. Then Ax = Bx.

Proof. (i) It is clear that every Ni is a subsemigroup of S. Now we prove that every Ni is an LR-
subsemigroup of S. We need to prove that for any i ∈ I , and for any 0 6= x ∈ Ni, x† ∈ Ni. On
the contrary, suppose that for i 6= k, x† ∈ Nk. Since NkNi = {0}, we deduce x = x†x = 0—a
contradiction. Therefore, x† ∈ Ni. Also, 0† = 0. Hence, every Ni is an LR-subsemigroup of S.

(ii) On the contrary, assume that for i 6= k, y ∈ Nk. As y ≤ x, we have y = y†x. By (i), y† ∈ Nk.
Since NkNi = {0}, we deduce y = y†x = 0—a contradiction. Hence, y ∈ Ni.

(iii) Let c be any non-zero element of Ni. Suppose that c is an atom of S. Then it is clear that c is an
atom of Ni. Conversely, suppose that c is an atom of Ni. For every non-zero s ∈ S such that 0 < s ≤ c,
by (ii), s ∈ Ni. As c is an atom of Ni, it follows that s = c. Thus, c is an atom of S.

(iv) Let a ∈ Ax. Then a is an atom of S with a ≤ x. Since x ∈ Ni, by (ii), it follows that a ∈ Ni.
So a is also an atom of Ni. Therefore, a ∈ Bx. So Ax ⊆ Bx. If b ∈ Bx, then b is an atom of Ni with
b ≤ x. By (iii), b is also an atom of S. Therefore, b ∈ Ax. So Ax = Bx.

As a corollary of Theorem 4.3 and Proposition 4.4, we obtain the following theorem.

Theorem 4.5. Let S be a semigroup with zero. Let S =
∑
i∈I

Ni be as in Theorem 4.3. Then

(a) S is an LR-semigroup if and only if every Ni (i ∈ I) is an LR-semigroup;

(b) S is an ALR-semigroup if and only if every Ni (i ∈ I) is an ALR-semigroup.
In particular, every ALR-semigroup S is an orthogonal sum of ALR-subsemigroups such that each
summand is an irreducible ideal of S.

Proof. (a) If S is an LR-semigroup, then by Proposition 4.4 (i), each Ni is an LR-semigroup.
Conversely, if each Ni is an LR-semigroup, then we need to show that Equation 3−Equation 6 hold in
S. If all the letters involved lie in the same Ni for some i ∈ I , then Equation 3−Equation 6 hold. On
the other hand, in Equation 4−Equation 6, if v and w lie in Ni and Nj (i 6= j) respectively, then all the
involved products are zero. Therefore, S is an LR-semigroup.
(b) Let S be an ALR-semigroup. By (a), each Ni is an LR-semigroup. Now we show that Ni is atomistic.
For all i ∈ I and 0 6= x ∈ Ni, define Ax = {c | c is an atom of S, c ≤ x} and
Bx = {c | c is an atom of Ni, c ≤ x}. By Proposition 4.4 (iv), Ax = Bx. Since S is atomistic, it
follows that x =

∨
Ax =

∨
Bx. Hence, each Ni is an ALR-semigroup. Conversely, suppose that each

Ni is an ALR-semigroup. Then by (a), S is an LR-semigroup. For every 0 6= x ∈ S, we have x ∈ Ni for
some i ∈ I . Let Ax, Bx be as above. Then we have x =

∨
Bx =

∨
Ax. Hence, S is atomistic. The

proof is completed.

5. Properties of the Ni when S embeds in some PT X
It is known that any LR-semigroup S embeds in some PT X , which is an ALR-semigroup, and that in any
such embedding, for σ ∈ S, σ† is the identity map on the domain d(σ) of σ.

Therefore it is of interest to examine the properties of theNi when S =
∑
i∈I

Ni is an LR-subsemigroup

of PT X . Without loss of generality, we need consider only the case where the zero of S is the zero of
PT X , namely the empty partial mapping ∅. This is because of the Proposition 5.2.

Lemma 5.1. If S is an LR-subsemigroup of PT X with zero element ζ, and suppose that α ∈ S, and if
(x, y) ∈ α and x ∈ d(ζ), then x = y.

Proof. Since ζ = ζ† is the identity map on its domain, it follows that (x, y) ∈ ζ ◦ α = ζ whence
x = y.
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Proposition 5.2. If S is an LR-subsemigroup of PT X with zero element ζ, then the map

α 7→ α \ ζ

is an injective morphism of S into PT Y such that ζ 7→ ∅, where Y = X \ d(ζ).

Proof. Since ζ ≤ α, i.e., ζ ⊆ α, the map is injective, and clearly ζ 7→ ∅. Then (α\ζ)◦(β\ζ) = α◦β\ζ,
as can be shown in the usual manner, together with the aid of the Lemma 5.1.

If we put Di =
⋃
{d(α) : α ∈ Ni}, Ri =

⋃
{r(α) : α ∈ Ni} and Xi = Di ∪ Ri, then we see that

Ni is an LR-subsemigroup of PT Xi ; and Ni is irreducible since Theorem 4.3 still applies. For i 6= j, the 
sets Xi and Xj need not be disjoint, but must be distinct.

Next, if Ri ∩ Dj 6= ∅, then there are α ∈ Ni, β ∈ Nj such that αβ 6= ∅, thus, i = j. The converse is 
true since non-trivial Ni always contains a non-zero α† and d(α†) = r(α†) whence Ri ∩ Di 6= ∅.

In fact, if r(α) = d(β), then α and β are in the same component, Ni say. So if we say that α,β are Φ-
related if r(α) = d(β), and let Ψ be the smallest equivalence relation containing Φ, then Ψ must partition 
S into its irreducible components Ni.
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Abstract

Let Gw be a simple weighted graph with adjacency matrix A(Gw). The set of all eigenvalues of
A(Gw) is called the spectrum of weighted graph Gw denoted by σ(Gw). The reciprocal eigen-
value property (or property R) for a connected weighted nonsingular graph Gw is defined as, if
η ∈ σ(Gw) then 1

η
∈ σ(Gw). Further, if η and 1

η
have the same multiplicities for each η ∈ σ(Gw)

then this graph is said to have strong reciprocal eigenvalue property (or property SR). Simi-
larly, a connected weighted nonsingular graph Gw is said to have anti-reciprocal eigenvalue
property (or property −R) if η ∈ σ(Gw) then − 1

η
∈ σ(Gw). Furthermore, if η and − 1

η
have

the same multiplicities for each η ∈ σ(Gw) then strong anti-reciprocal eigenvalue property (or
property −SR) holds for the weighted graph Gw. In this article, classes of weighted noncorona
graphs satisfying property R and property −SR are studied.

Keywords: Adjacency matrix; anti-reciprocal eigenvalue property; corona graphs; strong anti-
reciprocal eigenvalue property; weighted graphs

1. Introduction

Spectral graph theory is the branch of mathematics that deals with the properties of graphs
in contact with the characteristic polynomial, eigenvectors and eigenvalues of matrices asso-
ciated with the graphs. Spectral graph theory emerged during 1950s and 1960s. Cvetković
summed up virtually all examination to date nearby (Cvetković, 1980). Later on, it was updated
by an overview of recent results in the Theory of Graph Spectra (Cvetković et al., 1988). In
2012, discrete geometric analysis was created and developed by Sunada, that dealt with spectral
graph theory in terms of discrete Laplacians associated with weighted graphs and discovered
applications in different fields, including shape investigation (Sunada, 2012). Nowadays, the
spectral graph theory has expanded to vertexvarying graphs often encountered in many real life
applications. Also, there are many simple properties of graphs that can be obtained from the
eigenvalues of the matrices e.g., the number of edges, the number of connected components
(using the adjacency matrix).
Let G be any simple connected graph comprised of the vertex set V (G) and the edge set E(G).
Two vertices are called adjacent if there is an edge between them and if one of the vertices of an
edge of a graph is a pendant vertex, the edge is said to be pendant. Let G be any graph of order
n then the adjacency matrix of the graph G is a matrix of order n× n defined as, A(G) = [nij],
where nij is the number of edges between the vertices i and j. A graph G is classified as, sin-
gular or nonsingular depending on whether its adjacency matrix is singular or nonsingular. The
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characteristic polynomial of a graph G can be written, as
f(G; t) = det(tI − A(G)) and its roots are called the eigenvalues of graph G and the set of all
eigenvalues of graph G is called the spectrum of G denoted as σ(G).
Let w be a positive weight function defined on edge set of simple connected graph G, which is
used to assign weights to the edges and W (G) is the collection of all positive weight functions
defined on the edge set of G. A graph G in which the positive weight function w is used to as-
sign weights to the edges of graph is known as weighted graph, denoted by Gw. We use V (Gw)
and E(Gw) to denote the vertex set and edge set of weighted graph Gw. Ordinary graphs can be
seen as a particular case of weighted graphs in which all the edges are assigned weight 1. An
edge between the vertices i and j is denoted by [i, j]. Let A(Gw) denotes the adjacency matrix
of weighted graph Gw, defined as

A(Gw) = [aij] =


w[i, j], if [i, j] ∈ E(Gw)

0, otherwise.

The investigation of a graph’s structure by associating different matrices to it is a long-standing
and fascinating field of study for researchers. The reader can get some initial concepts from
(Cvetković, 1980). It would be useful to take a small picture of a large graph that contains
information about the graph in a concise way. Studying the spectrum of various matrices, such
as the adjacency matrix, the Laplacian matrix, etc. that can be associated with the graph has
proven to be one of the most useful ways of doing so.
It is possible to obtain information about a graph by looking at these eigenvalues that might
otherwise be difficult to obtain. For instance, a connected graph G is bipartite if and only if −η
is an eigenvalue of G whenever η is an eigenvalue of G (Godsil & Royle, 2004). In addition η
and −η have the same multiplicites.

Definition 1.1 A connected weighted nonsingular graph Gw is said to satisfy the strong recip-
rocal eigenvalue property (or property SR) if 1

η
∈ σ(G) whenever η ∈ σ(G) and both have the

same multiplicities. Weighted Graph Gw has the reciprocal eigenvalue property (property R)
when the multiplicity constraint is removed.

Definition 1.2 A connected weighted nonsingular graph Gw is said to satisfy the strong anti-
reciprocal eigenvalue property (property −SR) if − 1

η
∈ σ(Gw) whenever η ∈ σ(Gw) and both

have the same multiplicities. Moreover, if the multiplicity constraint is removed the weighted
graph Gw is said to satisfy anti-reciprocal eigenvalue property (property −R).

Definition 1.3 A polynomial f(t) =
∑n

i=0 ait
i of degree n is called palindromic polynomial if

ai = an−i and anti-palindromic polynomial if ai = −an−i for i = 0, 1, . . . , n. Property SR is
satisfied by a polynomial f(t) if and only if it is palindromic or anti-palindromic.

(Frucht & Harary, 1970) defined the corona product of graphs which plays an important role in
constructing and characterizing graphs with reciprocal eigenvalue property.

Definition 1.4 Let L1 and L2 be two connected graphs of order n and m, respectively. The
corona product L1 ◦ L2 is a graph formed by one copy of graph L1 and n-copies of L2 and by
connecting each vertex of jth copy of L2 with the jth vertex of L1, for 1 ≤ j ≤ n.

We proceed with some previous results. In 1978, graphs with property SR were investigated
for nonsingular trees under the names symmetric property (Godsil & Mckay, 1978) and prop-
erty C (Cvetković et al., 1978). This property was renamed “property SR” by Barik et al. in
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2006, and they also introduced property R. They showed that for nonsingular trees, these two
properties are the same (Barik et al., 2006).
If specific limits on the weight function are implemented, these properties are similar for
weighted trees (Neumann & Pati, 2013), as well as a subclass of connected bipartite graphs
with unique perfect matching (Panda & Pati, 2015). In general, however, these properties are
not identical (Panda & Pati, 2016).
In 2012, J. D. Lagrange investigated property −SR first time for the zero-divisor graphs of
finite commutative rings with non-zero divisors (Lagrange, 2012).
Authors investigated (Bapat et al., 2016) that if G is a connected bipartite graph having a unique
perfect matching M , then weighted graph Gw satisfies property SR, for all w ∈ W (G) if and
only if G is corona.
(Hameed & Ahmad, 2020) analyzed noncorona graphs with zero diagonal entries of the inverse
of their adjacency matrix and a single perfect matching, and discovered that they do not meet
property −SR even for a single weight function w.
Property −SR for the class of connected simple weighted graphs having unique perfect match-
ing M , denoted by GM , was investigated by (Ahmad et al., 2020). They showed that the
weighted graph Gw satisfies property −SR for all w ∈ W (G) if and only if G is corona. They
also verified property −SR for some families of noncorona graphs (Ahmad et al., 2021) and
authors of (Barik et al., 2021) further generalized these families. They constructed the classes
of noncorona graphs by taking a connected corona graph M and by joining each vertex of finite
number of copies of corona cycles of different finite length to non-pendant vertices of M , in
such a way that no corona cycle is attached to more than one non-pendant vertex.
Until now, the properties R and −SR are not studied for weighted noncorona graphs. So, the
question arises ‘are there any weighted noncorona graphs with these eigenvalue properties?’
With the required properties, we constructed families of weighted noncorona graphs. In Sec-
tion 2, a family of weighted noncorona graphs satisfying property R and in Section 3 two family
of weighted noncorona graphs satisfying property −SR are constructed. Throughout the paper
simple and undirected graphs will be discussed and ei is the standard unit vector whose i-th
entry is equal to 1. Following Lemma gives necessary and sufficient condition for a polynomial
to satisfy property −SR.

Lemma 1.1 (Ahmad et al., 2020) A polynomial f(t) =
∑2n

i=0 ait
i satisfies property −SR if

and only if

a2n−i =


ai, if i and n have the same parity,

−ai, otherwise.
i = 0, 1, 2, . . . , 2n.

Lemma 1.2 and Lemma 1.3 on determinant and inverse of a block matrix involving the Schur
complement are used in the proofs of our main results.

Lemma 1.2 (Bapat, 2010) If A is a block matrix i.e, A =

[
K L
M N

]
where K and N are

square matrices. Then

det(A) =


det(K)det(N −MK−1L), if K is invertible

det(N)det(K − LN−1M), if N is invertible.
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Lemma 1.3 (Bapat, 2010) If A is a block matrix and A =

[
K L
M N

]
where K and N are

square matrices and N is invertible. Then A is invertible if and only if the Schur complement of
N is invertible i.e, AN = K − LN−1M is invertible, and

A−1 =

[
A−1

N −A−1
N LN−1

−NMA−1
N N−1 +N−1MA−1

N LN−1

]
.

The Lemma 1.4 is used in the proof of Theorem 3.1.

Lemma 1.4 (Barik et al., 2021) Let G be a regular graph of order m and regularity r, and
G1 = G ◦K1. Then

1t(tI2m − A(G1))
−11 =

(2t− r + 2)m

t2 − rt− 1
.

2. Weighted noncorona graphs satisfying property R
In this Section, we construct a class of weighted noncorona graphs which satisfy property R
but not property SR. In (Panda, 2016) and (Panda & Pati, 2016), authors constructed a class
of unweighted noncorona graphs satisfying property R. Now the question arises that ‘is it
possible to assign weights to some edges so that this class still satisfies property R?’ To answer
this question, we assign weights to some particular edges of the family of unweighted graphs
constructed in (Panda, 2016) and (Panda & Pati, 2016). The new family of weighted noncorna
graphs with property R is as follows.
Consider one copy of P4, join every vertex of this copy to a new vertex a and name graph as Ǵ

Fig. 1. Graph Ǵ

as shown in Figure 1. Now take k (k ≥ 1) copies of P4 named as P 1
4 , P

2
4 , . . . , P

k
4 . With the help

of Ǵ and these k copies of P4 construct a family ℵ of weighted noncorona graphs in which each
weighted graph Hk

w is created by joining every non-pendant vertex in the k copies of P4 to the
vertex a and assigning weights wi > 0 to the joining edges of a and each P i

4 for i = 1, 2, . . . , k
respectively and then add a new vertex b at a. The edges in all k copies of P4 and Ǵ are assigned
weight 1. A weighted noncorona graph H2

w belonging to this family is shown in Figure 2.
The following result proves that weighted noncorona graph Hk

w ∈ ℵ satisfies property R but
not SR.

Theorem 2.1 The weighted noncorna graph Hk
w ∈ ℵ satisfies property R but not SR.

Proof:
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Fig. 2. Weighted noncorona graph H2
w

The adjacency matrix A(Hk
w) of the graph Hk

w can be written, as

A(Hk
w) =


A(Ǵ) e1 w1K5,4 · · · wkK5,4

et1 0 0t · · · 0t

w1K
t
5,4 0 A(P 1

4 ) · · · O
...

...
... . . . ...

wkK
t
5,4 0 O · · · A(P k

4 )

 ,

where

K5,4 =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Suppose that

B =

 tI4 − A(P 1
4 ) · · · O

... . . . ...
O · · · tI4 − A(P k

4 )

 .

Then the characteristic polynomial of Hk
w can be written, as

f(Hk
w; t) = det(tI − A(Hk

w))

= det


tI5 − A(Ǵ) −e1 −w1K5,4 · · · −wkK5,4

−et1 t 0t · · · 0t

−w1K
t
5,4 0 tI4 − A(P 1

4 ) · · · O
...

...
... . . . ...

−wkK
t
5,4 0 O · · · tI4 − A(P k

4 )

 ,

using Lemma 1.2

= det(B)det
([

tI5 − A(Ǵ) −e1
−et1 t

]
−

[
−w1K5,4 · · · −wkK5,4

0t · · · 0t

]

B−1

 −w1K
t
5,4 0

...
...

−wkK
t
5,4 0


 ,
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where

B−1 =

 (tI4 − A(P 1
4 ))

−1 · · · O
... . . . ...
O · · · (tI4 − A(P k

4 ))
−1

 ,

and

(tI4 − A(P4))
−1 =

1

t4 − 3t2 + 1


(t2 − 1)t t2 t2 − 1 t

t2 (t2 − 1)t t t2 − 1
t2 − 1 t t(t2 − 2) 1

t t2 − 1 1 t(t2 − 2)

 .

Thus,

f(Hk
w; t) = (

∏k
i=1 f(P4; t)) det

([
tI5 − A(Ǵ) −e1

−et1 t

]
−
[

2t
t2−t−1

∑k
i=1 w

2
iK5,5 0

0t 0

])
= (t4 − 3t2 + 1)k det

([
tI5 − A(Ǵ)− 2t

t2−t−1

∑k
i=1 w

2
iK5,5 −e1

−et1 t

])
= (t2 − t− 1)k(t2 + t− 1)k(t4 − t3 − 2(

∑k
i=1 w

2
i + 3)t2 − t+ 1)(t2 + t− 1).

Here notice that, {1.618033,−0.618033} are the roots of polynomial (t2−t−1) then {0.618033 =
1

1.618033
,−1.618033 = 1

−0.618033
} are the roots of polynomial (t2 + t − 1) and the polynomial

(t4− t3−2(
∑k

i=1 w
2
i +3)t2− t+1) is palindromic as a result this polynomial satisfies property

SR. However, because f(Hk
w; t) has an additional factor (t2 + t − 1), we can see that every

eigenvalue of Hk
w has its reciprocal as an eigenvalue of Hk

w but multiplicities are different so
weighted noncorna graph Hk

w satisfies property R but not SR.
Following example is an illustration of the weighted noncorna graph belonging to the family ℵ,
it can be seen from Table 1 that weighted noncorona graph H2

w satisfies property R but not SR.

Example 2.1 The weighted noncorna graph H2
w, is shown in Figure 2. The eigenvalues of H2

w,
their reciprocals and their multiplicities are given in the following Table:

Table 1. Eigenvalues of H2
w, their reciprocals and their multiplicities

Sr. No. η Multiplicity of η 1
η

Multiplicity of 1
η

1 -2.61803 1 -0.38196 1
2 -1.61803 3 -0.61803 2
3 -0.61803 2 -1.61803 3
4 -0.38196 1 -2.61803 1
5 0.26794 1 3.73205 1
6 0.61803 3 1.61803 2
7 1.61803 2 0.61803 3
8 3.73205 1 0.26794 1

3. Weighted noncorona graphs satisfying property −SR
In this Section, some classes of weighted noncorona graphs are constructed which satisfy prop-
erty −SR. Consider a connected weighted graph Gw, w > 0 of order n and G1

w = Gw ◦K1 be
its weighted corona graph in which pendant edges are assigned weight 1. Let F p = Cp ◦K1 be
corona cycle where Cp is a cycle of order p, p ≥ 3. Now, with the help of weighted graph G1

w

and corona cycles with edges assigned weight 1, we construct families of weighted noncorona
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graphs as follows:
Take a copy weighted graph of G1

w and k corona cycles F p1
1 , F p2

2 , . . . , F pk
k (where pi’s not nec-

essarily same, for i = 1, 2, . . . , k) with edges assigned weight 1. Consider any number of
non-pendant vertices v1, v2, . . . , vl, (1 ≤ l ≤ n) of weighted graph G1

w. Join each vj, (j ≤ l) to
all the vertices of each corona cycle F pi

i , i = 1, 2, . . . , k. Assign weight wi to the edges joining
a cycle F pi

i , (i = 1, 2, . . . , k) to all the vertices v1, v2, . . . , vl and name this weighted graph as
S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

as shown in Figure 3. We denote the family containing all weighted noncorona

graphs S(p1,p2,...,pk;l)
(w1,w2,...,wk)

by G. Now, instead of assigning weight wi to the edges joining a cycle F pi
i ,

(i = 1, 2, . . . , k) to all the vertices v1, v2, . . . , vl, if we assign weight wj to the edges joining
the vertex vj to each corona cycle for j = 1, 2, . . . , l we obtain a new weighted graph named
as, S(p1,p2,...,pk;l)

(w1;w2;...;wl)
as shown in Figure 5. We denote the family containing all weighted noncorona

graphs S(p1,p2,...,pk;l)
(w1;w2;...;wl)

by H.

Fig. 3. Weighted graph U , weighted corona graph U1
w and S

(4,5;2)
(3.5,6.5).

Observation 3.1 For a weighted corona graph G1
w of order 2n, the sum of first n × n entries

of cofactor matrix of tI − A(G1
w) can be written, as

n∑
i=1

n∑
j=1

(−1)i+jCij = ctkg(t),

where c is any constant and g(t) is a polynomial of degree 2n − 2k, 1 ≤ k ≤ n, satisfying
property −SR. Then note that f(t) + c tkg(t) also satisfies property −SR, where f(t) is the
characteristic polynomial of the weighted corona graph G1

w of weighted graph Gw and g(t) is
the polynomial obtained from the sum of first n×n entries of the cofactor matrix of tI−A(G1

w).

We can see this observation with the help of Example 3.1.

Fig. 4. Weighted graph Zw and its weighted corona graph Z1
w
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Example 3.1 Consider a connected weighted graph Zw of order n = 4 and its corona graph
as shown in the Figure 4. Then characteristic polynomial of Z1

w = Zw ◦K1 can be determined,
as
f(Z1

w; t) = det(tI − A(Z1
w)) = t8 − 34t6 − 48t5 + 82t4 + 48t3 − 34t2 + 1.

We can see that it is a polynomial of order 2n = 8 which satisfies property −SR as Z1
w is

weighted corona graph. Now the sum of first 4× 4 entries of cofactor matrix of tI−A(Z1
w) can

be written, as
tg(t) = 4t7 + 20t6 − 10t5 − 88t4 + 10t3 + 20t2 − 4t

= 2t(2t6 + 10t5 − 5t4 − 44t3 + 5t2 + 10t− 2),

which satisfies property −SR by Lemma 1.1.
Now

f(t) + tg(t) = t8 + 4t7 − 14t6 − 58t5 − 6t4 + 58t3 − 14t2 − 4t+ 1,

which also satisfies property −SR by Lemma 1.1.

By Laplace expansion, we can easily obtain the following result.

Lemma 3.1 Let A be any 2n× 2n matrix, then

det(A+

[
Jn On

On On

]
) = det(A) +

n∑
i=1

n∑
j=1

(−1)(i+j)det(A[i, j]),

where Jn is the matrix of ones, On is the matrix of zeros and A[i, j] is the sub-matrix of matrix
A obtained by deleting ith row and jth column.

The following result proves that weighted noncorona graph S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

satisfies property −SR.

Theorem 3.1 The weighted noncorona graph S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

∈ G for 1 ≤ l ≤ n satisfies prop-
erty −SR.

Proof:
The adjacency matrix A(S

(p1,p2,...,pk;l)
(w1,w2,...,wk)

) of the weighted noncorona graph S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

can be
written, as

A(S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

) =


A(Gw) In w1Nn,2p1 · · · wkNn,2pk

In O O · · · O
w1N

t
n,2p1

O A(F p1
1 ) · · · O

...
...

... . . . ...
wkN

t
n,2pk

O O · · · A(F pk
k )

 ,

where Nn,2pk =

[
Jl,2pk

On−l,2pk

]
for 1 ≤ l ≤ n is a block matrix in which Jl,2pk is the matrix with

all entries 1 of order l × 2pk and On−l,2pk is the Null matrix of order (n − l) × 2pk. Let us
suppose that

D =

 tI2p1 − A(F p1
1 ) · · · O

... . . . ...
O · · · tI2pk − A(F pk

k )

 .
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Then the characteristic polynomial of S(p1,p2,...,pk;l)
(w1,w2,...,wk)

can be written, as

f(S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

; t) = det(tI − A(S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

))

= det


tIn − A(Gw) −In −w1Nn,2p1 · · · −wkNn,2pk

−In O O · · · O
−w1N

t
n,2p1

O tI2p1 − A(F p1
1 ) · · · O

...
...

... . . . ...
−wkN

t
n,2pk

O O · · · tI2pk − A(F pk
k )

 ,

using Lemma 1.2

= det(D)det

([
tIn − A(Gw) −In

−In tIn

]
−
[
−w1Nn,2p1 · · · −wkNn,2pk

O · · · O

]

D−1

 −w1N
t
n,2p1

O
...

...
−wkN

t
n,2pk

O




= (
∏k

i=1 f(F
pi
i ; t)) det

([
tIn − A(Gw) −In

−In tIn

]
−
[ ∑k

i=1 w
2
i 1tD−11Nn O
O O

])
.

Now, from Lemma 1.4,

1tD−11 =
2t

t2 − 2t− 1

k∑
i=1

pi,

Thus,

= (
∏k

i=1 f(F
pi
i ; t)) det

([
tIn − A(Gw) −In

−In tIn

]
−
[

2t
t2−2t−1

∑k
i=i piw

2
i Nn O

O O

])
= (

∏k
i=1 f(F

pi
i ; t)) det((tI2n − A(G1

w)) +

[
aNn O
O O

]
), where a = − 2t

t2−2t−1

∑k
i=1 piw

2
i .

Now by using Lemma 3.1

= (
∏k

i=1 f(F
pi
i ; t))[ det(tI2n − A(G1

w)) + a
∑l

i=1

∑l
j=1(−1)i+j det((tI2n − A(G1

w)[i, j])],

and by Observation 3.1

f(S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

; t) =

∏k
i=1 f(F

pi
i ; t)

t2 − 2t− 1
(f(t) + ctkg(t)),

where f(t) = (t2 − 2t − 1)f(Gw ◦ K1; t) satisfies property −SR and by Observation 3.1,
f(t) + ctkg(t) satisfies property −SR also for i = 1, 2, . . . k, f(F

pi
i ;t)

(t2−2t−1)
satisfies property −SR.

Thus, f(S(p1,p2,...,pk;l)
(w1,w2,...,wk)

; t) satisfies property −SR.

Following example is an illustration of the weighted noncorona graph S
(4,5;2)
(3.5,6.5) for p1 = 4, p2 =

5, w1 = 3.5, w2 = 6.5 and l = 2 , it can be seen from Table 2 that weighted noncorona graph
S
(4,5;2)
(3.5,6.5) satisfies property −SR.

Example 3.2 Let Mw be any connected weighted graph of order 4 and M1
w = Mw ◦ K1 be

its weighted corona graph in which pendant edge has weight 1 as shown in Figure 3. Now,
construct the weighted noncorona graph S

(4,5;2)
(3.5,6.5) by using M1

w and the corona cycles F 4
1 and
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Fig. 5. Weighted noncorona graph S
(4,5;3)
(0.5;1.5;2.5) in which red edges are assigned weight 0.5,

yellow edges are assigned weight 1.5 and purple edges are assigned weight 2.5.

F 5
2 , as shown in Figure 3. The weights assigned to the joining edges of corona cycles F 4

1 , F 5
2

to 2 selected vertices of Mw are 3.5 and 6.5 represented by green and blue edges respectively.
The eigenvalues of S(4,5;2)

(3.5,6.5) and with their multiplicities are mentioned in the following table.

Table 2. Eigenvalues of S(4,5;2)
(3.5,6.5), their reciprocals and their multiplicities

Sr. No. η multiplicity of η − 1
η

multiplicity of − 1
η

1 -42.194 1 0.0237 1
2 -7.2208 1 0.13849 1
3 -2.4142 1 0.41421 1
4 -2.0953 2 0.47726 2
5 -1 2 1 2
6 -0.99623 1 1.0038 1
7 -0.73764 2 1.3557 2
8 -0.41421 1 2.4142 1
9 -0.2936 1 3.4060 1

10 -0.020767 1 48.154 1
11 0.0237 1 -42.194 1
12 0.13849 1 -7.2208 1
13 0.41421 1 -2.4142 1
14 0.47726 2 -2.0953 2
15 1 2 -1 2
16 1.0038 1 -0.99623 1
17 1.3557 2 -0.73764 2
18 2.4142 1 -0.41421 1
19 3.4060 1 -0.2936 1
20 48.154 1 -0.020767 1

The following theorem can be proved with the same strategy as in Theorem 3.1.

Theorem 3.2 Weighted noncorona graph S
(p1,p2,...,pk;l)
(w1;w2;...;wl)

satisfies property −SR.
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4. Conclusion

In this article, we constructed three classes of weighted noncorona graphs namely ℵ, G and H
which satisfy property R or −SR. The family of weighted noncorona ℵ satisfies property R
but not SR. The other two families G and H satisfy property −SR .
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Recovery of coefficients of a heat equation by Ritz collocation method
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Abstract

In this work, we discuss a one dimensional inverse problem for the heat equation where the unknown
functions are solely time-dependent lower order coefficient and multiplicative source term. We use as
data two integral overdetermination conditions along with the initial and Dirichlet boundary conditions.
In the first step, the lower order term is eliminated by applying a transformation and the problem is
converted to an equivalent inverse problem of determining a heat source with initial and boundary con-
ditions, as well as a nonlocal energy over-specification. Then, we propose a Ritz approximation as the
solution of the unknown temperature distribution and consider a truncated series as the approximation of
unknown time-dependent coefficient in the heat source. The collocation method is utilized to reduce the
inverse problem to the solution of a linear system of algebraic equations. Since the problem is ill-posed,
numerical discretization of the reformulated problem may produce ill-conditioned system of equations.
Therefore, the Tikhonov regularization technique is employed in order to obtain stable solutions. For
the perturbed measurements, we employ the mollification method to derive stable numerical derivatives.
Numerical simulations while solving two test examples are presented to show the applicability of the
proposed method.

Keywords: Inverse coefficient problem; mollification method; parabolic equation; Ritz approximation;
Tikhonov regularization

1. Introduction

In this paper, we consider the inverse problem of finding
(
u(x, t), c(t), d(t)

)
in the parabolic equation

(Shekarpaz & Azari, 2018)

ut − a(x, t)uxx + b(x, t)ux + c(t)u = d(t)g(x, t), (x, t) ∈ Q, (1)

with the initial condition
u(x, 0) = u0(x), −L < x < L, (2)

boundary conditions
u(−L, t) = u(L, t) = 0, 0 < t < T, (3)

and subject to the integral over-specifications of the functions ω1(x)u(x, t) and ω2(x)u(x, t) over the
spatial domain (energy over-specifications)∫ L

−L
ω1(x)u(x, t)dx = µ1(t), t ∈ [0, T ], (4)

∫ L

−L
ω2(x)u(x, t)dx = µ2(t), t ∈ [0, T ], (5)
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where Q = [−L,L] × [0, T ] and a(x, t), b(x, t), g(x, t), µ1(t), µ2(t), u0(x), ω1(x), ω2(x) are
given functions with appropriate conditions. The additional Equations 4-5 are interpreted as the measure-
ments of function u(x, t) by sensor averaging over the segment [−L,L] of space variable. Furthermore,
we assume that the following compatibility conditions hold:

u0(−L) = u0(L) = 0,

∫ L

−L
ω1(x)u0(x)dx = µ1(0),

∫ L

−L
ω2(x)u0(x)dx = µ2(0). (6)

Integral overdetermination conditions are employed to establish an integral or integro-differential equa-
tion of the Fredholm or Volterra type and then the analysis of the existence, uniqueness and continuous
dependence of the solution is given for the new reformulated problem. The properties of the kernel func-
tions ω1(x) and ω2(x) included in the integral boundary conditions can directly affect the solvability
constraints of the problem and further may complicate the application of the numerical techniques to
obtain accurate solutions.

As a special class of the inverse problems, the inverse coefficient problems (ICPs) appear in studying
various physical phenomena in order to determine some unknown properties of a region in parabolic and
hyperbolic equations. The unknown coefficients can be a function of only time variable if the spatial
change in the solution of the direct problem is small in comparison with the change in time (see (De-
hghan & Shamsi, 2006; Shamsi & Dehghan, 2012) and (Shamsi & Dehghan, 2006) and many references
therein). Moreover, if the property of the medium under study does not change rapidly, the unknown
coefficient can be space-wise dependent solely (Liao, 2011). However, in the general form it depends on
the solution of the direct problem (Rashedi, 2021; Samarskii & Vabishchevich, 2008).

Although the ICPs in the heat equations are well-studied, the particular problem of determining mul-
tiple unknown time-dependent coefficients in heat transfer is less investigated (Hussein & Lesnic, 2014;
Lesnic et al., 2016). In (Ivanchov & Pabyrivs’ka , 2001) and (Ivanchov & Pabyrivs’ka , 2002), the au-
thors established conditions for the existence and uniqueness of a solution of the inverse problems for a
parabolic equation with two unknown time-dependent coefficients. In (Hussein et al., 2014), the authors
investigated the numerical approximation of time-dependent thermal conductivity and convection coef-
ficients in a one-dimensional parabolic equation from boundary temperature and heat flux. In (Huntul
et al., 2017), the authors studied simultaneous reconstruction of time-dependent coefficients including
the thermal conductivity, convection or absorption coefficients in the parabolic heat equation from heat
moments. In (Lingde et al., 2017), the authors studied an inverse problem of the simultaneous determi-
nation of the right-hand side and the lowest coefficients in parabolic equations and proposed linearized
approximations in time using the fully implicit scheme and standard finite difference procedures in space.

In (Shekarpaz & Azari, 2018), a numerical approach based on the forward finite difference and
backward finite difference methods was presented for solving the problem given by Equations 1-5. Even
though this approach is effective for solving various kinds of partial differential equations, the high
computational cost of FD schemes is a difficulty of this method. Moreover, they can often achieve only
two or three digits of accuracy (Dehghan & Shamsi, 2006; Shamsi & Dehghan, 2012, 2006). In this paper
we use a collocation technique (Canuto et al., 2006; Jahangiri et al., 2016) to provide more accurate and
stable numerical solution for the inverse problem 1-5.

The organization of this article is as follows. In Section 2, we review theoretical results concerning
the uniqueness of the solution for the inverse problem 1-5 and use new variables to derive the equivalent
problem. Section 3, presents the application of Ritz collocation method to the solution of the reformu-
lated problem. In Section 4, some numerical examples are presented to demonstrate the effectiveness of
the proposed method. In Section 5, we present some concluding remarks.

2. Uniqueness

In (Kamynin, 2015), the authors established the situations under which the system of Equations 1-5
possesses a unique solution.

Theorem 2.1 Suppose that all the functions appearing in the Equations 1-5 are measurable and the
compatibility conditions of Equation 6 among the boundary and initial conditions hold. Moreover, as-
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sume that there exist the constants

C1a, C2a, Cu0 , Cg, Cω1 , Cω2 , Cµ1 , Cµ2 > 0, C∗a , C
∗∗
a , Cb, C

∗
b , C

∗
ω1
, C∗∗ω1

, C∗ω2
, C∗∗ω2

, C∗µ1 , C
∗
µ2 ≥ 0,

subject to

• ∀ (x, t) ∈ Q, C1a ≤ a(x, t) ≤ C2a, |ax(x, t)| ≤ C∗a , |axx(x, t)| ≤ C∗∗a ,

• ∀ (x, t) ∈ Q, |b(x, t)| ≤ Cb, |bx(x, t)| ≤ C∗b , |g(x, t)| ≤ Cg,

• ∀ x ∈ [−L,L], |ω1(x)| ≤ Cω1 , |ω′1(x)| ≤ C∗ω1
, |ω′′1(x)| ≤ C∗∗ω1

, ω1(∓L) = 0,

ω1(x) ∈W 2
2 ([−L,L]),

• ∀ x ∈ [−L,L], |ω2(x)| ≤ Cω2 , |ω′2(x)| ≤ C∗ω2
, |ω′′2(x)| ≤ C∗∗ω2

, ω2(∓L) = 0,

ω2(x) ∈W 2
2 ([−L,L]),

• ∀ x ∈ [−L,L], |u0(x)| ≤ Cu0 , u0(x) ∈W 1
2 ([−L,L]),

• ∀ t ∈ [0, T ], |µ1(t)| ≤ Cµ1 , |µ′1(t)| ≤ C∗µ1 , |µ2(t)| ≤ Cµ2 , |µ′2(t)| ≤ C∗µ2 ,

and denoting Gω1(t) :=
∫ L
−L g(x, t)ω1(x)dx, Gω2(t) :=

∫ L
−L g(x, t)ω2(x)dx, then there exists C∆

such that if

∀ t ∈ [0, T ], Det

(
µ1(t) −Gω1(t)
µ2(t) −Gω2(t)

)
≥ C∆ > 0,

then, the inverse problem given by Equations 1-5 has a unique solution.

Proof. Please refer to (Kamynin, 2015; Shekarpaz & Azari, 2018).
Next, we employ a method to transform problem 1-5 into a problem of finding an unknown heat

source from one additional measurement. Let

v(x, t) = r(t)u(x, t), r(t) = e
∫ t
0
c(z)dz, (7)

then, applying transformation 7 in Equations 1-5 results the following system of equations

vt − a(x, t)vxx + b(x, t)vx = r(t)d(t)g(x, t), (x, t) ∈ Q, (8)

v(x, 0) = u0(x), −L < x < L, (9)

v(−L, t) = v(L, t) = 0, 0 < t < T, (10)∫ L

−L
ω1(x)v(x, t)dx = µ1(t)r(t), t ∈ [0, T ], (11)

∫ L

−L
ω2(x)v(x, t)dx = µ2(t)r(t), t ∈ [0, T ]. (12)

The unknown function r(t) can be disappeared in Equations 11-12 if either one of the functions µ1(t)
or µ2(t) is nonzero on the interval [0, T ]. Without loss of generality, we assume that ∀ t ∈ [0, T ], µ1(t) 6=
0. From Equation 11 we have

r(t) =

∫ L
−L ω1(x)v(x, t)dx

µ1(t)
, (13)

which by substituting the Equation 13 in Equation 12, the following equation is achieved:∫ L

−L
ω2(x)v(x, t)dx =

µ2(t)

µ1(t)

∫ L

−L
ω1(x)v(x, t)dx, t ∈ [0, T ]. (14)
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Now by defining
H(t) := r(t)d(t), (15)

the main problem is reduced to the simplified problem of identifying
(
v(x, t), H(t)

)
using the following

system of equations

vt − a(x, t)vxx + b(x, t)vx = H(t)g(x, t), (x, t) ∈ Q, (16)

v(x, 0) = u0(x), −L < x < L, (17)

v(−L, t) = v(L, t) = 0, 0 < t < T, (18)

and

µ2(t)

∫ L

−L
ω1(x)v(x, t)dx− µ1(t)

∫ L

−L
ω2(x)v(x, t)dx = 0, t ∈ [0, T ]. (19)

Theorem 2.2 Assume that at least one of the functions µ1(t) or µ2(t) is nonzero over the interval [0, T ].
Then, the problems given by Equations 1-5 and 16-19 are equivalent.

Proof. Obviously, if
(
u(x, t), c(t), d(t)

)
is a solution of problem 1-5, then from Equations 7

and 15,
(
v(x, t), H(t)

)
is a sloution of problem 16-19. Conversely, assuming that

(
v(x, t), H(t)

)
is a

solution of problem 16-19, the function r(t) is verified from Equation 13 provided that µ1(t) 6= 0. Then,

Equation 15 yields d(t) = H(t)
r(t) . Utilizing Equation 7 and differentiating r(t) = e

∫ t
0
c(z)dz with respect

to t we get

c(t) =
r′(t)

r(t)
, u(x, t) =

v(x, t)

r(t)
. (20)

Therefore, we will consider problem 16-19 instead of problem 1-5.

3. Solution method

Suppose that Pm(z), m = 0, 1, 2, 3, ... denote the well-known Legendre polynomials of order m which
are defined on the interval [−1, 1] and can be determined via the following recurrence formula:

P0(z) = 1, P1(z) = z, Pm+1(z) =
2m+ 1

m+ 1
zPm(z)− m

m+ 1
Pm−1(z), m = 1, 2, 3, ....

Then, we consider φi(x) := Pi(
x
L) as the shifted Legendre polynomial of degree i in the interval [−L,L]

and ψj(t) := Pj(
2t
T − 1) as the shifted Legendre polynomial of degree j in the interval [0, T ]. The Ritz

approximation vN,N ′(x, t) based on polynomial basis functions is sought in the form of the following
truncated series

vN,N ′(x, t) =
N∑
i=0

N ′∑
j=0

cijt(x+ L)(x− L)φi(x)ψj(t) + u0(x), (21)

and the approximation of H(t) is considered as

HN ′′(t) =
N ′′∑
j=0

αjψj(t). (22)

Substituting the approximations vN,N ′(x, t) andHN ′′(t) in Equations 16 and 19 respectively, the follow-
ing residual functions are constructed

Res1(x, t) =
N∑
i=0

N ′∑
j=0

cij

{
(x2−L2)φi(x)(ψj(t)+tψ

′
j(t))−a(x, t)ψj(t)

(
2φi(x)+(x2−L2)φi

′′(x) (23)
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+4xφ′i(x)

)
+b(x, t)

(
2xφi(x)+(x2−L2)φ′i(x)

)}
−
N ′′∑
i=0

αig(x, t)ψi(t)+b(x, t)u′0(x)−a(x, t)u
′′
0(x),

(24)

Res2(t) =
N∑
i=0

N ′∑
j=0

cijt

{
µ2(t)ψj(t)∆

∗
i − µ1(t)ψj(t)∆

∗∗
i

}
+ µ2(t)µ1(0)− µ1(t)µ2(0), (25)

where

∆∗i =

∫ L

−L
ω1(x)φi(x)dx, ∆∗∗i =

∫ L

−L
ω2(x)φi(x)dx.

Collocating the residual functions Res1(xi, tj) = 0 and Res2(t∗k) = 0 at the points

(xi, tj) =

(
(2i− 2−N)L

N + 2
,

jT

N ′ + 2

)
, t∗k =

kT

N ′′ + 2
i = 1, N + 1, j = 1, N ′ + 1, k = 1, N ′′ + 1,

(26)
forms a linear system of algebraic equations

AC = g, (27)

where C is the vector of unknown constants cij , αk. Generally, A is an ill-conditioned matrix, therefore
we require using regularization techniques to obtain stable solution. Hence, instead of Equation 27,
according to the Tikhonov regularization method we solve the modified system of equations

(AtrA+ λI)c = Atrg, (28)

where I is the identity matrix, Atr denotes the transpose of the matrix A and λ > 0 is the regularization
parameter (Hansen, 1992). Therefore, the approximations of functions v(x, t) and H(t) are specified.

It is worthy to note that the approximation given by Equation 21 satisfies the initial and boundary
conditions 17-18 exactly, provided that the compatibility conditions of Equation 6 hold. Thus by in-
creasing the parameters N , N ′ and N ′′, if the residual functions Res1(x, t), Res2(t) −→ 0, then the
Equations 16 and 19 are satisfied and the approximations vN,N ′(x, t) and HN ′′(t) converge to the exact
solutions v(x, t) and H(t), respectively.

In the following, we consider the approximation of the function r(t) as

GN,N ′(t) :=

∫ L
−L ω1(x)vN,N ′(x, t)dx

µ1(t)
, (29)

and calculate the approximation of the unknown functions c(t), d(t) and u(x, t) in two different situa-
tions.

Case 1: Suppose that all the initial and boundary conditions 17-19 are given accurately. By substi-
tuting the approximations 22 and 29 in Equations 15 and 20, the following approximations are obtained

capprox(t) =

d
dt

(
GN,N ′(t)

)
GN,N ′(t)

, dapprox(t) =
HN ′′(t)

GN,N ′(t)
, uapprox(x, t) =

vN,N ′(x, t)

GN,N ′(t)
. (30)

Case 2: In real applications, due to the presence of inaccuracies in the input data we need to perform the
regularization procedure to deal with the derivative of the perturbed data such as G′(t) since it involves
perturbed function µ′1(t). Therefore, regarding the perturbed boundary data, let µσ1 (t) and GσN,N ′(t) =∫ L
−L ω1(x)vN,N′ (x,t)dx

µσ1 (t) be perturbations such that

max{‖GσN,N ′(t)−G(t)‖∞, ‖µ1(t)− µσ1 (t)‖∞} ≤ σ.
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Then, we employ the mollification method of (Murio, 1993) by taking into account the Gaussian mollifier

Fδ(t) =
exp(− t

2

δ2
)

δ
√
π

where δ > 0 is the radius of mollification. The mollification of the perturbed data
(GσN,N ′(t))

′ is performed using the convolution{
Fδ ∗ (GσN,N ′)

′
}

(t) :=

∫ +∞

−∞
Fδ(r)(G

σ
N,N ′)

′(t− r)dr. (31)

We use {
Fδ ∗ (GσN,N ′)

′
}

(t) =

{
F
′
δ ∗ (GσN,N ′)

}
(t), (32)

such that for a given δ > 0 the function
{
F
′
δ ∗(GσN,N ′)

}
(t) is calculated numerically using the mid-point

integration rule, that is

{
F
′
δ ∗ (GσN,N ′)

}
(t) ' π

mδ

mδ−1∑
i=0

Q(t,−π
2

+
πi

mδ
+

π

2mδ
), Q(t, r) = F

′
δ(tan r)GσN,N ′(t− tan r) sec2 r.

(33)
Then, we consider the following

(GσN,N ′)
′(t) =

{
F
′
δ ∗ (GσN,N ′)

}
(t) '

N ′′∑
i=0

βδ,σi ψi(t), (34)

and consequently

(GσN,N ′)(t) '
N ′′∑
i=0

βδ,σi

∫ t

0
ψi(z)dz +GσN,N ′(0), GσN,N ′(0) ≈

∫ L
−L ω1(x)u0(x)dx

µσ1 (0)
. (35)

The strategy given by Equations 32-35 is admissible if for small value ε > 0, and the appropriate given
values δ and mδ we find

‖
N ′′∑
i=0

βδ,σi

∫ t

0
ψi(z)dz +

∫ L
−L ω1(x)u0(x)dx

µσ1 (0)
−
∫ L
−L ω1(x)vN,N ′(x, t)dx

µσ1 (t)
‖∞ ≤ ε. (36)

If so, the approximate solution for c(t) is given by

capprox(t) =
µσ1 (t)

∑N ′′
i=0 β

δ,σ
i ψi(t)∫ L

−L ω1(x)vN,N ′(x, t)dx
, (37)

and the approximations of u(x, t) and d(t) are derived as follows

dapprox(t) =
HN ′′(t)

GσN,N ′(t)
, uapprox(x, t) =

vN,N ′(x, t)

GσN,N ′(t)
. (38)

4. Numerical experiments

To test the applicability of the proposed technique, we solve two examples. The notations

E(u(x, t)) = |uexact(x, t)− uapprox(x, t)|, E(d(t)) = |dexact(t)− dapprox(t)|

and
E(c(t)) = |cexact(t)− capprox(t)|,
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Fig. 1. Representation of the exact (blue line) and approximate solutions for c(t) obtained by applying
the proposed method with N = N ′ = N ′′ = 5 and λ = 10−5, δ = 0.01, mδ = 600, ε = 0.25 in the
presence of the perturbed boundary data subject to different values of σ, i.e. + + +: corresponding to
σ = 1× 10−2, ♦♦♦: corresponding to σ = 3× 10−2, ◦ ◦ ◦: corresponding to σ = 6× 10−2, discussed
in Example 4.0.2.

Table 1. The results of l2-norm of functions Res1(x, t) and Res2(t) and the relative root-mean square
error for functions c(t), d(t) and u(x, t) with M = 50, discussed in Example 4.0.1.

(N,N ′, N ′′) ‖Res1(x, t)‖2 ‖Res2(t)‖2 RRMSE(c) RRMSE(d) RRMSE(u)

(6, 6, 4) 8.2× 10−1 1.3× 10−4 2.6× 10−2 1.3× 10−3 2.2× 10−3

(8, 8, 5) 1.9× 10−1 3.9× 10−5 2.4× 10−3 6.4× 10−4 6.4× 10−4

(9, 9, 6) 3.1× 10−2 8.83× 10−7 5× 10−4 8× 10−5 1.2× 10−4

(10, 10, 7) 6× 10−3 6.86× 10−7 7.4× 10−5 1.72× 10−5 1.3× 10−5

are defined as the absolute error for functions u(x, t), d(t) and c(t) respectively. Moreover, we define
the relative root-mean square error for functions c(t), d(t) and u(x, t) as follows

RRMSE(c) :=

√√√√∑M
i=0E

2(c( iTM ))∑M
i=0 c

2( iTM )
, RRMSE(d) :=

√√√√∑M
i=0E

2(d( iTM ))∑M
i=0 d

2( iTM )
,

RRMSE(u) :=

√√√√∑M
i,j=0E

2(u(2Li
M − L,

jT
M ))∑M

i,j=0 u
2(2Li

M − L,
jT
M )

.

Throughout this work, we select the regularization parameters λ by applying the L-Curve criterion
(Hansen, 1992) and find the appropriate values for δ and mδ by trial and error. Numerical implementa-
tion is carried out with Wolfram Mathematica software in a personal computer.
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Table 2. The results of the infinity norm of errors for the approximations of unknown functions c(t), d(t)
and u(x, t) in the presence of exact boundary data, discussed in Example 4.0.1.

(N,N ′, N ′′) ‖E(c(t))‖∞ ‖E(d(t))‖∞ ‖E(u(x, t))‖∞ λ

(6, 6, 4) 6.9× 10−2 5.8× 10−3 8.5× 10−3 10−11

(8, 8, 5) 3.61× 10−3 3.87× 10−3 4× 10−3 10−12

(9, 9, 6) 7.1× 10−4 3.9× 10−4 8.7× 10−4 10−13

(10, 10, 7) 5× 10−5 5.3× 10−5 5.7× 10−5 10−13

4.0.1 Example 1
Consider the inverse problem

ut − xtuxx + (x2 + t2)ux + c(t)u = d(t)g(x, t), in [−1, 1]× [0, 1], (39)

where

g(x, t) = sin(πx)ex
(

1 + e−t
2

+ (t2 + x2)− tx(1− π2)

)
+ π cos(πx)ex(t− x)2,

with initial condition
u0(x) = ex sin(πx), −1 ≤ x ≤ 1, (40)

and homogeneous boundary conditions

u(−1, t) = u(1, t) = 0, 0 ≤ t ≤ 1, (41)

and overspecifications

∫ 1

−1
(1− x2)u(x, t)dx =

2πet−1

(
5 + π2 + e2(−1 + 3π2)

)
(1 + π2)3

, (42)

and

∫ 1

−1
x2(x2−1)u(x, t)dx =

−2πet−1

(
125− 89π2 − 25π4 − 3π6 + e2(−25 + 101π2 − 59π4 + 7π6)

)
(1 + π2)5

.

(43)
The exact solutions of this problem are

c(t) = e−t
2
, d(t) = et, u(x, t) = et+x sin(πx).

We solve the problem by applying the numerical scheme discussed in Section 3 in the presence of exact
boundary data and use the approximations given by Equation 30. The results for relative root-mean
square error for functions c(t), d(t) and u(x, t) together with l2-norm of fuctionsRes1(x, t) andRes2(t)
are presented in Table 1. Moreover, in Tables 2-3 we report the infinity norm and l2-norm of errors for
the approximations of unknown functions c(t), d(t) and u(x, t) per different number of basis functions
which indicate that the accuracy is improved by increasing the number of basis functions.
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Table 3. The results of the l2-norm of errors for the approximations of unknown functions c(t), d(t) and
u(x, t) in the presence of exact boundary data, discussed in Example 4.0.1.

(N,N ′, N ′′) ‖E(c(t))‖2 ‖E(d(t))‖2 ‖E(u(x, t))‖2 λ

(6, 6, 4) 2× 10−2 2.4× 10−3 4.9× 10−3 10−11

(8, 8, 5) 1.81× 10−3 1.07× 10−3 1.4× 10−3 10−12

(9, 9, 6) 3.8× 10−4 1.3× 10−4 2.7× 10−4 10−13

(10, 10, 7) 5.2× 10−5 2.8× 10−5 3× 10−5 10−13

Table 4. The results of the infinity norm of errors for the approximations of unknown functions c(t), d(t)
and u(x, t) in the presence of exact boundary data, discussed in Example 4.0.2.

(N,N ′, N ′′) ‖E(c(t))‖∞ ‖E(d(t))‖∞ ‖E(u(x, t))‖∞ λ

(4, 4, 4) 0.051 0.056 0.024 10−4

(6, 6, 5) 0.0034 0.0027 0.0009 10−6

(8, 8, 6) 0.0001 0.00067 0.00021 10−9

(10, 10, 7) 2× 10−6 1.1× 10−7 1.6× 10−5 10−11

Table 5. The results of l2-norm of functions Res1(x, t) and Res2(t) and the relative root-mean square
error for functions c(t), d(t) and u(x, t) with M = 50, discussed in Example 4.0.2.

(N,N ′, N ′′) ‖Res1(x, t)‖2 ‖Res2(t)‖2 RRMSE(c) RRMSE(d) RRMSE(u)

(4, 4, 4) 1.9× 10−1 2.54× 10−3 2.4× 10−2 7.2× 10−3 2× 10−3

(6, 6, 5) 1.8× 10−2 5.2× 10−5 1.51× 10−3 3.3× 10−4 1.4× 10−4

(8, 8, 6) 1.09× 10−3 1.6× 10−5 6× 10−4 6.7× 10−5 1.2× 10−5

(10, 10, 7) 5.03× 10−5 1.58× 10−6 2.24× 10−6 6.9× 10−6 7.7× 10−7
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Fig. 2. Representation of the exact (blue line) and approximate solutions for d(t) obtained by applying
the proposed method with N = N ′ = N ′′ = 5 and λ = 10−5, δ = 0.01, mδ = 600, ε = 0.25 in the
presence of the perturbed boundary data subject to different values of σ, i.e. + + +: corresponding to
σ = 1× 10−2, ♦♦♦: corresponding to σ = 3× 10−2, ◦ ◦ ◦: corresponding to σ = 6× 10−2, discussed
in Example 4.0.2.

4.0.2 Example 2
Consider (Shekarpaz & Azari, 2018) the problem given by Equations 1-5 defined over the bounded

domain Q = [−1, 1]× [0, 1] with the following properties:

a(x, t) = 1, b(x, t) = 1, g(x, t) = −2t+ (π2 − 2t) cos(πx) + t(2− t)(1 + cos(πx)), (44)

u0(x) = 1 + cos(πx), ω1(x) = 1 + x2, ω2(x) = 1− x, µ1(t) = (
8

3
− 4

π2
)et, µ2(t) = 2et, (45)

and the exact solutions

c(t) = −1− t2, d(t) = et, u(x, t) = et(cos(πx) + 1).

By using the approximations 30 presented in Section 3 with different valuesN, N ′, N ′′, we produce the
results tabulated in Tables 4-5. From the numerical findings it can be seen that the infinity norm of errors
as well as the relative root-mean square errors are decreased as the number of basis functions increases
gradually which indicate that our method is convergent. Next, we study the numerical stability of the
solution with respect to the boundary conditions. Thus, we generate the perturbed boundary data using
the following rules (Kirsch, 2011)

µσ1 (t) = µ1(t) + σ sin(
t

σ2
), σ = r × 10−2, r ∈ N, (46)

µσ2 (t) = µ2(t) + σ sin(
t

σ2
), σ = r × 10−2, r ∈ N. (47)

By employing the investigated method with N = N ′ = N ′′ = 5 and σ ∈ {1, 3, 6}×10−2 and taking the
approximations 37 and 38, we obtain the results as shown in Figures 1-2. From the illustrations, it can
be seen that the performance of the method is good and the proposed technique finds the stable solution
while the amount of noise tends to zero. Indeed, the fair agreement between the exact and approximate
solutions holds since the errors imposed to the additional data and propagated with the approximations
are of the same order.
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5. Conclusion

This article gives a stable numerical solution of an inverse coefficient problem in the one-dimensional
heat equation from integral overdetermination conditions. By utilizing new variables, the main problem
is converted to a problem of reconstructing an unknown heat source from one additional measurement.
We propose a Ritz approximation as the solution of the unknown temperature distribution and consider
some truncated series as the approximation of unknown time-dependent function in the heat source.
Then, the collocation technique is employed to reduce the inverse problem to the solution of algebraic
equations. We take advantage of the mollification method to derive the stable numerical derivatives and
solve the ill-conditioned system of equations by using the Tikhonov regularization technique in order
to obtain the stable solutions. Following the numerical simulations, it is confirmed that our method
proposes a robust approach in dealing with introduced artificial errors in the input boundary data and
performs quite well in the presence of exact boundary data since the approximate solutions converge to
the exact solutions numerically. Compared to the results presented in (Shekarpaz & Azari, 2018), it can
be observed that the algorithm proposed in the present paper yields better results because of providing
higher accuracy with lower computational cost. This technique can be extended to solve similar problems
in higher dimensions.
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Abstract 

Let 𝐺 be a connected graph with Steiner number 𝑠(𝐺). A decomposition 𝜋 = {𝐺!, 𝐺", … , 𝐺#} is said 
to be a Steiner decomposition if 𝑠(𝐺$) = 𝑠(𝐺)	for all 𝑖	(1 ≤ 𝑖 ≤ 𝑛). The maximum cardinality 
obtained for the Steiner decomposition 𝜋 of 𝐺 is called the Steiner decomposition number of 𝐺 and 
is denoted by 𝜋%&(𝐺). In this paper we present a relation between Steiner decomposition number and 
independence number of 𝐺. Steiner decomposition number for some power of paths are discussed. It 
is also shown that given any pair 𝑚, 𝑛 of positive integers with 𝑚 ≥ 2 there exists a connected graph 
𝐺 such that 𝑠(𝐺) = 𝑚 and 𝜋%&(𝐺) = 𝑛. 

Keywords: Independence number; power of path; realization theorem; steiner decomposition 
number; steiner number.  

1. Introduction 

All graphs considered in this paper are connected, simple and undirected. For basic graph theoretic 
terminologies we refer to (Harary, 1988). The concept of Steiner number of a graph is introduced by 
Chartrand and Zhang (Chartrand & Zhang, 2002). Let 𝐺 be a connected graph. For a set 𝑊 ⊆ 𝑉(𝐺), 
a tree 𝑇 contained in 𝐺 is a Steiner tree with respect to 𝑊 if 𝑇 is a tree of minimum order with 𝑊 ⊆
𝑉(𝑇). The set 𝑆(𝑊) consists of all vertices in 𝐺 that lie on some Steiner tree with respect to 𝑊. The 
set 𝑊 is a Steiner set for 𝐺 if 𝑆(𝑊) = 𝑉(𝐺). The minimum cardinality among the Steiner sets of 𝐺 
is the Steiner number 𝑠(𝐺). Steiner concept is considered to be the extension of geodesic concept and 
hence it provides a new way to study the structure of graphs based on distance. Further investigation 
on this concept is seen in the works (Pelayo, 2004; Hernando et al., 2005; Yero & Rodriguez-
Velazquez, 2015). 

    Decomposition of graphs is considered as one of the most prominent areas of research 
because of its significant contribution towards Structural graph theory and Combinatorics. A 
decomposition of graph 𝐺 is the collection of connected edge disjoint subgraphs 𝐺!, 𝐺", … , 𝐺# such 
that 𝐸(𝐺!) ∪ 𝐸(𝐺") ∪ …	∪ 𝐸(𝐺#) = 𝐸(𝐺). In literature, different types of decomposition of graph 
have been studied by imposing conditions on the subgraphs 𝐺$ such as decompositions given in 
(Merly & Jothi, 2018; Romero-Valencia et al., 2019). A parameter called decomposition number is 
also studied along with the decomposition techniques. Some of these parameters are found in 
(Nagarajan et al., 2009; Abraham & Hamid, 2010; Arumugam et al., 2013; John & Stalin, 2021). 
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Motivated by the results and applications of the decomposition parameters stated in those papers, we 
introduced a new decomposition technique called Steiner decomposition of graphs (Merly & Mahiba, 
2021a) and initiated the study of the parameter Steiner decomposition number of graphs. In (Merly 
& Mahiba, 2021b), Steiner decomposition number of Complete 𝑛 − Sun graph is presented. A Steiner 
decomposition is a decomposition 𝜋 = {𝐺!, 𝐺", … , 𝐺#} such that 	𝑠(𝐺$) = 𝑠(𝐺), (1 ≤ 𝑖 ≤ 𝑛). The 
maximum cardinality of a Steiner decomposition 𝜋 is called the Steiner decomposition number of 𝐺 
and is denoted as 𝜋%&(𝐺). A graph 𝐺 is said to be Steiner decomposable graph if 𝜋%&(𝐺) ≥ 2. A graph 
𝐺 is said to be non Steiner decomposable graph if 𝜋%&(𝐺) = 1. 

    For a connected graph 𝐺, a set 𝑆 ⊆ 𝑉(𝐺) is said to be an independent set of 𝐺 if no two 
vertices of 𝑆 are adjacent in 𝐺. An independent set 𝑆 is said to be maximum if 𝐺 has no independent 
set 𝑆' with |𝑆'| > |𝑆|. The cardinality of the maximum independent set is called the independence 
number of 𝐺 and is denoted by 𝛼(𝐺). In a connected graph 𝐺, a vertex of degree one is said to be 
pendant vertex and a vertex whose removal makes the graph disconnected is said to be cutvertex. Let 
𝐺! = (𝑉!, 𝐸!) and 𝐺" = (𝑉", 𝐸") be two simple graphs. The union of 𝐺! and 𝐺" denoted by 𝐺! ∪ 𝐺" 
is the graph with vertex set 𝑉! ∪ 𝑉" and edge set 𝐸! ∪ 𝐸". Star graph 𝐾!,# is a tree of order 𝑛 + 1 with 
one vertex having degree 𝑛 and all other vertices having degree one. Bistar denoted by 𝐵),#(𝑚, 𝑛 ≥
2) is a graph obtained by joining the central vertices of star graphs 𝐾!,) and 𝐾!,# with an edge. A 
spider tree is a tree with atmost one vertex of degree ≥ 3 and the vertex of degree ≥ 3 is called as 
branch vertex. A leg of spider tree is a path from the branch vertex to a pendant vertex of the tree. 
𝑆#(𝑚) denote a spider tree of 𝑛 legs with one leg having length 𝑚 ≥ 2 and other (𝑛 − 1)	 legs having 
length one. 𝑈*(𝑘) denote a unicyclic graph created from the cycle 𝐶* by attaching 𝑘 pendant vertices 
to a vertex of 𝐶*. 𝑈*(𝑘!, 𝑘") denote a unicyclic graph created from the cycle 𝐶* by attaching 𝑘! 
pendant vertices to a vertex of 𝐶* and attaching 𝑘" pendant vertices to another vertex of 𝐶*. 

2. Main Results 

In this section we derive a relation between 𝜋%&(𝐺) and 𝛼(𝐺). 

Theorem 2.1. (Merly & Mahiba, 2021a) For any graph 𝐺 with 𝑞 edges, 𝑠(𝐺) = 2 if and only if 
𝜋%&(𝐺) = 𝑞. 

Theorem 2.2. (Merly & Mahiba, 2021a) For any Steiner decomposable graph 𝐺 with 𝑠(𝐺) ≥ 3, 
𝜋%&(𝐺) ≤ F +

%(-)
G. 

Theorem 2.3. (Merly & Mahiba, 2021a) Let 𝐺 be a connected graph of size 𝑞. 

a) For any Steiner decomposable graph 𝐺 with 𝑠(𝐺) > 3, 𝜋%&(𝐺) =
+

%(-)
 if and only if 𝐺$ =

𝐾!,%(-)	∀	𝑖. 
b) For any Steiner decomposable graph 𝐺 with 𝑠(𝐺) = 3, 𝜋%&(𝐺) =

+
*
 if and only if 𝐺$ = 𝐾!,* or 

𝐾*	∀	𝑖. 
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Theorem 2.4. Let 𝐺 be a connected graph such that |𝑉(𝐺)| = 𝑝, |𝐸(𝐺)| = 𝑞 and 𝑠(𝐺) ≥ 4. If 
𝜋%&(𝐺) =

+
%(-)

 then 𝛼(𝐺) ≥ |𝑉(𝐺) − 𝑆| where 𝑆 is the collection of cutvertices of all the subgraphs 

in the Steiner decomposition of maximum cardinality. 

Proof. Let 𝐺 be a connected graph on 𝑝 vertices, 𝑞 edges and Steiner number 𝑠(𝐺) ≥ 4. Assume 
𝜋%&(𝐺) =

+
%(-)

. This implies that 𝜋 = {𝐺$ = 𝐾!,%(-) ∕ 1 ≤ 𝑖 ≤ +
%(-)

} is the Steiner decomposition of

maximum cardinality for 𝐺. Let 𝑆 be the collection of all cutvertices of 𝐺$ , 1 ≤ 𝑖 ≤ +
%(-)

. Any pair of

vertices in 𝑉(𝐺) − 𝑆 is non adjacent in 𝐺, if not it contradicts 𝜋 is a decomposition for 𝐺. Therefore 
𝑉(𝐺) − 𝑆 is an independent set and hence 𝛼(𝐺) ≥ |𝑉(𝐺) − 𝑆|.  

Corollary 2.5. Let 𝐺 be a connected graph with 𝑝 > +
%(-)

. Then 𝜋%&(𝐺) ≠
+

%(-)
if 𝛼(𝐺) < 𝑝 − +

%(-)
.

Proof. Assume 𝛼(𝐺) < 𝑝 − +
%(-)

. To prove 𝜋%&(𝐺) ≠
+

%(-)
. Suppose 𝜋%&(𝐺) =

+
%(-)

 then 𝜋 =

{𝐺!, 𝐺", … , 𝐺 !
"($)
} is a Steiner decomposition for 𝐺. By the above theorem, 𝛼(𝐺) ≥ |𝑉(𝐺) − 𝑆| where 

𝑆 is the collection of all cutvertices in the decomposition 𝜋. Since 𝑝 > +
%(-)

	 , |𝑆| ≤ +
%(-)

.

𝛼(𝐺) ≥ |𝑉(𝐺) − 𝑆| 

	= |𝑉(𝐺)| − |𝑆| (𝑠𝑖𝑛𝑐𝑒	𝑉(𝐺) ⊇ 𝑆) 

 = 𝑝 − |𝑆| 

 ≥ 𝑝 − +
%(-)

  

which is a contradiction to our assumption. Therefore 𝜋%&(𝐺) ≠
+

%(-)
.

3. Steiner decomposition of power of path

Definition 3.1. (Lin et al., 2011) The 𝑘&/ power of the graph 𝐺 denoted by 𝐺0 has the same vertex 
set as 𝐺 and two distinct vertices 𝑢 and 𝑣 of 𝐺 are adjacent in 𝐺0 if and only if their distance in 𝐺 is 
atmost 𝑘. 

Definition 3.2. Let 𝐺 be a simple graph. For 𝑆 ⊂ 𝑉(𝐺), graph 𝐺 − 𝑆 is obtained by removing each 
vertex of 𝑆 and all its associated incident edges from 𝐺. For 𝑇 ⊂ 𝐸(𝐺), 𝐺 − 𝑇 denote the graph 
obtained from 𝐺 by deleting each edge of  𝑇. 

Let 𝑃#1! denote the path of order 𝑛 + 1.	𝑃#1!0  denote the 𝑘&/ power of path 𝑃#1!. The number of 

edges of the graph 𝑃#1!0  is 𝑘 U(𝑛 + 1) − V01!
"
WX. If 𝑘 ≥ 𝑛 then 𝑃#1!0  is the complete graph on 𝑛 + 1 

vertices. We proved that complete graph is non Steiner decomposable graph (Merly & Mahiba, 
2021a). Hence in this section we consider only the graphs 𝑃#1!0  where 2 ≤ 𝑘 < 𝑛 for our discussion. 
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Theorem 3.3. (AbuGhneim et al., 2014) If 𝑛 = 𝑞𝑘 + 𝑟 where 𝑞 is a positive integer and 0 < 𝑟 ≤ 𝑘, 
then 𝑠[𝑃#1!0 \ = 𝑟 + 1. 

Result 3.4. If 𝑃#1!0  is the graph with 𝑛 = 𝑞𝑘 + 1 then 𝜋%&[𝑃#1!0 \ = 0
"
(2𝑛 − 𝑘 + 1).

    Since 𝑛 = 𝑞𝑘 + 1, 𝑠[𝑃#1!0 \ = 2. By theorem 2.1, the result is attained. 

Result 3.5. For 𝑃)00  where 𝑚 > 1, 𝑠[𝑃)00 \ = 𝑘. 

    Since 𝑚𝑘 − 1 = (𝑚 − 1)𝑘 + (𝑘 − 1) by theorem 3.3, 𝑠[𝑃)00 \ = 𝑘. 

Lemma 3.6. 𝛼[𝑃#1!0 \ = ^#1!
01!

_. 

Proof. Let 𝑉[𝑃#1!0 \ = {𝑣!, 𝑣", … , 𝑣#1!}. Let 𝑉2 = `𝑣(23!)012 , 𝑣(23!)0121!, … , 𝑣2012a, 1 ≤ 𝑗 ≤

^#1!
01!

_ − 1 and 𝑉4&'()'(5
= c𝑣64&'()'(53!7014

&'(
)'(5

, 𝑣64&'()'(53!7014
&'(
)'(51!

, … , 𝑣#1!d. We have, e𝑉2e = 𝑘 + 1, 1 ≤

𝑗 ≤ ^#1!
01!

_ − 1 and f𝑉4&'()'(

subsets 𝑉2, 1 ≤ 𝑗 ≤ ^#1!
01! )'( )'(

f ≤ 𝑘 + 1. Generate the set 𝑆 by choosing the first vertex from the vertex 
5

_. The set thus formed will be 𝑆 = c𝑣!, 𝑣01", 𝑣"01*, … , 𝑣6	4&'(53!7014&'(5d. 

For any two distinct vertices of 𝑆, their distance in 𝑃#1! is atleast 𝑘 + 1 and so they are non adjacent 
in 𝑃#1!0 . Therefore 𝑆 is an independent set. Suppose there exists an independent set 𝑆' with |𝑆'| > |𝑆| 
then atleast two vertices of 𝑆' belong to the same vertex subset 𝑉)	(say). In 𝑃#1!0 , any pair of vertices 

of 𝑉2, 1 ≤ 𝑗 ≤ ^#1!
01!

_ is adjacent. This contradicts that 𝑆' is an independent set. Hence 𝑆 is a maximum 

independent set. Thus 𝛼[𝑃#1!0 \ = ^#1!
01!

_. 

    Throughout the section we consider the vertex set of 𝐺 = 𝑃#1!0  as 𝑉(𝐺) = {𝑣!, 𝑣", … , 𝑣#1!}. 
Define the set 𝐴$ for 1 ≤ 𝑖 ≤ 𝑛 as 𝐴$ = `𝑣$12 1⁄ ≤ 𝑗 ≤ 𝑘, 𝑖 + 𝑗 ≤ 𝑛 + 1a. Construct the 
decomposition 𝜓 = {𝐻!, 𝐻", … , 𝐻#} such that 𝐻$, 1 ≤ 𝑖 ≤ 𝑛 is a star graph with cut vertex as 𝑣$ and 
the vertices of 𝐴$ as pendant vertices. Construction of the subgraphs 𝐻$ ∈ 𝜓, 1 ≤ 𝑖 ≤ 𝑛 is shown in 
figure 1. By making necessary alterations on 𝐻$’s belonging to 𝜓, we obtain the desired Steiner 
decomposition. 
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Theorem 3.7. For the graph 𝐺 = 𝑃)00  with 𝑘 = 2𝑛, 𝑛 > 1, 𝜋%&(𝐺) = 𝑚𝑘 − 𝑛 − 1. 

Proof. Let 𝐺 = 𝑃)00  and 𝑘 = 2𝑛, 𝑛 > 1. The decomposition 𝜓 can be reframed and written as 𝜓 =
{𝐻!, 𝐻", … , 𝐻)03*#3!} ∪ {𝐻)03*#, 𝐻)03*#1!, … , 𝐻)03"#3!} ∪
{𝐻)03"#, 𝐻)03"#1!, … , 𝐻)03#3!} ∪ {𝐻)03#, 𝐻)03#1!, … , 𝐻)03!}. 

Let us define 𝐺%∗ = 𝐻)03*#1% ∪ 𝐻)03#1%, 0 ≤ 𝑠 ≤ 𝑛 − 2. Let 𝑉'(𝐺%∗) ⊂ 𝑉(𝐺%∗), 0 ≤ 𝑠 ≤ 𝑛 − 2 such 
that 𝑉'(𝐺%∗) = {𝑣)03"#1(%1!), 𝑣)03"#1(%1"), … , 𝑣)03"#1(#3!)}.  

To obtain the Steiner decomposition of the graph, define 

𝐺: = 𝐻: , 1 ≤ 𝑙 ≤ 𝑚𝑘 − 3𝑛 − 1 

	𝐺)03*#1% = 𝐺%∗ − 𝑉'(𝐺%∗), 0 ≤ 𝑠 ≤ 𝑛 − 2 

	𝐺)03"#3! = 𝐻)03"#3! ∪ 𝐻)03! 
 𝐺)03"# = 𝐻)03"# 

Construct 𝐺)03"#1; , 1 ≤ 𝑟 ≤ 𝑛 − 1 from the graph 𝐻)03"#1; by attaching the edges removed from 
𝐺%∗, 0 ≤ 𝑠 ≤ 𝑛 − 2 in the process of constructing 𝐺)03*#1%, 0 ≤ 𝑠 ≤ 𝑛 − 2 with one of the end vertex 
as 𝑣)03"#1;. 

Consider the decomposition of 𝑃)00 , 𝑘 even as 𝜋 = {𝐺:/	1 ≤ 𝑙 ≤ 𝑚𝑘 − 3𝑛 − 1} ∪ {𝐺)03*#1%/	0 ≤
𝑠 ≤ 𝑛 − 2} ∪ {𝐺)03"#3!, 𝐺)03"#} ∪ {𝐺)03"#1;/	1 ≤ 𝑟 ≤ 𝑛 − 1}. 

𝐺: , 𝐺)03"# ≅ 𝐾!,0 , 1 ≤ 𝑙 ≤ 𝑚𝑘 − 3𝑛 − 1 

𝐺)03"#3! ≅ 𝑆0(2) 

𝐺)03*#1% ≅ 𝐵#1%,#3%, 0 ≤ 𝑠 ≤ 𝑛 − 2 
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𝐺)03"#1; ≅ 𝐾!,0 , 1 ≤ 𝑟 ≤ 𝑛 − 1 

By the result 3.5, Steiner number of 𝐺 is 𝑘. Since 𝑠[𝐾!,0\ = 𝑠[𝑆0(2)\ = 𝑘 and 𝑠[𝐵#1%,#3%\ = 2𝑛 =
𝑘, decomposition 𝜋 = {𝐺!, 𝐺", … , 𝐺)03#3!} is a Steiner decomposition for 𝐺. Now to prove 
𝜋%&(𝐺) = 𝑚𝑘 − 𝑛 − 1. By theorem 2.2, 𝜋%&(𝐺) ≤ F +

%(-)
G. On calculating the value of F +

%(-)
G, 

   F +
%(-)

G = F𝑚𝑘 − V01!
"
WG 

= F")03(01!)
"

G 

											= ")03(01!)3!
"

					(𝑠𝑖𝑛𝑐𝑒	2𝑚𝑘 − (𝑘 + 1)	𝑖𝑠	𝑜𝑑𝑑) 

= <)#3("#1!)3!
"

 

= 2𝑚𝑛 − 𝑛 − 1 

= 𝑚𝑘 − 𝑛 − 1 

= 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦	𝑜𝑓	𝜋 

Therefore 𝜋 is a Steiner decomposition of maximum cardinality for 𝐺 and so 𝜋%&(𝐺) = 𝑚𝑘 − 𝑛 − 1. 

Theorem 3.8. Let 𝐺 = 𝑃)00 .		If 𝑘 is odd and 1 < 𝑚 < 01!
"

 then 𝜋%&(𝐺) = 𝑚𝑘 − 𝑛 − 1.

Proof. Let	𝐺 = 𝑃)00 , where 𝑘 = 2𝑛 − 1, 𝑛 ≥ 3	and 1 < 𝑚 < 01!
"
. The decomposition 𝜓 can be 

reframed and written as 𝜓 = {𝐻!, 𝐻", … , 𝐻)03*#} ∪ {𝐻)03*#1!, 𝐻)03*#1", … , 𝐻)03"#3"} ∪
{𝐻)03"#3!, 𝐻)03"#, 𝐻)03"#1!} ∪ {𝐻)03"#1", 𝐻)03"#1*, … , 𝐻)03#3!} ∪
{𝐻)03#, 𝐻)03#1!, … , 𝐻)03*, 𝐻)03", 𝐻)03!}. 

Let us define 𝐺%∗ = 𝐻)03*#1(%1!) ∪ 𝐻)03#1%, 0 ≤ 𝑠 ≤ 𝑛 − 3. Let 𝑉'(𝐺%∗) ⊂ 𝑉(𝐺%∗), 0 ≤ 𝑠 ≤ 𝑛 − 3 
such that 𝑉'(𝐺%∗) = {𝑣)03*#1(%1"), 𝑣)03*#1(%1*), … , 𝑣)03"#3!, 𝑣)03#3(%1!)}.  

To obtain the Steiner decomposition of the graph, define 

𝐺: = 𝐻: , 1 ≤ 𝑙 ≤ 𝑚𝑘 − 3𝑛 

  𝐺)03*#1(%1!) = 𝐺%∗ − 𝑉'(𝐺%∗), 0 ≤ 𝑠 ≤ 𝑛 − 3 

								𝐺)03"#3! = 𝐻)03"#3! 
								𝐺)03"# = 𝐻)03"# ∪ 𝐻)03" 

																																																														𝐺)03"#1! = 𝐻)03"#1! ∪ 𝐻)03! 

Let 𝐸′(𝐺%∗), 0≤ 𝑠 ≤ 𝑛 − 3	be the set of edges removed from 𝐸(𝐺%∗) while constructing 𝐺)03*#1(%1!). 
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Construct 𝐺)03#3(%1!), 0 ≤ 𝑠 ≤ 𝑛 − 3 from the graph 𝐻)03#3(%1!) by attaching the edges in the set  
𝐸′(𝐺%∗). 

Consider the decomposition of  𝐺 as 𝜋 = {𝐺:/	1 ≤ 𝑙 ≤ 𝑚𝑘 − 3𝑛} ∪ `𝐺)03*#1(%1!)/	0 ≤ 𝑠 ≤ 𝑛 −
3a ∪ {𝐺)03"#3!, 𝐺)03"#, 𝐺)03"#1!} ∪ `𝐺)03#3(%1!)/	0 ≤ 𝑠 ≤ 𝑛 − 3a. 

𝐺: , 𝐺)03"#3! ≅ 𝐾!,0 , 1 ≤ 𝑙 ≤ 𝑚𝑘 − 3𝑛 

									𝐺)03"# ≅ 𝑈*(1, 𝑘 − 2) 

																																																										𝐺)03"#1! ≅ 𝑈*(𝑘 − 2) 

𝐺)03*#1(%1!) ≅ 𝐵#3%,#3!1%, 0 ≤ 𝑠 ≤ 𝑛 − 3 

																																																						𝐺)03#3(%1!) ≅ 𝐵#3(%1"),#1(%1!), 0 ≤ 𝑠 ≤ 𝑛 − 4 

 𝐺)03"#1" ≅ 𝑆0(2) 

Since 𝑠[𝐾!,0\ = 𝑠[𝑈*(1, 𝑘 − 2)\ = 𝑠[𝑈*(𝑘 − 2)\ = 𝑠[𝐵#3%,#3!1%\ = 𝑠[𝐵#3(%1"),#1(%1!)\ =
𝑠[𝑆0(2)\ = 𝑘 = 𝑠(𝐺), 𝜋 is a Steiner decomposition for 𝐺. The cardinality of 𝜋 is 𝑚𝑘 − 𝑛 − 1. Now, 
we have to prove 𝜋%&(𝐺) = 𝑚𝑘 − 𝑛 − 1.	From lemma 3.6, 𝑆 =

c𝑣!, 𝑣01", 𝑣"01*, … , 𝑣6	4*)
)'(53!7014

*)
)'(5

d	is a maximum independent set for 𝐺. We have, (𝑚 − 1)𝑘 +

𝑚 = 𝑚𝑘 − (𝑘 −𝑚).	Since 𝑚 < 01!
"
, 𝑘 − 𝑚 > 𝑘 − V01!

"
W.	For 𝑘 > 1, 𝑘 − V01!

"
W > 0	and so 𝑘 −

𝑚 > 0.	This implies (𝑚 − 1)𝑘 + 𝑚 < 𝑚𝑘.	We know that distance between any pair of vertices 
belonging to 𝑆 is atleast 𝑘 + 1 in the graph 𝐺 and clearly 𝑚𝑘 + (𝑚 + 1) > 𝑚𝑘.	Hence we can 

conclude ^)0
01!

_ = 𝑚	and so 𝛼(𝐺) = 𝑚. 

																																										
𝑞

𝑠(𝐺) = 𝑚𝑘 − U
𝑘 + 1
2 X						(𝑠𝑖𝑛𝑐𝑒	𝑘	𝑖𝑠	𝑜𝑑𝑑,𝑚𝑘 − U

𝑘 + 1
2 X 	𝑖𝑠	𝑎𝑛	𝑖𝑛𝑡𝑒𝑔𝑒𝑟) 

 𝑝 − +
%(-)

= 01!
"

 

> 𝑚

  = 𝛼(𝐺) 

Therefore, 𝛼(𝐺) < 𝑝 − +
%(-)

Also we have, 𝑝 > +
%(-)

.	Hence by corollary 2.5, 𝜋%&(𝐺) ≠ 𝑚𝑘 − V01!
"
W. That is 𝜋%&(𝐺) ≠ 𝑚𝑘 −

𝑛.	Hence 𝜋 is a Steiner decomposition for 𝐺 with maximum cardinality. Therefore 𝜋%&(𝐺) = 𝑚𝑘 − 
𝑛 − 1.    

Theorem 3.9. For 𝐺 = 𝑃=+1">)
<  with 𝑚 ≥ 0, 𝜋%&(𝐺) = 17 + 16𝑚. 
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Proof. Let 𝐺 = 𝑃=+1">)
< , 𝑚 ≥ 0 be the graph with order 𝑝 and size 𝑞. 

𝑝 − 1 = 5" + 20𝑚 − 1 

= 24 + 20𝑚 

= 4[5(1 + 𝑚)\ + 4 

By theorem 3.3, 𝑠(𝐺) = 5. The decomposition 𝜓 can be reframed and written as 𝜓 =
`𝐻!, 𝐻", … , 𝐻">(!1))a ∪ {𝐻"!1">), 𝐻""1">), 𝐻"*1">), 𝐻"<1">)} 

Define 

																																										𝐺20 = 𝐻01=2 ∪< `𝑣01=2𝑣!1=2a >; 	0 ≤ j ≤ 3 + 4𝑚, 𝑘 = 2,3,4,5 

																				𝐺∗ = 𝐻"!1">) ∪	𝐻""1">) ∪	𝐻"*1">) ∪	𝐻"<1">) 

Clearly 𝜋 = {𝐺20/	0 ≤ 𝑗 ≤ 3 + 4𝑚, 𝑘 = 2,3,4,5} ∪ {	𝐺∗}		is a decomposition for 𝐺. 

 𝐺20 ≅ 𝐾!,=	; 	0 ≤ j ≤ 3 + 4𝑚, 𝑘 = 2,3,4,5 

           𝐺∗ ≅ 𝐾= 

Since 𝑠[𝐾!,=\ = 𝑠(𝐺∗) = 5, 𝜋	is a Steiner decomposition for 𝐺. The cardinality of 𝜋 is 17 + 16𝑚. 

Now, 

+
%(-)

=
<(?=+1">)@3,+)

=

																																																																						= 18 + 16𝑚 
+

%(-)
= 18 + 16𝑚 < 5" + 20𝑚 = 𝑝 

Therefore,	𝑝 > +
%(-)

. 

																																																												𝛼(𝐺) = }
5" + 20𝑚

5 ~ 

																																																																								= 5 + 4𝑚          (1) 

																																																						𝑝 −
𝑞

𝑠(𝐺) = 5" + 20𝑚 − (18 + 16𝑚)

																																																																								= 7 + 4𝑚     (2) 

From Equations (1) & (2), 

																																																													𝛼(𝐺) < 𝑝 −
𝑞

𝑠(𝐺) 
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Hence by corollary 2.5, 𝜋%&(𝐺) ≠ 18 + 16𝑚. Therefore 𝜋 is a Steiner decomposition with maximum 
cardinality and so 𝜋%&(𝐺) = 17 + 16𝑚.         

4. Realization Theorem

Definition 4.1. The contraction of pair of vertices 𝑣$ and 𝑣2 of a graph produces a graph in which 
the two vertices 𝑣$ and 𝑣2 are replaced by the new vertex 𝑣 such that 𝑣 is adjacent to the union of 
vertices to which 𝑣$ , 𝑣2 were originally adjacent. 

Definition 4.2. (Ghosh et al., 2021) Globe graph (𝐺𝑙#) is obtained from two isolated vertices that 
are joined by 𝑛 paths of length two.  

Theorem 4.3. For any positive integer 𝑚, 𝑛	(𝑚 ≥ 2) there exists a connected graph 𝐺 such that 
𝑠(𝐺) = 𝑚 and 𝜋%&(𝐺) = 𝑛. 

Proof. Case 1: 𝑚 ≤ 𝑛 

Subcase 1: 𝑚 = 2 

Path graph on 𝑛 + 1 vertices, 𝑃#1! satisfies the required properties. 

Subcase 2: 𝑚 > 2 

For 2 < 𝑚 ≤ 𝑛,	the Complete bipartite graph 𝐺 = 𝐾),# has the properties 𝑠(𝐺) = 𝑚 and 
𝜋%&(𝐺) = 𝑛.	 

Case 2: 𝑚 > 𝑛 

 Subcase 1: 𝑛 = 1 

Star graph 𝐾!,)	is a non Steiner decomposable graph with 𝑠[𝐾!,)\ = 𝑚. Therefore it satisfies 
the required properties. 

 Subcase 2: 𝑚, 𝑛 both odd and 𝑛 ≥ 3 

Construct the graph with the desired properties as follows: 

• Take #3!	
"
	copies of the globe graph 𝐺𝑙*'(

+
. Label the two vertices of degree )1!	

"
 in each copy 

of 𝐺𝑙*'(
+

 as 𝑢$ and 𝑣$ , 1 ≤ i ≤ #3!
"
	respectively. 

• Take #3!	
"

 copies of the globe graph	𝐺𝑙*-(
+

. Label the two vertices of degree )3!	
"

 in each copy 

of 𝐺𝑙*-(
+
	as 𝑥$ and 𝑦$ , 1 ≤ i ≤ #3!

"
	respectively. 

• Consider the set 𝑆 = {(𝑣$ , 𝑥$)/		1 ≤ 𝑖 ≤ #3!
"
} ∪ {(𝑦$ , 𝑢$1!)/		1 ≤ 𝑖 ≤ #3*

"
}. By vertex 

contraction process, contract the pair of vertices given in each ordered pair of 𝑆. 

E.Ebin Raja Merly, M.Mahiba

91



• Take a copy of the star graph 𝐾!,*-(
+
	and by vertex contraction process, contract its cut vertex 

with the vertex 𝑢!.
• Take a copy of the star graph 𝐾!,*'(

+
 and by vertex contraction process, contract its cut vertex 

with the vertex 𝑦&-(
+

. 

In figure 2, the resultant graph 𝐺 and its Steiner decomposition indicated by horizantal lines is given. 

Total number of edges of 𝐺 is 𝑚𝑛. Minimum Steiner set of 𝐺 = �𝑎$/	1 ≤ 𝑖 ≤ )3!
"
� ∪ {𝑑$/	1 ≤ 𝑖 ≤

)1!
"
} and so 𝑠(𝐺) = 𝑚. Since each subgraph in the decomposition is the star graph 𝐾!,)by theorem 

2.3, 𝜋%&(𝐺) = 𝑛. 

Subcase 3: 𝑚 even 

 Construct the graph with the desired properties as follows: 
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• Take (𝑛 − 1) copies of the globe graph	𝐺𝑙*
+

. Label the two vertices of degree )	
"
	in each copy

of 𝐺𝑙*
+ 	

as 𝑢$ and 𝑣$ , 1 ≤ 𝑖 ≤ 𝑛 − 1	respectively. 

• Consider the set	𝑆 = {(𝑣$ , 𝑢$1!)/		1 ≤ 𝑖 ≤ 𝑛 − 2}.  By vertex contraction process, contract
the pair of vertices given in each ordered pair of 𝑆.

• Take a copy of the star graph 𝐾!,*+ 	
and by vertex contraction process, contract its cut vertex 

with the vertex 𝑢!.
• Take another copy of the star graph 𝐾!,*+

 and by vertex contraction process, contract its cut 

vertex with the vertex 𝑣#3!.

In figure 3, the resultant graph 𝐺	and its Steiner decomposition indicated by horizantal lines is given. 

Total number of edges of 𝐺 is 𝑚𝑛. Minimum Steiner set of 𝐺 = {𝑎$/		1 ≤ 𝑖 ≤ )
"
} ∪ {𝑐$/		1 ≤ 𝑖 ≤ )

"
} 

and so 𝑠(𝐺) = 𝑚. Since each subgraph in the decomposition is the star graph 𝐾!,) by theorem 2.3, 
𝜋%&(𝐺) = 𝑛. 

Subcase 4: 𝑚 odd and 𝑛 even (𝑛 > 2) 

Construct the graph with the desired properties as follows: 

• Take a copy of the globe graph	𝐺𝑙*'(
+

. Label the two vertices of degree )1!	
"

 as 𝑢! and 𝑣! 

respectively. 
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• Take a copy of the star graph 𝐾!,*-(
+
	and by vertex contraction process, contract its cut vertex 

with the vertex 𝑢!. Label the new vertex as 𝑢!∗. 
• Take another copy of the star graph 𝐾!,*-(

+
	and by vertex contraction process, contract its cut 

vertex with the vertex 𝑣!. Label the new vertex as 𝑣!∗. 
• Take ( #	

"
− 1 ) copies of the globe graph 𝐺𝑙). Label the two vertices of degree 𝑚 in each copy

of 𝐺𝑙) as 𝑥$ and 𝑦$ , 1 ≤ i ≤ #
"
− 1 respectively.

• Consider the set 𝑆 = {(𝑦$ , 𝑥$1!)/		1 ≤ 𝑖 ≤ #
"
− 2} ∪ {(𝑣!∗, 𝑥!)}.  By vertex contraction

process, contract the pair of vertices given in each ordered pair of 𝑆.

In figure 4, the resultant graph 𝐺 and its Steiner decomposition indicated by horizantal lines is given. 

Total number of edges of 𝐺 is 𝑚𝑛. Minimum Steiner set of	𝐺 = {𝑎$/		1 ≤ 𝑖 ≤ )3!
"
} ∪ {𝑐$/		1 ≤ 𝑖 ≤

)3!
"
} ∪ {𝑦&

+3!
} and so 𝑠(𝐺) = 𝑚. Since each subgraph in the decomposition is the star graph 𝐾!,)	by 

theorem 2.3, 𝜋%&(𝐺) = 𝑛. 

Subcase 5: 𝑚 odd and 𝑛 = 2 

Construct the graph with the desired properties as follows: 

• Take a copy of the globe graph 𝐺𝑙*'(
+
.	Label the two vertices of degree )1!	

"
	as 𝑢!	and 𝑣! 

respectively. 
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• Take a copy of the star graph 𝐾!,*-(
+
	and by vertex contraction process, contract its cut vertex 

with the vertex 𝑢!.
• Take a copy of the star graph 𝐾!,*'(

+
	and by vertex contraction process, contract its cut vertex 

with the vertex 𝑣!.

In figure 5, the resultant graph 𝐺 and its Steiner decomposition is given.  

Total number of edges of 𝐺 is 2𝑚 + 1. Minimum Steiner set of 𝐺 = {𝑎$/		1 ≤ 𝑖 ≤ )3!
"
} ∪ {𝑐$/		1 ≤

𝑖 ≤ )1!
"
} and so 𝑠(𝐺) = 𝑚. By theorem 2.2, 𝜋%&(𝐺) ≤ 2 and since 𝜋 = {𝐺!, 𝐺"}	is a Steiner 

decomposition of cardinality 2, 𝜋%&(𝐺) = 2. 

Thus for any positive integers 𝑚, 𝑛	(𝑚 ≥ 2)	there exists a connected graph 𝐺 such that 𝑠(𝐺) = 𝑚 
and 𝜋%&(𝐺) = 𝑛.

E.Ebin Raja Merly, M.Mahiba

95



5. Conclusion

This paper is an extensive study of the decomposition parameter Steiner decomposition number of 
graphs. Here, a relation between independence number and Steiner decomposition number is 
obtained. This result plays a vital role in justifying the value of the parameter for some graph families. 
Also, Steiner decomposition number of some power of paths and a realization theorem is presented. 
Future works can be carried out on obtaining the Steiner decomposition number related bounds for 
any power of path and investigating the value of the parameter for other graph classes. Bounds of 
Steiner decomposition number of graphs based on various graph theoretical parameters can also be 
studied. 
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Abstract

In this work, we define ZG a topology on the vertex set of a graph G which preserves the connectivity
of the graph, called Z-graphic topology. We prove that two isomorphic graphs have homeomorphic and
symmetric Z-graphic topologies. We show that ZG is an Alexandroff topology and we give a necessary
and sufficient condition for a topology to be Z-graphic.

Keywords: Connected components; homeomorphism; graph; symmetric topologies; topology.

1. Introduction

Graph theory is a field applied to many domains. When we discretize a problem by a graph, the proper-
ties of the graph help to study the given problem. Having a topology on the graph gives a richer structure
to the graph and this have applications in the economy domain, the traffick flow study (Agnarsson et al.,
2007; Kandel et al., 2007; Nogly et al., 1996) and many other domains. Also, a graph can be charac-
terized by some topological indices, see (Ali et al., 2016; Cruz et al., 2021; Gutman et al., 2021; Naji et
al., 2018) and references therein.

Since the publication of the paper ( Jafarian Amiri et al., 2013), other researchers defined some topolo-
gies on graphs, as example we can cite (Abdu et al., 2018; Hamza et al., 2013; Kilicman et al., 2018;
Sasikala et al., 2019; Shokry, 2015). In ( Jafarian Amiri et al., 2013), the authors defined the graphic
topology τG on a locally finite (i.e. any vertex has a finite order) undirected graph G = (V,E) with no
isolated vertices by the subbasis:

SG = {Ax | x ∈ V }, (1)

where
Ax = {z ∈ V | xz ∈ E}. (2)

One of the most interesting properties of (V, τG) was being an Alexandroff space, that is any intersec-
tion of open sets is an open set. This is equivalent to the topology has a unique minimal basis. The
Alexandroff spaces were introduced by P. Alexandroff in 1937 in (Alexandroff, 1937) under the name
Diskrete Räume spaces. We can find some results about these spaces and their importance and applica-
tions in ( Herman, 1990; Kronheimer, 1992; Li et al., 2019; McCord, 1966; Stong, 2015; Speer, 2007).

A topological space (V, T ) is called graphic space if there exists a graph G such that T = τG. In (
Jafarian Amiri et al., 2013), the authors posed two open problems: when an Alexandroff space can be
graphic? When the graphic topology can be connected?
In ( Zomam et al., 2021), a partial answer to the first question was given. In this paper, we define a
topology ZG on the vertex set of an underacted graph G = (V,E) such that ZG is smaller than τG, when
G is locally finite without isolated vertices, that is ZG ⊂ τG. Also, we solve the two open problems of (
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Jafarian Amiri et al., 2013) for the Z-graphic topology ZG.

The outlines of this paper are the following: Section 2 deals with some basic definitions and notations.
In section 3, we define ZG for an undirected graph G = (V,E) and we prove that it is a topology on V ,
smaller than τG when τG exists. We investigate the trace topology of ZG on subgraphs ofG. In section 4,
we prove the equivalence between the connectivity of the graph G and the Z-graphic topology ZG. And
we show that ZG is an Alexandroff topology. Finally, in section 5 we prove that being Z-graphic is a
topology property and two isomorphic graphs have homeomorphic and symmetric Z-graphic topologies.

2. Preliminaries

In this section, we give some general definitions and properties of a topological space. For more details,
we can refer to (Arenas, 1937; Dugundji, 1966; Li et al., 2019; Stong, 2015).
Recall that a topological space (X,T ) is a non empty set X with a set T of subsets of X (i.e T ⊂ P(V ))
satisfying:

(i) ∅ and X are in T .

(ii) If A and B are two subsets of X and A,B ∈ T , then A ∩B ∈ T .

(iii) For any family {Ai}i∈I ⊂ T , I a set, we have ∪i∈IAi ∈ T .

An element A of T will be called an open set of the space (X,T ).

Example 1 Let X = {a, b, c}, then

T = {∅, {a}, {b}, {a, c}, {a, b}, X}

is a topology for X .

In general, the intersection of open sets is not an open set in a topological space (X,T ).

Definition 2.1 (Alexandroff, 1937) A topological space is called an Alexandroff space if any intersection
of open sets is an open set. Also, we say that the topology T is an Alexandroff topology of X .

The space introduced in Example 1 is an Alexandroff space. In fact, any finite topological space is an
Alexandroff space. Later, we will give an example of a non Alexandroff space.

Definition 2.2 Let (X,T ) be a topological space and let B ⊂ T . B is called a basis of the topology T if
for all x ∈ X , for allOx an open set containing x, there exists an elementB ∈ B such that x ∈ B ⊂ Ox.
We say that the topology is generated by the basis B.

Example 2 B = {(a, b),−∞ < a < b < +∞} is a basis for the usual topology T on R.

Now, if we consider the open sets (
− 1

n
,
1

n

)
, n > 0,

we have ⋂
n>0

(
− 1

n
,
1

n

)
= {0},

and so, (R, T ) is not an Alexandroff space.
A basis m is called minimal basis for a topology T if for all B a basis of T , we have m ⊂ B.

Example 3 For the topology given in the Example 1, m = {{a}, {b}, {a, c}} is a minimal basis.

Proposition 2.1 Let (X,T ) be an Alexandroff space. Then, T has a minimal basis.

Proof. Let x ∈ X . The intersection of all open sets containing x is an open set. We set Ux such open
set. Consider U = {Ux, x ∈ X}. We have U ⊂ T and, if x ∈ X and Ox an open set containing x, then
x ∈ Ux ⊂ Ox. Hence, U is a basis for T .
Now, let B be a basis for the topology T . Since Ux is an open set containing x, there exists B ∈ B such
that x ∈ B ⊂ Ux and so B = Ux. Hence, Ux ∈ B and so, U ⊂ B.
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3. Z-graphic topology and some properties

In the sequel, we suppose that all graphs are simple and undirected.
Let G = (V,E) be a graph. In this part, we define a subset ZG of the power set P(V ) of V and we prove
that ZG is a topology on the vertex set V . We call the topology ZG the Z-graphic topology of the graph
G. We compare the Z-graphic topology and the graphic topology on a graph G. Finally, we study the
Z-graphic topologies on subgraphs.

Definition 3.1 Let G = (V,E) be a graph and A ⊂ V . A ∈ ZG if and if for any vertex x ∈ A, if there
exists a path joining x to a vertex y in G then y ∈ A.

Notation. When two vertices x and y are adjacent, we write x ∼ y and when they are joined by a path
P , we denote x ∼P y. In particular, x ∼ y means x ∼x,y y (P = x, y).

Theorem 3.1 For any graph G = (V,E), ZG is a topology on the vertex set V .

Proof. (i) By definition, ∅ and V are in ZG.
(ii) Let A1 and A2 two elements in ZG. Suppose that x ∈ A1 ∩ A2 and let y ∈ V such that x joined by
a path P to y: x ∼P y.
We get x ∈ A1 and x ∼P y, so y ∈ A1 since A1 ∈ ZG.
In a similar way y ∈ A2 and then y ∈ A1 ∩A2. Therefore A1 ∩A2 ∈ ZG.
(iii) Let {Ai}i∈I a countable infinite family of elements in ZG. Let x ∈ ∪i∈IAi and suppose y ∈ V
such that x ∼P y.
Since x ∈ ∪i∈IAi, there exists i0 ∈ I such that x ∈ Ai0 . From the fact that Ai0 ∈ ZG, we get y ∈ Ai0 .
Therefore, y ∈ ∪i∈IAi and then the Theorem 3.1 follows.

Theorem 3.2 Let G = (V,E) be a graph. If G is locally finite without isolated vertices, then ZG ⊂ τG.

Proof. Let A ∈ ZG. Then, A = ∪x∈AAx, where Ax, given by Equation 2. Indeed, If x ∈ A and y ∈ Ax,
then x ∼x,y y. Since A ∈ ZG, the vertex y ∈ A. That is Ax ⊂ A and then ∪x∈AAx ⊂ A.
Conversely, Let y ∈ A. Since G is without isolated vertices, there exists x ∈ V such that x ∼ y. So,
y ∈ Ax. Also, we have: A ∈ ZG, y ∈ A and y ∼ x. Therefore, x ∈ A and y ∈ Ax. Hence y ∈ ∪x∈AAx

and then A ⊂ ∪x∈AAx.

Now, since A = ∪x∈AAx, by definition of τG we have A ∈ τG.

In the next example, we show that the two topologies ZG and τG are different.

Example 4

Fig. 1. Graph with ZG ̸= τG

In this example, ZG = {∅, {4, 5}, {1, 2, 3}, V } and τG is the discrete topology.
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Recall that a subgraph of a graph G = (V,E) is a graph H = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E.
On the set V ′ we can define the Z-graphic topology ZH and we have also the topology induced by ZG,
denoted ZG,H .

Theorem 3.3 Let G = (V,E) be a graph and H = (V ′, E′) be a subgraph of G. Then, ZH = ZG,H .

Proof. Let A ∈ ZG,H . Then there exist O ∈ ZG such that A = O ∩ V ′. Suppose that x ∈ A and y ∈ V ′

satisfying x ∼P y for some path P in H . We get x ∈ O, y ∈ G and x ∼P y with P in G. Hence, y ∈ O
and so y ∈ O ∩ V ′, that is, y ∈ A. So, A ∈ ZH .
Conversely, suppose that A ∈ ZH and A ̸= ∅. As in the proof of Theorem 3.2, we prove that A =
∪x∈A(Ax ∩ V ′). Therefore A = (∪x∈AAx) ∩ V ′. But ∪x∈AAx is not necessary in ZG as we will see in
the Example 2 below. Let us consider Cx the connected component of G containing x. Since A ∈ ZH ,
then A = ∪x∈A(Cx ∩ V ′). Or Cx is an open set of (V,ZG) and A = (∪x∈ACx) ∩ V ′, it follows that
A ∈ ZG,H .

Example 5 Consider the following graph G.

Fig. 2. Z-graphic topology and subgraph

Let H = (V ′, E′) with V ′ = {1, 2} and E′ = {(1, 2)}. For A = V ′ = {1, 2}, in the graph G, we have
∪x∈AAx = {1, 2, 3} and ZG = {∅, {1, 2, 3, 4, 5}}.

4. Z-graphic topology and connectedness

In this section, we will prove the equivalence between the connectivity of a graph G and the connectivity
of its Z-graphic topology. Recall that the empty set is called a trivial open set in a topological space V
and an open set is called proper if it is not equal to V .

Definition 4.1 Let V be a topological space. V is called connected if it cannot be written as the union
of two proper disjoint open sets. If T is the topology of V , we say that the topology T is connected.

Example 3. Consider V = {1, 2, 3}, τ1 = {∅, {1}, {1, 2}, {1, 3}, V }
and τ2 = {∅, {1}, {2, 3}, V }. It is clear that τ1 is connected but the topology τ2 is not connected.

Definition 4.2 Let G = (V,E) be a graph. G is called connected if any two vertices can be joined by a
path, that is, there exists a path in G from one to the other vertex.

When a graph is not connected, we can define its connected components.

Definition 4.3 (Agnarsson et al., 2007; Diestel, 2005) LetG = (V,E) be a graph. LetH1 = (V1, E1), H2 =
(V2, E2), · · · be connected subgraphs of G such that

(i) V = ∪iVi;

(ii) E = ∪iEi;

(iii) Vi ∩ Vj = ∅, for all i ̸= j;
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(iv) Ei ∩ Ej = ∅, for all i ̸= j.

Then, each subgraph Hj is called connected component of the graph G.

Remark 4.1 When a graph G is connected, it has one connected component and if it is finite, it has a
finite connected components.

We have the following results with an immediate proof for the first theorem, so we omit it.

Theorem 4.1 Let G = (V,E) be a graph. The following properties hold.

(1) The space (V,ZG) is compact if, and only if, G is a finite.

(2) The topology ZG is discrete if, and only if, G is null graph (i.e E = ∅).

Theorem 4.2 Let G = (V,E) be a graph. The graph G is connected if, and only if, ZG is a connected
topology on V .

Proof. Suppose that the graph G is connected, that is any two points are joined by a path. From the Def-
inition 3.1, the only open sets for (V,ZG) are the empty set and the set V itself. And so, the topological
space (V,ZG) is connected.
Conversely, we suppose that (V,ZG) is a connected topological space and we shall prove that the graph
G is connected.
We argue by contradiction. Suppose that the graph G is not connected and so it has more than one con-
nected components H1 = (V1, E1), H2 = (V2, E2), · · · ·
Denote W = ∪i≥2Vi. Since Hi is connected, then Vi is in ZG, for all i. Then, W is a proper open
set satisfying V = V1 ∪W and V1 ∩W = ∅. This makes contradiction with the fact that (V,ZG) is a
connected topological space. Our assumption is false, and so the graph G is connected.

Recall that a topological space is called Alexandroff space if any intersection of open sets is also open.
We end this section by proving that the topology ZG is an Alexandroff topology, for any graph G.

Theorem 4.3 Consider a graph G = (V,E). Then, ZG is an Alexandroff topology.

Proof. Suppose that H1 = (V1, E1), H2 = (V2, E2), · · · · are the connected components of the graph G.
From the Definition 3.1, we have A is an open set of (V,ZG) if and only if A = Vi, for some i or A = ∅.
So, any intersection of open sets is an open set by the characterisation of the connected components given
in the Definition 4.3.

5. Isomorphic graphs and Z-graphic topologies

Definition 5.1 Let (X1, T1) and (X2, T2) be two topological spaces. A function
ψ : X1 → X2 is called continuous if for all A ∈ T2, ψ−1(A) ∈ T1.
When the function ψ is bijective and, ψ and ψ−1 are continuous, we say that the spaces are homeomor-
phic and we write X1 ∼h X2.

Definition 5.2 Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs. We say that G1 and G2 are
isomorphic and we denote G1

∼= G2 if there exists a bijective map ϕ : V1 → V2 such that the function
ϕ̃ : E1 −→ E2

(x, y) 7→ (ϕ(x), ϕ(y)) is also bijective.

Remark 5.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two isomorphic graphs and the isomorphism
is ϕ : V1 → V2. It follows that if P = x1x2 · · ·xn is a path joining x1 and xn in G1, then P ′ =
ϕ(x1)ϕ(x2) · · ·ϕ(xn) is a path joining ϕ(x1) and ϕ(xn) in G2.
Conversely, if Q is a path joining v1 and v2 in G2, then we have a path Q′ joining ϕ−1(v1) and ϕ−1(v2)
in G1.
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Theorem 5.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two isomorphic graphs. Then the spaces
(V1,ZG1) and (V2,ZG2) are homeomorphic.

Proof. Let ϕ : V1 → V2 the bijective map inducing the isomorphism of the two graphs G1 and G2. We
are going to prove that ϕ and ϕ−1 are continuous.
First, let O ∈ ZG2 such that ϕ−1(O) ̸= ∅. Suppose that x ∈ ϕ−1(O) and y ∈ V1 such that x ∼P y, that
is x and y are joined by a path in G1. By the Remark 5.1, ϕ(x) and ϕ(y) are joined by a path in G2. So,
ϕ(y) ∈ O and hence y ∈ ϕ−1(O). Then, ϕ−1(O) ∈ ZG1 .
Conversely, let O ∈ ZG1 . If O = ∅, then ϕ(O) = ∅ ∈ ZG2 .
If O ̸= ∅, suppose that x ∈ ϕ(O) and x ∼Q y in G2 (Q is a path in G2). We have x = ϕ(x1) for some
x1 ∈ O and y = ϕ(y1) for some y1 ∈ G1. From the Remark 5.1, x1 and y1 are joined by a path in G1.
Since, O is an open set of V1, then y1 ∈ O and so y = ϕ(y1) ∈ ϕ(O). Therefore ϕ(O) ∈ ZG2 .

In general, the converse of the Theorem 5.1 is not true.
Consider C4 and K4, their Z-graphic topologies are homeomorphic but the two graphs are not isomor-
phic.
in the paper ( Hamza et al., 2013), the authors define a symmetry between two topologies. Next, we
prove that if two graphs are isomorphic, then their Z-graphic topologies are symmetric.

Definition 5.3 ( Hamza et al., 2013) Let (X1, T1) and (X2, T2) be two topological spaces. We say that
these two spaces are symmetric and we write X1 ∼s X2 (or T1 ∼s T2) if |T1| = |T2| and for all A ∈ T1
there exists an open set B ∈ T2 such that |A| = |B| and conversely for all B ∈ T2 there exists an open
set A ∈ T1 such that |A| = |B|.

Theorem 5.2 Let Gi = (Vi, Ei), i = 1, 2, be two graphs. If G1
∼= G2 then ZG1 ∼s ZG2 .

Proof. From the proof of the Theorem 4.1, we get a bijective function, still denoted ϕ, ϕ : ZG1 → ZG2 ,
defined by ϕ(O) = {ϕ(x); x ∈ O}. So, |ZG1 | = |ZG2 |. Since ϕ : V1 → V2 is bijective, for all
A ∈ ZG1 , the set B = ϕ(A) ∈ ZG2 and |A| = |B|.
Conversely, for all B ∈ ZG2 , the set A = ϕ−1(B) ∈ ZG1 and |A| = |B|. The Theorem 5.2 follows.

The converse of the Theorem 5.2 is false, since the Z-graphic topologies of C4 and K4 are symmetric
but the two graphs are not isomorphic.

Definition 5.4 Let (V, T ) be a topological space. (V, T ) is said Z-graphic space if there exists a graph
G = (V,E) such that T = ZG. We say also, T is a Z-graphic topology.

Being Z-graphic is a topological property, that is, invariant under homeomorphisms.

Theorem 5.3 Let (V, T ) and (V ′, T ′) be homeomorphic spaces. Suppose that (V, T ) is a Z-graphic,
then (V ′, T ′) is also a Z-graphic space.

Proof. Suppose that ψ : V ′ → V is a homeomorphism and G = (V,E) is a graph such that T = ZG.
Consider

E′ = {(x′, y′) ∈ V ′ × V ′ | (ψ(x′), ψ(y′)) ∈ E}. (3)

We claim that T ′ = ZG′ , where G′ = (V ′, E′). Indeed, let A ∈ ZG′ . First, we want to prove
that ψ(A) ∈ ZG. Let x ∈ ψ(A) and y ∈ V such that x ∼P y for some path P in G. We set
P = x1, x2, · · · , xn with x1 = x and xn = y. So, since ψ is bijective, we have xi = ψ(x′i) for
i = 1, · · · , n and also x′1 ∈ A.
Therefore, from the Equation 3, we have a path P ′ = x′1, x

′
2, · · · , x′n inG′ joining x′1 and x′n. But x′1 ∈ A

and A ∈ ZG′ . From the definition of the Z-graphic topology, we get x′n ∈ A and so y = xn = ψ(x′n) is
in ψ(A).
Then, ψ(A) ∈ ZG. That is, ψ(A) ∈ T . Hence A = ψ−1

(
ψ(A)

)
∈ T ′.
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Conversely, let A ∈ T ′. In order to prove that A ∈ ZG′ , let x′ ∈ A and y′ ∈ V ′ such that x′ ∼P ′ y′ for
some path P ′ in G′. Denote P ′ = x′1, x

′
2, · · · , x′n, where x′1 = x′ and x′n = y′.

P = ψ(x′1), ψ(x
′
2), · · · , ψ(x′n) is a path in G joining ψ(x′) and ψ(y′).

Now, since A ∈ T ′ and ψ is a homeomorphism, ψ(A) ∈ T . Hence, ψ(A) ∈ ZG and so ψ(y′) ∈ ψ(A).
Since, ψ is bijective, y′ ∈ A. Therefore, A ∈ ZG′ . So the Theorem 5.3 follows.

Now, we give a necessary and sufficient conditions for a topological space to be Z-graphic (The cor-
responding problem 1 in ( Jafarian Amiri et al., 2013)).

Theorem 5.4 Consider an Alexandroff topological space (X, T ) and denote S(z) the smallest open set
containing z, for z ∈ X . (X, T ) is Z-graphic if, and only if, for all z1, z2 ∈ X , S(z1) = S(z2) or
S(z1) ∩ S(z2) = ∅.

Proof. First, suppose that (X, T ) is a Z-graphic space. Let G = (X,E) be a graph such that T = ZG.
In this case S(z) is the vertex set of the connected component of G containing x. So, for all z1, z2 ∈ X ,
S(z1) = S(z2) or S(z1) ∩ S(z2) = ∅, from the Definition 4.3.
Next, suppose (X, T ) is a topological space such that S(z1) = S(z2) or S(z1) ∩ S(z2) = ∅, for all
z1, z2 ∈ X . Denote

E = {(x, y) ∈ X ×X | S(x) = S(y)}. (4)

Consider the graph G = (X, E), we are going to prove that T = ZG. let A ∈ T . Suppose that x ∈ A 
and y ∈ X such that x ∼P y, where P is a path in G. Since x ∈ A and A an open set, we have 
S(x) ⊂ A. Since x ∼P y and from the definition of the edge set (4), we get S (x) =  S (y) and hence 
y ∈ S(y) ⊂ A. Therefore A ∈ ZG.

Conclusion
Let G = (V, E) an undirected graph. The graphic topology τG is a topology defined on V .  When the 
graph G is connected, the topological space (V, τG) is not necessarily connected. In this paper, we in-
troduce the Z-graphic topology ZG on V which satisfies G = (V, E) is a connected graph if and only if 
(V, ZG) is a connected topological space.
Also, we have proved that two isomorphic graphs have homeomorphic and symmetric Z-graphic topolo-
gies. As future work, we can think about graphic topology and Z-graphic topology for directed graphs.
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Abstract

In multiple linear regression analysis, the variance inflation factor is a well-known collinearity measure.
It is defined as the function of the coefficient of determination between the explanatory variables, and it
is based on the maximum likelihood estimator of the regression coefficients. Nevertheless, in addition
to outliers, leverage observations can have significant impact on the coefficient of determination, and
thereby the variance inflation factor. This study presents an improved robust variance inflation factor
estimator that is not affected by these observations. Simulation studies and a real data analysis indicate
that the modified robust variance inflation factor estimator performs better than the traditional one.

Keywords: Collinearity-inducing leverage; collinearity-masking leverage; linear regression; outlier; ro-
bust statistics

1. Introduction

The multiple linear regression model is used to make inferences about a response variable using explana-
tory variables, and it is defined as Y = Xβ + ϵ. The maximum likelihood (ML) estimator of β, which is
known as the best linear unbiased estimator, is expressed as

β̂ML =
(
X ′X

)−1
X ′Y,

The variance inflation factor (V IFML = 1/ 1−R2
ML

(Graybill, 1961). In the presence of collinearity problem, the well-know ridge regression estimators 
are proposed (Hoerl & Kennard, 1970). There are many studies in the literature that focus on ridge 
regression (Dorugade, 2014). Moreover, studies have suggested the use of robust and ridge-type ro-
bust estimators if there are outliers, or both collinearity and outliers, in the regression data (Aftab & 
Chand, 2018; Alshqaq, 2021; Maronna, 2011; Silvapulle, 1991). The presence of both outliers and one 
or more leverage observations in the data may have an impact on the severity of collinearity. Here, these 
collinearity-influencing l everage o bservations a re c ategorized i nto t wo g roups a ccording t o h ow they 
affect collinearity. The first group consists of collinearity-masking leverage o bservations. These obser-
vations may lead to the misconception that there is no collinearity in the data. For the second group of 
observations, called collinearity-inducing leverage observations, the outcome is just the opposite. They 

( )) is a measure used to make inferences about
collinearity. If its value is larger than 10, there is severe collinearity in the data (Gujrati, 2004). R2

ML is
the largest coefficient of determination between Xj , j = 1, ...k, and the rest of the explanatory variables.
If extreme observations are present in the data, these points would impact β̂ML and ȳ, which means the
resulting residuals (yi − ŷ) might be larger than they are in reality. This leads to the employment of
robust determination coefficient to diagnose collinearity by using

R2
r = 1−

∑n
i=1wi (yi − ŷi)

2∑n
i=1wi (yi − ȳw)

2 ,

may lead to a misinterpretation of collinearity in the data.
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where r denotes a robust estimator and ȳw =
∑n

i=1wiyi
/∑n

i=1wi. The weights, wi, and predictions,
ŷi, are produced by applying a robust regression estimator (Renaud & Victoria-Feser, 2010). However,
this estimator performs well in parameter estimations only in the presence of outliers in the X or Y
direction. The calculated value of the robust V IF

(
V IFr = 1/(1−R2

r)
)

based on R2
r with collinearity-

inducing leverage observations, also called good leverage points, leads to the perception that collinearity
exists. Note that, here, R2

r denotes the largest robust coefficient of determination established by a robust
regression estimator between Xj and the remaining explanatory variables. Since collinearity-inducing
leverage observations have an impact on this estimator, it is important to build an R2

r that is strong despite
the presence of these points.

This study aims to improve the R2
r and V IFr, which are referred to as the new R2

r

(
newR2

r

)
and

new V IFr (newV IFr) based on the newR2
r . The severity of collinearity is determined more accurately

with the newV IFr, which is also not impacted by collinearity-inducing leverage observations. This
makes it easier to determine the best estimator for the regression analysis. In Section 2, robust estimators
are mentioned to construct new underlined estimators. The suggested approach is introduced in Section
3. The results, using a real data set, are presented in Section 4. Furthermore, this section provides
simulation details that allow for comparisons of the estimators utilized. These findings demonstrate that
the newV IFr based on the newR2

r provides better results compared to the V IFr. The paper ends with
conclusion in Section 5.

2. Robust LMS, LTS, and S estimators

There are various robust estimators for estimating the parameters in multiple linear regression models.
In this study, the most common robust estimators the least median of squares (β̂LMS), least trimmed
square (β̂LTS) (Rousseeuw & Leroy, 1987), and S (β̂S) (Rousseeuw & Yohai, 1984) are employed to
determine the performance of the improved estimator newV IFr.

These estimators are calculated from

β̂ℓ =
(
X ′Wℓ−1X

)−1
X ′Wℓ−1Y,

where Wℓ−1 defines the diagonal weight matrix with elements w (ri) and the ri denotes the residuals,
i = 1, ..., n (Rousseeuw & Leroy, 1987). Note that for β̂LMS and β̂LTS , wi = 1 when observation
i ∈ tth sub-sample. Otherwise, wi = 0. The weights for the S estimator should be established in each
iteration by employing Tukey’s bi-weight function (Maronna et al., 2006; Rousseeuw & Yohai, 1984).

3. An improved robust VIF

The R2
r is not affected by the presence of collinearity-masking leverage observations. However, it does

not yield good results when there are leverage observations that induce collinearity because it is robust
only against outliers. In addition, leverage observations that are considered to be good and regular in the
direction of X(−j) (the design matrix X excluding the jth explanatory variable) can induce collinearity.
Thus, a V IFr that is dependent on R2

r would be adversely affected by these observations as well. In order
to overcome this negative effect, it is recommended that the collinearity-inducing leverage observations
be removed from the X(−j) direction before the R2

r is calculated. For this purpose, the V IFr is improved
and called the new V IFr (newV IFr) (Ekiz, 2021). The detailed description of the algorithm is as
follows:

• For each X(−j) compute the robust estimators τ̂
(
X(−j)

)
and Σ̂−1

X(−j)
of the location and scale

parameters, respectively. In this study minimum covariance determinant (MCD) estimators are
employed (Rousseeuw & Driessen, 1999).

• Compute Mahalanobis distances, MD2
i based on τ̂

(
X(−j)

)
and Σ̂−1

X(−j)
(Maronna et al., 2006).

• If MD2
i > χ2

k−1,1−α, xi is determined to be an collinearity-inducing leverage (outlier) obser-
vation. Additionally, this point is referred to as good leverage when regressing Xj on X(−j).
χ2
k−1,1−α is the upper-α quantile of the chi-square distribution. At the end of this step, a total of

m observations are identified as collinearity-inducing leverage.
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• Considering that there are collinearity-inducing leverage points during the application of the re-
gression of Xj on X(−j), subtract m observations from the data. Both R2

r and V IFr are then
computed by constructing the regression analysis with a clean n−m observation.

• Report the estimates from n−m observations as newR2
r and newV IFr.

When the computed newV IFr is larger than 10, there is severe collinearity in the data.

4. Application

In this section, the improved measure, newV IFr, is compared with the V IFr by applying Body fat data,
(Kutner et al., 2004), which consists of collinearity-masking leverage observations. There are three ex-
planatory variables, each of which has 20 observations: Tricep skin thickness (X1), thigh circumference
(X2), and midarm circumference (X3).

Let newV IFr (r = LMS,LTS, S) be the new robust measure, and let V IFML denote the V IF
computed using the ML estimator. The values of V IFr based on LMS, LTS, and S estimators are
calculated as 250.2497, 688.5522, and 792.8248, respectively. The values of newV IFr based on the
same estimators are calculated as 825.7449, 790.7602, and 793.9697, respectively. Here, α = 0.05. All
of these values are much higher than V IFML which is 36.4631. This is the evidence of the presence
of more severe collinearity. Hence, in the case of collinearity-masking leverage in the data, the use of
V IFr and newV IFr estimates will be useful to diagnose the severity of collinearity for the appropriate
regression model.

The newV IFr would not be affected from the collinearity-inducing leverage observations existing
in the data, in contrast to V IFr. To illustrate this point of view a detailed simulation study is carried out
in Section 4.1. The results both in the application and the simulation study are obtained by using Matlab.

4.1 Simulation study

In this simulation, the datasets are generated so that they are contaminated with leverage observations
that effect collinearity. An evaluation of the performance of the V IFr and newV IFr estimators with
contaminated data is conducted by comparing their Monte Carlo (MC) means with the uVIF computed
from the uncontaminated portion of the data. When the MC mean of the estimator is close to the
uVIF, it can be said that the estimator is not affected by contaminated data (Ekiz, 2021). Note that
uV IF = 1/

(
1− CXj ,X(−j)

CX(−j),X(−j)
C ′
Xj ,X(−j)

)
, where C denotes the correlation matrix of the dis-

tribution of the uncontaminated part of the data (Mardia et al., 1979). The datasets are simulated from
the contaminated normal distribution, where the number of explanatory variables is set to 3 (k = 3). The
joint probability distribution of (X1, X2, X3) is defined as F = (1− λ)G+λH , where G ∼ Nk(µ,Σ),
H ∼ Nk(θ,Σ), and Σ = C. The mixture parameter, λ ∈ [0, 1], provides λ ≪ 1 (Maronna et al., 2006).
Additionally, µX = (µX1 , µX2 , µX3) and θX = (θX1 , θX2 , θX3) are used as the location parameters of
G and H , respectively. To simulate an n sized dataset consisting of only high-leverage points (mask-
ing or inducing) with a proportion of λ, the leverage observations are generated from Nk (θ,Σ) and
the non-leverage observations are generated from Nk (µ,Σ). In this way, the set of design parameters
µX1 , µX2 , µX3 , θX1 , θX2 , θX3 can be utilized to manipulate the level and type of contamination.

Using a covariance matrix Σ, with ones on the diagonal, the dataset includes collinearity-masking
leverage. The remaining elements of this matrix are selected as values close to one, providing strong
collinearity between the explanatory variables. In the simulations, a λ proportion of high-leverage ob-
servations, taken from H ∼ Nk (θ,Σ), where θ = (5, 7, 7), are integrated into the dataset as well. The
V IFMLG

and V IFMLF
should be calculated from the observations that are produced from the distribu-

tions G and H, respectively. It can be seen that V IFMLF
is much smaller than V IFMLG

, even for small
values of λ. Therefore, a small number of high-leverage observations may mask a strong collinearity that
depends on the rest of the data. To create a dataset with collinearity-inducing leverage, the elements of
Σ are chosen to be very close to zero. Thus, the value of the corresponding uVIF is small, indicating that
there is no correlation between the explanatory variables. When the λ ratio of the collinearity-inducing
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Fig. 1. Contaminated data with collinearity-masking leverage. The value of uV IF is set at 501.3193
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Fig. 2. Contaminated data with collinearity-inducing leverage. The value of uV IF is set at 1.2121.

leverage observations generated from the H distribution, with the θ = (35, 32, 37), is integrated into
the data, the calculated V IFMLF is much higher than the calculated V IFMLG without the collinearity-
inducing leverage observations. This result indicates that a small number of collinearity-inducing lever-
age observations may increase the severity of collinearity.

The simulation procedure is based on 10000 iterations for all combinations of n = 100 and λ = 
0, 0.01, 0.05, 0.10, 0.20. The MC estimations for the V IFr and newV IFr values obtained in cases 
where the data is contaminated by collinearity-masking and -inducing leverage observations are given in 
the vertical axes of the graphs in Figure 1 and 2. In these graphs, the horizontal axes show the λ. MC 
estimates near uV IF = E (V IFMLG ) are considered to be good performance estimates. Note that E 
shows the expected value, and V IFMLG is the measure of the V IF obtained from the data produced by 
the G distribution, based on the ML estimator.

In the case of collinearity-masking leverage, the outcomes of both V IFS and newV IFS seem to be 
good (see Figure 1(a) and (b), respectively). Moreover, as shown in Figure 1 and 2, in contrast to the 
other estimators, the newV IFS estimator outperforms in both cases, and its calculated values approach 
uV IF .

In the presence of collinearity-inducing leverage observations, it can be seen that the V IFr yields 
very large results than the uV IF . This leads to the misconception of as if there is collinearity, as shown 
in Figure 2(a). However, according the plots in Figure 2(b) the newV IFr provides very reasonable 
results. When n = 50, λ = 0.10, and using the data simulated with collinearity-inducing leverage 
observations, the MC means of V IFS and newV IFS are calculated as 350 and 1.80 . Thus, the bias of 
newV IFS from uV IF = 1.2121 is negligible compared to the value of V IFS .

5. Conclusion
Before starting a regression analysis, it is important to investigate whether there are outliers and/or 
collinearity problems in the data. It is recommended that ridge, robust, and ridge-type robust estima-
tors be used for problems with collinearity, outliers, and both collinearity and outliers, respectively 
(Silvapulle, 1991). Hence, accurately determining the severity of collinearity plays an important role 
in identifying the correct estimator to apply. When the leverage observations (outliers) in the direction of 
jth explanatory variable mask collinearity (collinearity-masking leverage), the results of V IFr 
demonstrate that there is more severe collinearity in the data, compared to results based on V IFML. At 
the same time, similar results are observed from the proposed newV IFr. 
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However, if the data contains collinearity-inducing leverage observations, the V IFr is unable to 
recognize that there is actually no collinearity in the data. The V IFr provides large numerical results, 
as if collinearity exists. In contrast, the values of the newV IFr estimator, improved in this study, are 
small in this situation. Furthermore, when collinearity-masking or -inducing leverage observations are 
present in the data, the newV IFS out-performs the other estimators. For this reason, this measure could 
be used to diagnose collinearity before deciding which estimator to use for parameter estimates.
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Abstract

The aim is to compare the performances of fast regression methods, namely dimensional reduction of
correlation matrix (DRCM), nonparametric dimensional reduction of correlation matrix (N-DRCM),
variance inflation factor (VIF) regression, and robust VIF (R-VIF) regression in the presence of mul-
ticollinearity and outliers problems. In all simulation-scenarios, all the target variables were chosen for
final models using four methods. The DRCM and N-DRCM are the methods that reach the final model
in the shortest time, respectively. The time to reach the final model using R-VIF regression was approxi-
mately twice shorter than that of VIF regression. In each method, as the number of variables and the level
of outliers increased, the time taken to reach the final model increased. When the level of multicollinear-
ity and the number of variables (p > 500) increased, the times to reach the final models using DRCM
in datasets with outliers were slightly shorter than the those of N-DRCM. The largest numbers of noise
variables were selected to the model using DRCM and N-DRCM, but the least number of them were
selected to the model using the R-VIF regression. The RMSE values obtained using DRCM, N-DRCM
and VIF regression were similar in each scenario. As a result of the real dataset, the final model selected
using R-VIF regression had the highest R2. It also had the lowest RMSE value among those obtained
with other approaches excluding VIF regression. As such, the R-VIF regression method demonstrated a
better performance than the others in all datasets.

Keywords: Dimensional reduction; large data; robust; variance inflation factor

1. Introduction

In many fields, large data are studied, where the number of variables and observations is quite high.
Through the development of modern technology, recording and storing information has become sig-
nificantly easier. However, many researchers still experience issues in relation to accessing suitable
information using datasets. Common issues include associated time-limit, theoretical, and costs among
others. Researchers currently seek new approaches or algorithms that will allow them to access informa-
tion quickly with minimal errors and few features. As such, algorithms that are easy to implement, can
select the most suitable features for predictive statistical complex models, find solutions to frequently
run into problems in modeling researches and application, and reach the final model quickly are being
investigated. The most efficient approaches are becoming increasingly popular.

A review of current literature suggests the following algorithms are the ones most frequently used in
relation to huge datasets especially high-dimensional datasets: least absolute shrinkage selection operator
(LASSO) (Tibshirani, 1996), adaptive LASSO (Zou, 2006), elastic net (Zou & Hastie, 2005), least angle
regression (LARS) (Efron et al., 2004), robust LARS (Khan et al., 2007), Dantzig (Candes & Tao,
2007), iterative sure independent screening (ISIS) (Fan & Lv, 2008), generalized path-seeking algorithm
(GPS) (Friedman , 2008), forward-backward greedy algorithm (FoBa) (Zhang, 2009), variance inflation
factor (VIF) regression (Lin et al., 2011), robust variance inflation factor (R-VIF) regression (Dupuis
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& Victoria-Feser, 2013), dimensional reduction of correlation matrix (DRCM) (Midi & Uraibi, 2014),
jack-knife robust LARS (JKR-LARS) (Shahriari et al., 2014), and VIF regression screening algorithm
(VIFRegS) (Uraibi, 2020). Fast algorithms that meet the needs of researchers working with large datasets
are currently being developed. Researches include the recently developed VIF regression method that
has been used in health research (Liu et al., 2017; Cai et al., 2018), the DRCM method that claims to be
faster and simpler than the VIF regression estimator, and the R-VIF regression method that can overcome
issues including multicollinearity, overfitting, and outliers.

As previously noted, the assumptions of fast regression algorithms are not always met in dataset, or
although it is claimed that some algorithms can overcome prominent issues in the cases that the severities
of the problems and the number of variables increase, few studies have investigated how fast algorithms
perform. As such, this simulation examines whether fast regression algorithms such as VIF regression,
DRCM, R-VIF regression and nonparametric DRCM (N-DRCM) perform as well as current research
suggests, especially in relation to the dataset containing multicollinearity and outliers. In addition, N-
DRCM, which is the nonparametric version of DRCM, is discussed in this study. Whether this method
can compete with others as a fast estimator is examined through implementing a multiple scenario sim-
ulation.

2. Methods

2.1 Variance inflation factor (VIF) regression method

The VIF regression is an approach developed from the streamwise variable selection algorithm with
the α- investing rule. The streamwise algorithm ensures that the method implemented is fast, while
the α-investment control is to prevent model overfitting. This method was improved using the sparsity
assumption (k�p) when k is the subset of p predictors, and can control marginal false discovery rate-
mFDR (Zhou et al., 2006; Foster & Stine, 2008). Lin et al. (2011) improved this method as stepwise
regression remained unresolved in relation to the multicollinearity problem. The regression model y =
β0 + β1x1 + · · · + βkxk + βnewxnew + ε (ε ∼ N(0,σ2I) was tested to obtain the predictive regression
model through forward selection. In this model, y is the dependent variable, x1, . . . , xk are independent
variables, β0, . . . , βk are regression coefficients, and ε is error. Here, X = [1n x1 . . .xk], X̃ = [X xnew] ,
β = (β0, . . . , βk)

T , and β̃ = (β0, . . . , βk , βnew)
T . The algorithm of this method is shown in Algorithm 1.

Algorithm 1.

Input: data y, x1, x2, . . . (centered);
Set: α0 = 0.50, and pay-out ∆α = 0.05, and subsample size m;

Initialize S = {0}; r = y− ŷ = r = y−XS
(
XTSXS

)−1
XTS y;

σ̂ = sd(y) = ‖r‖ /
√
(n− |S | − 1); j = 1; α1 = α0;f = 0.

Sample I = {j1, . . . , jm} ∈ {1, . . . ,n}. // the subsample Ix randomly selected from predictors x
Compute γ̃new = 〈r, xnew〉 / ‖xnew‖ and

IR
2 = xTnewIXS

(
IXT

S IXS
)−1

IXT
Sxnew/‖xnew‖

2.
repeat

set threshold αj = αj / (1 + j - f )
get t̂j=γ̃new/σ̂

√
(1− IR2) // compute corrected t-statistic

if 2Φ
(
|tj

∣∣∣) > 1−αj // compare p-value to threshold then
S = S ∪ {j} // add feature to model
update r = y− ŷS , σ̂ = RMSES
αj+1 = αj +∆α
f = j

else
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αj+1 = αj −αj /
(
1−αj

)
end if
j = j +1

until maximum CPU time or memory is reached.

α0: the initial alpha-wealth according to α-investing rule, ∆α: if a hypothesis is rejected, the change
of alpha-wealth value, r: residuals, S: the set of predictors, αj : α value in the jth test, sd: standard
deviation, f : the time at which the last hypothesis is rejected, I : subsample, Φ: the standard normal
cumulative distribution, RMSE: root mean squared error, CPU: central processing unit

This method contains two components: evaluation and search. The evaluation step contains forward
stagewise regression and evaluates variables using marginal correlations. The stagewise regression algo-
rithm contains small step sizes and behaves similarly to l1 algorithms such as Lasso and LARS. As such,
it suffers from collinearities between the predictors. Lin et al. (2011) corrected this bias by selecting a
small sample from the dataset to calculate the VIF of each variable. The resultant evaluation phase is
fast and contains no significant loss of accuracy. In the search step, each variable is sequentially tested
using the α-investing rule. This rule ensures that models do not overfit and can generate highly accurate
results. VIF procedure can be combined with various algorithms such as stepwise regression, LARS, and
FoBa. This algorithm is particularly useful when feature systems are created dynamically and the size of
the candidate features collection is unknown or even infinite. It can also serve as an “online” algorithm
for loading extremely large-scale data into RAM according to its properties (Lin et al., 2011).

2.2 Robust VIF regression method

Robust VIF regression method is developed by Dupuis & Victoria-Feser (2013) as the classical VIF
regression method can be adversely affected by outliers in the dataset. It contains all properties of the
classic approach. Dupuis & Victoria-Feser (2013) used the robust weighted slope estimator and the fast
robust t-statistic in this method. Therefore, this method is very robust against small model deviations.
The R-VIF regression procedure, which is based on a streamwise variable selection algorithm and the α-
investing rule, is shown in Algorithm 2.

Algorithm 2.

Input: data y, x1, x2, . . . (standardized);
Set: initial wealth α0 = 0.50, and pay-out ∆α =0.05, and subsample size m, and robustness

constant c
Compute efficiency e−1c where ec is as in

ec =
[∫ c
−c

(
5
(
r
c

)4
− 6

(
r
c

)2
+1

)
dΦ(r)

]2
/
∫ c
−c r

2
((
r
c

)2
− 1

)4
dΦ(r)

Get all marginal weights wij by fitting p marginal models y = β01+β1x1+ε1, . . . , y = β0k+βkxk+εk
using

∑n
i=1wi(ri ;c)rixi = 0 and wi(ri ;c) =min

{
1; c
|ri |

}
(c=1.345)

Initialize j = 1,S = {0}, XS = 1, XwS = diag
(√

w0
iS

)
XS and yw = diag

(√
w0
iS

)
y where w0

iS is

computed using wi (ri ;c) =


((
ri
c

)2
− 1

) 2

if |ri | ≤ c,

0 if |ri | > c,

where r0 =
(
y− 1β̂0

)
/σ̂0 using Xw0 = Xw20 = 1, β̂

0
=

[(
Xw0

)T
Xw0

]−1(
Xw20

)T
y ,
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σ̂0 = 1.483med
∣∣∣̃r0 −med (̃r0)∣∣∣ and r̃0 = y− 1β̂0.

repeat
set αj = αj / (1 + j − f )

compute rwS = yw −XwS
(
XwS

TXwS
)−1

XwS
T yw //start Fast Robust Evaluation Procedure

γ̂wj =
(
zwj

T zwj
)−1

zwj
T rwS and σ̂ =MAD

(
rwS − z

w
j

(
zwj

T zwj
)−1

zwj
T rwS

)
where zwj = diag

(√
wij

)
zj

sample I = {i1, . . . , im} ∈ {1, . . . ,n} // the subsample Ix randomly selected from predictors

get Rw2jS = Izwj
T
IHw

S Iz
w
j

(
Izwj

T
Izwj

)−1
// a robust R2 coefficient

where IHw
S = IXwS

(
IXwS

T
IXwS

)−1
IXwS

T , and find ρw = 1−Rw2jS
get Tw = (ρw)−1/2γ̂wj /

√
σ̂2

(∑
i z
w2
ij

)−1
e−1c from Fast Robust Evaluation Procedure

//compute the approximate robust t-statistic

if 2(1−Φ (Tw)) < αj then

S = S ∪ {j}, XS =
[
1 xj

]
, XwS = diag

(√
w0
iS

)
XS , and yw = diag

(√
w0
iS

)
y,

where w0
iS is computed using wi (ri ;c) =


((
ri
c

)2
− 1

) 2

if |ri | ≤ c,

0 if |ri | > c,

where r0 =
(
y−XS β̂0

)
/σ̂0 using Xw0 =

[
1 √wij xij

]
, Xw20 =

[
1 wijxij

]
, i=1,. . . ,n,

β̂
0
=

[(
Xw0

)T
Xw0

]−1(
Xw20

)T
y ,

where σ̂0 = 1.483med
∣∣∣̃r0 −med (̃r0)∣∣∣ and r̃0 = y−XS β̂

0

αj+1 = αj +∆α
f = j

else αj+1 = αj −αj /
(
1−αj

)
end if
j = j +1

until all p covariates have been considered.

α0: the initial alpha-wealth according to α-investing rule, ∆α: if a hypothesis is rejected, the change
of alpha-wealth value, r and r: residuals, S: the set of predictors, αj : α value in the jth test, c =
4.685, wi : Tukey’s biweight weights, ri : standardized residuals, Φ: the standard normal cumulative
distribution, med: median, MAD: median absolute deviation, diag: diagonal, Rw2jS : a robust R2

coefficient proposed by Renaud and Victoria-Feser (2010)

2.3 Dimensional reduction of correlation matrix (DRCM) method

The DRCM method was suggested by Midi & Uraibi (2014). This method can reduce the time for
selecting only the variables which provide important information to the response variable. The proce-
dure consists of two steps: in the first step, DRCM tries to reduce the dimension of correlation matrix
by including only those variables that have absolute correlations greater than a threshold value, in the
potential model. In the second step, the p-values for the parameter estimates of potential model were
computed using multiple linear regression method. The final regression model only includes those vari-
ables that are significant. The algorithm of this method, which is based on the regression method, is
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shown in Algorithm 3.

Algorithm 3.

Input: data y, x1, x2, . . . (standardized);
Initialize S1 = {0}, S = {0}, j = 1,

Cos(θx,y) =
<x, y>
‖x‖.‖y‖ = Cov(x, y)√

V ar(x)V ar(y)
= Corr(x, y),

β̂=
[
XTX

]−1
XTy , 1nX

Ty=1
n β̂=Rxy ,r=y−y=r=y−X

[
XTX

]−1
XTy,

Cov( β̂) = σ2
[
XTX

]−1
, σ̂2 = yTy−β̂TXTy=MSE. // from the linear regression model y =

xβ + ε
Compute Cos(θx,y) =

<x, y>
‖x‖.‖y‖ = Cov(x, y)√

V ar(x)V ar(y)
= Corr(x, y) // First step

β̂=
[
XTX

]−1
XTy , 1nX

Ty=1
n β̂=Rxy // Rxy is the correlation between x and y

// The value of
∣∣∣Rxy ∣∣∣ is between 0 and 1.

where XTX=I
set threshold M =

∑p
j=1 |Rxy |
p // Pearson correlation matrix Rxy ; the number of all candidate

covariates p
if

∣∣∣β̂∣∣∣ = ∣∣∣Rxy

∣∣∣ ≥M
compare Corr(x,y) -values to threshold
// The dimension of the correlation matrix is reduced
then
S1 = S1 ∪ {j} // add candidate feature for model
end if
j = j + 1
until all p covariates have been considered.

// Second step
set αj = αj /(1+j-f ), S1 = {0}, f = j

get t̂ = β̂j /(σ̂
2
(
[
XTX

]−1
) // compute t-statistic

if 2
(
1−Φ

(
t̂
))
< αj // compare p-value

then
S = S ∪ {j} // add feature from S1to model
else
αj+1 = αj −αj /

(
1−αj

)
end if
j = j + 1

until all covariates in S1have been considered.

S1: the set of candidate predictors in first step, S: the set of predictors,
∣∣∣Rxy

∣∣∣: the absolute values
of correlation matrix, Φ: the standard normal cumulative distribution, f : the time at which the last
hypothesis is rejected, αj : α value in the jth test

2.4 Nonparametric DRCM (N-DRCM) method

The N-DRCM method is a nonparametric version of the DRCM method. The procedure consists
of two steps. In the first step, Spearman correlation matrix is used to determine monotonic relationship
between variables. These variables can be continuous or at least one of them can be ordinal. N-DRCM
tries to reduce the dimension of correlation matrix by including only those variables that have absolute
correlations greater than a threshold value, in the potential model. In the second step, the p-values for
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the parameter estimates of potential model are computed by robust regression method using iteratively
reweighted least squares (IRLS). The final regression model only includes those variables that are sig-
nificant. This algorithm is shown in Algorithm 4.

Algorithm 4.

Input: data y, x1, x2, . . .(standardized);
Initialize S1 = {0}, S = {0}, j = 1,

SPCos
(
θ(rxry)

)
= Cov(rx,ry)√

V ar(rx)V ar(ry)
= SPCorr(rx, ry)

// Spearman correlation matrix for the ranked data ry, rx1, rx2,...
r β̂=

[
rXTrX

]−1rXTry , 1n
rXTry=1

n
r β̂

T
=R(rx,ry),

rr=ry−ry=r=ry−rX
[
rXTrX

]−1 rXTry,

Cov(r β̂) = rσ2
[
rXTrX

]−1
, r σ̂2 = ryTry−rβTXTy=MSE.

// from the linear regression model y = xβ + ε

Compute SPCorr(rx, ry)
Cov(rx,ry)√
V ar(rx)V ar(ry)

= 1− 6
∑
d2i√

V ar(rx)V ar(ry))
// First step

// Spearman correlation matrix

where
√
V ar (rx)V ar(ry) =

{
n(n2 − 1) if all n ranks are distinct integers,
(n2 − 1)/12 if all ranks are distinct,

r β̂=
[
rXTrX

]−1rXTry , 1n
rXTry=1

n
r β̂

T
=R(rx,ry)

SPRxy is the Spearman correlation between the ranked x and y
// The value of

∣∣∣SPR(rx,ry)

∣∣∣ is between 0 and 1.
where XTX=I
set threshold M =

∑p
j=1 |SPR(rx,ry)|

p // Spearman correlation matrix SPR(rx,ry);
// The number of all candidate covariates p
if

∣∣∣SPR(rx,ry)

∣∣∣ ≥M
compare SPCorr(rx, ry) -values to threshold
// The dimension of the correlation matrix is reduced
then
S1 = S1 ∪ {j} // add candidate feature for model
end if
j = j + 1

until all p covariates have been considered.
// Second step

Compute min
β

∑n
j=1ρ

(
yj−xTj β
σ

)
// minimize β’s using the standardized data from the linear model

y = xβ + ε∑n
j=1 xijψ

(
yj−xTj β
σ

)
= 0 for all i=0,1,2,. . . ,p // solution using nonlinear optimization

method – Iteratively reweighted least squares (IRLS)
where ψ = ρT, xi0 = 1, σ = σ̂0 = 1.483med

∣∣∣∣(yj − xj β̂0)−med(yj − xj β̂0)∣∣∣∣,
βt+1 =

(
XTwtX

)−1
XTwt

where wjt =

 ψ[(yj−xTβjt)/σt]
(yj−xTβjt)/σt

if yj , x
Tβjt

1 if yj = xTβjt

w(u) =min
{

1 if |u| < 0
c
|u| if |u| ≥ 0 // Huber’ method (c=1.345)
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Cov
(
β̂
)
= σ2

∑n
i=1ψ

2
[(
yi−xTj β

)
/σ

]{∑n
i=1ψ

T
[(
yi−xTj β

)
/σ

]}2 (XTX
)−1
,V ar

(
β̂
)
= σ̂2

(
XTwtX

)−1
set αj = αj /(1+j-f ), S1 = {0}, f f = j

get t̂w =
(
XTwtX

)−1
XTwty /

√
σ̂2(XTwtX

)−1 // compute the robust t-statistic

if 2
(
1−Φ

(
t̂w

))
< αj // compare p-value

then
S = S ∪ {j} // add feature from S1to model
else
αj+1 = αj −αj /

(
1−αj

)
end if
j = j + 1

until all covariates in S1have been considered.

S1: the set of candidate predictors in first step, S: the set of predictors, di : difference in paired ranks,
wt: diagonal matrix of weights, ρ (.): likelihood function for a suitable choice of the distribution of
the residuals,Φ: the standard normal cumulative distribution, f : the time at which the last hypothesis
is rejected, αj : α value in the jth test, ψ: influence function

2.5 Simulation study

This simulation study has been designed in a similar way to studies conducted by Rahman & Khan
(2010) and Dupuis & Victoria-Feser (2013). A linear model was established as

y = x1 + x2 + . . .+ xk + σεj (1)

where x1, x2, . . . ,xk are multivariate normal variables with E
(
xj

)
= 0, V ar

(
xj

)
= 1, and corr

(
xj ,xi

)
= θ

(i , j, i, j = 1, . . . , k). θ is chosen to produce a range of theoretical R2 =
(
Var(y)−σ2

)
/Var(y) values

for (1) and σ to give t values for target covariates of about 5-6 under normality. x1, x2, . . . ,xk represent
k target covariates. ε is an independent standard normal variable. A set of p predictors was generated as
follows:

xk+1 = x1 + δek+1

xk+2 = x1 + δek+2

.

.

.

x3k = xk + δe3k (2)

Variables xk+1, xk+2, . . . ,x3k were noise covariates that correlated with target covariates. Variables
x3k+1, , . . . ,xp were the noise covariates that did not correlate with the target covariates (xj = ej , j =
3k + 1, 3k + 2, . . . ,p). ek+1, . . . , ep were independent standard normal variables. In each scenario, the
number of target covariates was set as five. The constant δ = 3.18 was selected so that corr (x1, xk+1) =
corr (x1,xk+2) = . . . = corr (xk , x3k) = 0.3. The estimated final model was given in equation 3.

y = β0 + β1x1 + · · ·+ βkxk + βnewxnew + ε (3)

The datasets consisted of “normal (no contamination)” and “outliers (with 5% and 10%)” to examine
the effect outliers had on datasets. The datasets were generated using ε ∼ N(0, 1) for normal data,
ε ∼ 95%N(0, 1) + 5%N(30, 1) for the dataset with 5% outliers and ε ∼ 90%N(0, 1) + 10%N(30, 1)
for the dataset with 10% outliers. To examine the effect of multicollinearity in datasets, correlations
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among target regressors were specified as θ1 = 0.1
(
R2 = 0.20

)
and θ2 = 0.85

(
R2 = 0.80

)
so that

corr
(
xj ,xi

)
= θ, (i , j i, j = 1, . . . , k). A total of 36 scenarios were created through combining

different data types, including the uncontaminated dataset and the datasets with 5% and 10% outliers,
with 50, 100, 250, 500, 750, and 1,000 independent variables. The sample size was 5,000 and the number
of repetition was 100. A total of 14,400 models were examined. The initial-wealth and pay-out were
respectively selected 0.5 and 0.05 for VIF and R-VIF regression methods. In each condition, the root
mean square error (RMSE) values calculated through the four methods were recorded. This simulation
was executed using the MATLAB/Simulink R2015a program (toolboxes: statistics and machine learning,
curve fitting, optimization, and global optimization) by a computer with Intel(R) Core(TM) i7-6500U
CPU @ 2.50 GHz, 2592 Mhz, two cores, and four logical processors.

2.6 Real data

Crime dataset taken from UCI Machine Learning Respiratory (Redmond, 2009) was used to compare
the performances of DRCM, N-DRCM, VIF regression and R-VIF regression methods. This dataset
consists socio-economic data from the 1990 US Census, law enforcement data from the 1990 US Law
Enforcement Management and Administrative Statistics (LEMAS) survey, and crime data from the 1995
Federal Bureau of Investigation’ Uniform Crime Reporting (FBI UCR). Crime dataset includes n =
1994 observations, the violent crime per capita variable (y), and 122 predictors (x) that have a possible
relationship with crime in order to estimate (y). The RMSE, R2 and estimation values (beta, standard
error, t-statistic, and p-value) of the final models selected using each method were calculated.

3. Results

3.1 Simulation

In case presences of multicollinearity and outliers, while the number of candidate covariates that
can be included in the model increased, the values (average time, average numbers of covariates with
different relationships) that show the performances of DRCM, N-DRCM, VIF regression and R-VIF
regression methods are demonstrated in Table 1, Table 2, and Table 3, respectively.

In all scenarios, all the target independent variables were selected to the final models by four methods.
Respectively, the DRCM and N-DRCM methods reached the final model in the shortest time.The plots
of average times taken to reach the final models for fast regression methods in datasets with outliers
for each theta value were given Fig. 1, respectively. When the number of variables was 250 or less
in datasets with 5% and 10% outliers, the times taken to reach the final models for both DRCM and
N-DRCM were similar. However, when theta value was 0.10 and the number of variables was 500 or
more, the times taken to reach the final models in datasets with 10% outliers were significantly longer
than the those of DRCM and N-DRCM in datasets with 5% outliers. Moreover, when theta value was
0.85 and the number of variables was 500 or more, the times to reach the final models using DRCM
in datasets with outliers were slightly shorter than those of N-DRCM. When the number of variables
was over 750 in both datasets with outliers, the times to reach the final models decreased in line with
increasing theta values for both DCRM and N-DCRM. The decrement amount increased as the level of
outliers increased. However, this was not observed in the R-VIF and VIF regression methods. The time
to reach the final model using R-VIF regression was approximately two times shorter than that of VIF
regression. The largest numbers of noise variables were selected to the final models using DRCM and
N-DRCM methods.

The RMSE values obtained using DRCM, N-DRCM and VIF regression were similar in each sce-
nario. The RMSE values calculated by each method were higher in the datasets with outliers compared
to uncontaminated datasets. In addition, the RMSE values tended to decrease when the number of vari-
ables increased. This conclusion applies to the RMSE values obtained using R-VIF regression, except
for when the number of variables in datasets with 10% outliers was 500 or above. When the number
of variables in datasets with 10% outliers was 500 or above, the RMSE values obtained using R-VIF
regression were lower than the values obtained in uncontaminated datasets.
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When the number of variables was 500 or above, the approximate ratios of total noise variables cho-
sen for the final models using DRCM and N-DRCM methods were found to be 2.1% in uncontaminated
datasets, 2.3% in datasets with 5% outliers, and 4.1% in datasets with 10% outliers.In addition, when the
number of variables was 500 or above, the approximate ratios of total noise variables chosen for the final
model using R-VIF and VIF regression were 1.8�in datasets with outliers and 1.7�in uncontami-
nated datasets. In addition, in all datasets, when the number of variables was over 750, no noise variables
were chosen for the final model by R-VIF regression. In all scenarios, the R-VIF regression method
omitted noise covariates that did not correlate with the target variables in the final model. The time taken
for each method to reach the final model was longer in datasets with outliers than in uncontaminated
datasets. This became more evident as the number of variables increased. In addition, in dataset with
10% outliers, the time each method took to reach the final model was slightly higher than the time taken
in dataset with 5% outliers. This became more evident when the number of variables was 500 or more.

Fig. 1. The plots of average times taken to reach the final models for fast regression methods in the
datasets with outliers for a) θ = 0.10 and b) θ = 0.85.

In all datasets, when the theta value was 0.85 and the number of variables was over 750, 19.8% of
noise covariates that correlated with target variables was involved in the final models obtained by DRCM
and N-DRCM. A further 9% were included in the final model when using VIF regression method. Also
the numbers of total noise covariates selected to final models by both DRCM and N-DRCM methods
increased slightly with increasing of multicollinearity level when the number of variables was over 100.
It was determined that the numbers of total noise covariates selected to final models by the R-VIF and VIF
regression methods decreased when the numbers of variables increased in both the datasets with outliers.
The numbers of total noise covariates selected to finals model by both R-VIF and VIF regression methods
had not changed considerably with increasing of multicollinearity level. Additionally, the numbers of
total noise covariates selected to final models by the R-VIF and VIF regression methods were absent in
uncontaminated dataset.

3.2 Real data

This large dataset with sample size (n=1994) and number of predictors (p = 122) was firstly exam-
ined in terms of multicollinearity and outliers. The VIF values of 88% of the variables were greater than
10, and their collinearity tolerance values were very close to zero. Condition index values of all dimen-
sions except the twenty two dimensions were above 15. Moreover, the most of the variables were skew
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Table 1. The performances of fast regression methods in uncontaminated dataset.

n=5000 No Contamination
R2=0.20, (θ=0.10) R2=0.80, (θ=0.85)

p Results DRCM N-DRCM R-VIF VIF DRCM N-DRCM R-VIF VIF

50

Avg.Time 0.118 0.140 0.569 1.304 0.106 0.130 0.570 1.305
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0 0 0 0 0 0
C (pC = 35) (%) 0.06 0.06 0 0 0.06 0.06 0 0
D (pD = 45) (%) 0.04 0.04 0 0 0.04 0.04 0 0

RMSE 0.921 0.921 0.923 0.924 0.923 0.923 0.923 0.924

100

Avg.Time 0.182 0.250 1.092 2.480 0.159 0.224 1.119 2.487
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0 0 0 0 0 0
C (pC = 85) (%) 0.86 0.85 0 0 1.29 1.16 0 0
D (pD = 95) (%) 0.77 0.76 0 0 1.15 1.04 0 0

RMSE 0.921 0.921 0.919 0.920 0.920 0.920 0.910 0.920

250

Avg.Time 0.592 0.705 2.702 5.817 0.604 0.704 2.693 5.823
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 9.9 0 0 0 0 0 0

C (pC = 235) (%) 1.28 1.26 0 0 1.59 1.49 0 0
D (pD = 245) (%) 1.22 1.61 0 0 1.53 1.43 0 0

RMSE 0.907 0.906 0.904 0.904 0.907 0.906 0.904 0.904

500

Avg.Time 1.903 2.145 5.335 11.416 1.888 1.999 5.425 11.460
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.1 0.1 0 0.1 0.1 10 0 0.1

C (pC = 485) (%) 1.86 1.65 0 0 2.47 2.27 0 0
D (pD = 495) (%) 1.82 1.62 0 0.002 2.42 2.43 0 0.002

RMSE 0.908 0.908 0.907 0.908 0.905 0.905 0.904 0.904

750

Avg.Time 4.190 4.482 8.000 17.004 4.386 4.811 8.842 17.944
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0 0 0 0 0 0

C (pC = 735) (%) 1.77 1.64 0 0 2.17 2.14 0 0
D (pD = 745) (%) 1.75 1.62 0 0 2.14 2.11 0 0

RMSE 0.905 0.904 0.903 0.904 0.905 0.905 0.904 0.904

1000

Avg.Time 6.365 6.796 10.757 22.835 6.032 6.740 11.697 23.916
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 9.9 9.9 0 9.9 19.8 19.8 0 9.9

C (pC = 985) (%) 2.47 1.94 0 0 2.14 2.03 0 0
D (pD = 995) (%) 2.54 2.02 0 0.10 2.32 2.21 0 0.10

RMSE 0.893 0.892 0.891 0.893 0.892 0.892 0.891 0.893
p: The number of predictors, Avg: Average, A: Average number of target covariates, B: Average number of
noise covariates that correlated with target covariates, C: Average number of noise covariates that did not
correlate with target covariates, D: Average number of total noise covariates, RMSEA: Root mean square
error, VIF: Variance inflation factor, R-VIF: Robust VIF, DRCM: Dimensional reduction of correlation
matrix, N-DRCM: Nonparametric DRCM
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Table 2. The performances of fast regression methods in dataset with 5% outliers.

n=5000 5% outliers
R2=0.20, (θ=0.10) R2=0.80, (θ=0.85)

p Results DRCM N-DRCM R-VIF VIF DRCM N-DRCM R-VIF VIF

50

Avg.Time 0.186 0.213 1.003 2.186 0.153 0.210 0.965 2.094
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.2 0.2 0.1 0.1 0 0 0 0
C (pC = 35) (%) 0 0 0 0 0 0 0 0
D (pD = 45) (%) 0.04 0.04 0.02 0.02 0 0 0 0

RMSE 0.968 0.968 0.970 0.970 0.969 0.969 0.970 0.970

100

Avg.Time 0.315 0.486 1.983 4.258 0.330 0.462 1.882 4.149
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0.1 0.1 0 0 0.1 0.1
C (pC = 85) (%) 1.41 1.43 0 0 1.62 1.55 0 0
D (pD = 95) (%) 1.26 1.28 0.01 0.01 1.45 1.39 0.01 0.01

RMSE 0.967 0.967 0.966 0.966 0.967 0.967 0.966 0.966

250

Avg.Time 1.157 1.504 4.476 9.312 1.043 1.257 4.430 9.319
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0.1 0.1 0 0 0.1 0.1

C (pC = 235) (%) 1.74 1.74 0 0 2.08 2.04 0 0
D (pD = 245) (%) 1.67 1.67 0.004 0.004 2.00 1.96 0.004 0.004

RMSE 0.953 0.954 0.953 0.953 0.951 0.950 0.952 0.953

500

Avg.Time 2.871 3.457 8.734 19.079 2.708 3.442 8.713 19.029
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.1 0.2 0.1 0.1 10 10.2 0.1 0.1

C (pC = 485) (%) 2.08 2.06 0 0 2.47 2.27 0 0
D (pD = 495)(%) 2.04 2.02 0.002 0.002 2.62 2.43 0.002 0.002

RMSE 0.952 0.951 0.949 0.950 0.952 0.951 0.949 0.949

750

Avg.Time 5.835 6.683 12.745 27.248 6.214 6.585 13.242 27.412
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10)(%) 0.1 0 0.2 0.1 0 0.1 0.2 0.1

C (pC = 735) (%) 1.9 1.9 0 0 2.44 2.38 0 0
D (pD = 745) (%) 1.88 1.87 0.003 0.001 2.41 2.35 0.003 0.001

RMSE 0.950 0.950 0.948 0.949 0.950 0.950 0.948 0.949

1000

Avg.Time 9.870 10.681 17.585 37.220 9.177 10.089 17.214 36.788
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 19.8 19.8 0 9.9 19.8 19.8 0 9.9

C (pC = 985) (%) 2.53 1.82 0 0 2.13 2.13 0 0
D (pD = 995) (%) 2.71 2.00 0 0.10 2.31 2.31 0 0.10

RMSE 0.937 0.936 0.934 0.938 0.937 0.936 0.934 0.938
p: The number of predictors, Avg: Average, A: Average number of target covariates, B: Average number of
noise covariates that correlated with target covariates, C: Average number of noise covariates that did not
correlate with target covariates, D: Average number of total noise covariates, RMSEA: Root mean square
error, VIF: Variance inflation factor, R-VIF: Robust VIF, DRCM: Dimensional reduction of correlation
matrix, N-DRCM: Nonparametric DRCM
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Table 3. performances of fast regression methods in dataset with 10% outliers.

n=5000 10% outliers
R2=0.20, (θ=0.10) R2=0.80, (θ=0.85)

p Results DRCM N-DRCM R-VIF VIF DRCM N-DRCM R-VIF VIF

50

Avg.Time 0.202 0.219 0.945 2.232 0.156 0.200 0.939 2.213
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.2 0.2 0.1 0.1 0 0 0 0
C (pC = 35) (%) 0 0 0 0 0 0 0 0
D (pD = 45) (%) 0.04 0.04 0.02 0.02 0 0 0 0

RMSE 1.019 1.020 1.019 1.020 1.019 1.019 1.019 1.020

100

Avg.Time 0.327 0.473 1.824 4.395 0.341 0.447 1.860 4.383
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0.1 0.1 0 0 0.1 0.1
C (pC = 85) (%) 2.02 2.00 0 0 2.99 2.94 0 0
D (pD = 95) (%) 1.81 1.79 0.01 0.01 2.67 2.63 0.01 0.01

RMSE 1.016 1.016 1.015 1.016 1.016 1.016 1.015 1.016

250

Avg.Time 1.152 1.438 4.408 9.881 1.030 1.251 4.455 9.853
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0.1 0.1 0 0 0.1 0.1

C (pC = 235) (%) 3.10 3.07 0 0 3.25 3.25 0 0
D (pD = 245) (%) 2.98 2.95 0.004 0.004 3.12 3.11 0.004 0.004

RMSE 1.003 1.005 1.001 1.002 1.002 1.002 1.001 1.001

500

Avg.Time 3.217 3.525 9.058 19.706 3.063 3.380 9.058 19.723
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.2 0.2 0.1 0.1 10 10 0.1 0.1

C (pC = 485) (%) 3.47 3.20 0 0 3.84 3.26 0 0
D (pD = 495)(%) 3.40 3.14 0.002 0.002 3.96 3.40 0.002 0.002

RMSE 0.997 0.996 0.728 0.997 0.998 0.997 0.728 0.997

750

Avg.Time 6.625 7.392 13.568 28.448 6.463 7.189 13.571 28.481
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.2 0.1 0.2 0.2 10 9.9 0.2 0.2
C (pC = 735)(%) 3.91 3.88 0 0 4.17 4.16 0 0
D (pD = 745) (%) 3.86 3.83 0.003 0.003 4.25 4.03 0.003 0.003

RMSE 0.996 0.996 0.725 0.998 0.996 0.996 0.725 0.998

1000

Avg.Time 11.236 11.799 18.142 38.231 9.528 10.459 18.138 38.265
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 9.9 19.8 0 9.9 19.8 19.8 0 9.9

C (pC = 985) (%) 4.54 4.42 0 0 5.20 5.05 0 0
D (pD = 995) (%) 4.59 4.57 0 0.1 5.35 5.20 0 0.1

RMSE 0.984 0.986 0.718 0.986 0.986 0.986 0.718 0.985
p: The number of predictors, Avg: Average, A: Average number of target covariates, B: Average number of
noise covariates that correlated with target covariates, C: Average number of noise covariates that did not
correlate with target covariates, D: Average number of total noise covariates, RMSEA: Root mean square
error, VIF: Variance inflation factor, R-VIF: Robust VIF, DRCM: Dimensional reduction of correlation
matrix, N-DRCM: Nonparametric DRCM
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distributed and contained outliers. The estimation values of the final models (without constant) selected
using each method for “crime data” are shown Table 4.

The racepctblack (percentage of population that is African American), PctIlleg (percentage of kids
born to never married), PctPersDenseHous (percent of persons in dense housing (more than 1 person
per room)), NumStreet (number of homeless people counted in the street) variables were selected for
the final models by all four methods. The number of predictors selected for the final models ranged
from 14 to 16. Approximately the numbers of predictors selected by all methods to their final models
were similar. In descending order, these methods were N-DRCM, R-VIF regression, VIF regression, and
DRCM. The highest R2 value was obtained by the R-VIF regression method, followed by the N-DRCM
method. The R2 values obtained by VIF regression and DRCM methods were similar and considerably
lower than the values obtained by the other two methods. While the RMSE value obtained with the
VIF regression method was the lowest, this method was followed by the R-VIF regression, N-DRCM,
and DRCM methods, respectively. Overall, R-VIF regression performed better because its final model
had the highest R2 among those obtained with other methods, and the lowest RMSE value among those
obtained with others excepting VIF regression.

4. Discussion and conclusion

When large datasets contain multicollinearity and outliers, the use of fast regression algorithms has
become mandatory to address the lack of traditional methods and the loss of information that occurs
when using traditional methods. In the literature review, it was noted that a limited number of researches
about fast regression methods are being conducted. Lin etal. (2021) compared stepwise regression,
LASSO, FoBa, GPS methods to test the performance of the VIF regression method they developed. They
found the performance of VIF regression to be better than other algorithms in terms of computation
speed, out-of-sample, out-of-sample error, mFDR control, etc. Dupuis & Victoria-Feser (2013) and
Seo (2018) suggested using the R-VIF regression in place of classical VIF regression to obtain faster
estimations when working with large datasets that contain outliers. In addition, Midi & Uraibi (2014)
compared DRCM, VIF regression and Adaptive Lasso methods, and they obtained that the performance
of DRCM method was more efficient than the others. Shahriari (2014) examined the performances
of LARS, R-LARS, R-VIF and JKR-LARS methods in datasets with outliers and/or leverage points.
Shahriari (2014) found that JKR-LARS performed similarly to R-LARS and R-VIF in datasets with
outliers while outperforming R-LARS in datasets with high leverage points. However, according to her
study, R-VIF failed to robustly sequence predictor variables in datasets with high leverage points. Uraibi
(2020) investigated that VIFRegSd2, VIFRegSd3, and ISIS method in ultrahigh dimensional feature
space when presence of collinearity structure. Uraibi (2020) found that VIFRegSd2 and VIFRegSd3
methods outperform ISIS, additionally VIFRegSd2 method can be used in practice for ultrahigh feature
space and small sample size.

In this study, the performances of DRCM, N-DRCM, VIF regression, and R-VIF regression in re-
lation to large datasets with varying levels of multicollinearity and outliers were examined in different
scenarios. This study proposed that the N-DRCM method could be used as a fast regression estimator.
As the number of variables and the level of outliers increased, the time taken to reach the final model
by each method increased. When the number of variables was 500 or above and the level of outliers
in the dataset increased, the times taken to reach the final models by DRCM and N-DRCM methods
increased. When the level of multicollinearity and the number of variables (p > 500) increased, the
times to reach the final models using DRCM in datasets with outliers were slightly shorter than the those
of N-DRCM. However, in all scenarios, DRCM and N-DRCM were found to be the fastest methods to
reach the final models. When the number of variables was over 750 in uncontaminated datasets, the
times taken to reach the final models using DRCM and N-DRCM methods decreased with increasing
of multicollinearity level. Moreover the numbers of total noise covariates selected to final models by
both DRCM and N-DRCM methods increased slightly with increasing of multicollinearity level when
the number of variables was over 100. It was observed that the numbers of total noise covariates and
the numbers of total noise covariates that did not correlate with the target variables selected for the fi-
nal models by the DRCM and N-DRCM methods were higher than those achieved via R-VIF and VIF
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Table 4. The estimation values of final models selected using each methods (n=1994, p=122).

Methods Variables Beta SE t-statistic p-value R2 RMSE

VIF R.

racepctblack 0.177 0.024 7.329 <0.001

0.640 0.140

pctUrban 0.054 0.008 6.871 <0.001
pctWInvInc -0.263 0.024 -10.763 <0.001

MalePctNevMarr -0.104 0.023 -4.523 <0.001
PctWorkMom -0.117 0.020 -5.962 <0.001

PctIlleg 0.345 0.034 10.289 <0.001
PersPerOccupHous -0.356 0.036 -9.860 <0.001
PctPersDenseHous 0.281 0.036 7.756 <0.001
PctHousLess3BR -0.139 0.034 -4.073 <0.001

MedNumBR -0.053 0.018 -3.000 0.003
PctVacantBoarded 0.066 0.018 3.596 <0.001

MedOwnCostPctIncNoMtg -0.061 0.018 -3.318 0.001
NumStreet 0.242 0.036 6.767 <0.001

LemasSwornFT -0.275 0.074 -3.715 <0.001
PolicOperBudg 0.204 0.076 2.685 0.007

R-VIF R.

racepctblack 0.220 0.021 10.681 <0.001

0.904 0.439

agePct12t29 -0.185 0.044 -4.226 <0.001
agePct16t24 0.147 0.041 3.575 <0.001
numbUrban -0.129 0.027 -4.859 <0.001

pctUrban 0.064 0.013 5.112 <0.001
pctWWage -0.065 0.030 -2.175 0.030
pctWRetire -0.033 0.015 -2.295 0.022

OtherPerCap 1.119 0.010 108.563 <0.001
PctEmploy 0.082 0.029 2.845 0.005

MalePctDivorce 0.070 0.020 3.485 0.001
PctKids2Par -0.211 0.042 -4.979 <0.001

PctWorkMom -0.053 0.013 -3.983 <0.001
PctIlleg 0.214 0.030 7.230 <0.001

PctPersDenseHous 0.220 0.015 14.621 <0.001
HousVacant 0.186 0.025 7.541 <0.001
NumStreet 0.111 0.014 8.090 <0.001

R: Regression, SE: Standard error, RMSE: Residual mean square estimation, VIF: Variance inflation factor,
R-VIF: Robust VIF, racepctblack: percentage of population that is African American, pctUrban: percent-
age of people living in areas classified as urban, pctWInvInc: percentage of households with investment,
MalePctNevMarr: percentage of males who have never married, PctWorkMom: percentage of moms of
kids under 18 in labor force, PctIlleg: percentage of kids born to never married, PersPerOccupHous: mean
persons per household, PctPersDenseHous: percent of persons in dense housing (more than 1 person per
room), PctHousLess3BR: percent of housing units with less than 3 bedrooms, MedNumBR: median number
of bedrooms, PctVacantBoarded: percent of vacant housing that is boarded up, MedOwnCostPctIncNoMtg:
median owners cost as a percentage of household income, NumStreet: number of homeless people counted
in the Street, LemasSwornFT: number of sworn full time police officers, PolicOperBudg: police operating
budget, agePct12t29: percentage of population that is 12-29 in age, agePct16t24: percentage of population
that is 16-24 in age, numbUrban: number of people living in areas classified as urban, pctWWage: per-
centage of households with wage or salary income in 1989, pctWRetire: percentage of households with
retirement income in 1989, OtherPerCap: per capita income for people with ’other’ heritage, PctEmploy:
percentage of people 16 and over who are employed, MalePctDivorce: percentage of males who are di-
vorced, PctKids2Par: percentage of kids in family housing with two parents, HousVacant: number of vacant
households
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Table 4.(continue). The estimation values of final models selected using each methods (n=1994, p=122).
Methods Variables Beta SE t-statistic p-value R2 RMSE

DRCM

racepctblack 0.873 0.103 8.490 <0.001

0.649 0.595

agePct12t29 -1.768 0.115 -15.442 <0.001
pctUrban 0.141 0.036 3.904 <0.001

pctWPubAsst 0.324 0.113 2.875 0.004
PctLess9thGrade -0.991 0.211 -4.689 <0.001
PctNotHSGrad 0.665 0.239 2.780 0.006

MalePctNevMarr 0.762 0.151 5.032 <0.001
PctIlleg 1.307 0.150 8.733 <0.001

PctPersDenseHous 0.956 0.095 10.063 <0.001
PctHousLess3BR 0.444 0.097 4.560 <0.001

HousVacant 0.681 0.119 5.711 <0.001
PctHousNoPhone 0.649 0.102 6.390 <0.001

MedOwnCostPctIncNoMtg -0.533 0.074 -7.216 <0.001
NumStreet 0.559 0.170 3.298 0.001

N-DRCM

racepctblack 0.232 0.022 10.574 <0.001

0.748 0.451

agePct12t29 -0.135 0.025 -5.347 <0.001
Pct65up -0.069 0.022 -3.081 0.002

pctWPubAsst 0.110 0.020 5.611 <0.001
PctLess9thGrade -0.206 0.038 -5.441 <0.001
PctNotHSGrad 0.275 0.048 5.741 <0.001
PctOccupManu -0.054 0.020 -2.707 0.007

MalePctNevMarr 0.052 0.024 2.179 0.030
PersPerFam -0.136 0.020 -6.843 <0.001

PctIlleg 0.296 0.029 10.239 <0.001
PctNotSpeakEnglWell -0.101 0.029 -3.445 0.001

PctPersDenseHous 0.376 0.030 12.487 <0.001
HousVacant 0.153 0.019 8.220 <0.001
NumStreet 0.076 0.014 5.535 <0.001

LemasSwornFT -0.039 0.012 -3.268 0.001
LandArea -0.034 0.016 -2.164 0.031

R: Regression, SE: Standard error, RMSE: Residual mean square estimation, DRCM: Dimensional reduc-
tion of correlation matrix, N-DRCM: Nonparametric DRCM, racepctblack: percentage of population that
is African American, agePct12t29: percentage of population that is 12-29 in age, pctUrban: percentage of
people living in areas classified as urban, pctWPubAsst: percentage of households with public assistance
income in 1989, PctLess9thGrade: percentage of people 25 and over with less than a 9th grade education,
PctNotHSGrad: percentage of people 25 and over that are not high school graduates, PctHousNoPhone:
percent of occupied housing units without phone, MedOwnCostPctIncNoMtg: median owners cost as a
percentage of household income, MalePctNevMarr: percentage of males who have never married, PctIlleg:
percentage of kids born to never married, PctPersDenseHous: percent of persons in dense housing, PctHous-
Less3BR: percent of housing units with less than 3 bedrooms, HousVacant: number of vacant households,
PctHousNoPhone: percent of occupied housing units without phone, MedOwnCostPctIncNoMtg: median
owners cost as a percentage of household income - for owners without a mortgage, NumStreet: number
of homeless people counted in the street, agePct65up: percentage of population that is 65 and over in age,
PctOccupManu: percentage of people 16 and over who are employed in manufacturing, PersPerFam: mean
number of people per family, PctNotSpeakEnglWell: percent of people who do not speak English well,
LandArea: land area in square miles, LemasSwornFT: number of sworn full time police officers
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regression methods. As a result of the real dataset, the final model selected using R-VIF regression had
the highest R2. This model also had the lowest RMSE value among those obtained with other methods
excluding VIF regression. Consequently, it was decided that the R-VIF regression method performed
best in contaminated and uncontaminated datasets.

Due to recent technological advances, the authors of this study suggest to use fast regression methods
instead of conventional methods. The R-VIF regression method is particularly recommended as a fast
regression estimator in the datasets containing multicollinearity and outliers.
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Abstract

Software testing is a very important part of the software development life cycle to develop reliable and 
bug-free software but it consumes a lot of resources like development time, cost, and effort. Researchers 
have developed many techniques to get prior knowledge of fault-prone modules so that testing time and 
cost can be reduced. In this research article, a hybrid approach of distance-based pruned classification 
and regression tree (CART) and k- nearest neighbors is proposed to improve the performance of soft-
ware fault prediction. The proposed technique is tested on eleven medium to large scale software fault 
prediction datasets and performance is compared with decision tree classifier, SVM and i ts three vari-
ations, random forest, KNN, and classification and regression t ree. Four performance metrics are used 
for comparison purposes that are accuracy, precision, recall, and f1-score. Results show that our pro-
posed approach gives better performance for accuracy, precision, and f1-score performance metrics. The 
second experiment shows a significant amount of running time improvement over the standard k-nearest 
neighbor algorithm.

Keywords: Decision Tree; k- nearest neighbors; machine learning; pruning; software fault prediction.

1. Introduction

The 21st century has seen an unprecedented growth of automation and software with more emphasis 
on security, interactive graphical user interface, and faster development with more features (Singh et 
al., 2016). But all this necessitates reliable and bug-free software which can be achieved by effective 
software testing and maintenance.

Software testing is an essential part of the software development life cycle and is used to identify 
fault-prone and complex modules so that faults can be removed from fault-prone modules and refactoring 
of complex modules can be done during the software development process. But software testing and 
maintenance phase consume almost fifty percent of software development resources such as time, effort, 
and cost (Aziz et al., 2019). It is necessary to reduce the testing time and cost to develop reliable software 
within a limited budget and resources. If a somehow testing team manages to get prior knowledge about 
fault-prone and complex modules that need more attention, then the team can directly focus on those 
modules and a significant amount of testing time and effort can be reduced. Hence early identification of 
the faulty modules has caught the attention of researchers.

Many approaches have been developed in the recent past to detect and predict fault-prone modules. 
Machine learning is one of these approaches which have gained popularity in the past few years in this 
area. Decision trees (C4.5 and CART) (Quinlan et al., 1986), support vector machine and its variations 
(Noble et al., 2006), multi-layer perception (Gardner et al., 1998), k-nearest neighbors (Kozma et al., 
2008), and random forest (Biau et al., 2016) are some standard machine learning approaches that are 
the most commonly used for software fault prediction(Beygelzimer et al., 2008). But standard machine
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learning approaches usually give an average performance in most cases (Cheng et al., 2014). Researchers
are developing new and hybrid approaches by combining existing approaches to get better performance.

In this research article, we propose a hybrid approach by combining distance-based pre-pruned clas-
sification and regression tree with weighted k-nearest neighbors. The next section explains previous
works and research gaps. The third section explains the working of our proposed approach. The fourth
section discusses the experimentation and performance evaluation of our proposed approach.

2. Related works

Studies related to software fault prediction area are summarized in this section. Saravanan et al. (Sar-
avanan et al., 2021) proposed an African buffalo optimizer based convolution neural network for fast
training in the software fault prediction field. Kassaymeh et al. (Kassaymeh et al., 2021) used a salp
swarm optimizer for neural network training instead of backpropagation. Singh et al. (Singh et al.,
2021) proposed a new node splitting method for decision tree generation. Haouari et al. (Haouari et al.,
2020) presented an application of AIRS for inter-release software fault prediction. Yucalar et al. (Yu-
calar et al., 2020) compared different ensemble learning approaches like voting, bagging, and boosting
in the software fault prediction field. Alsghaier et al. (Alsghaier et al., 2020) in 2020 applied genetic
algorithm, PSO algorithm, and GA-PSO integrated algorithm to train support vector machine on twelve
software fault prediction datasets and results show that GA-PSO integrated approach gives the best re-
sults. Abuassba et al. (Abuassba et al., 2022) in 2022 developed a general plateform for ensembles
in classification context. proposed framwork is applied on twelve datasets to prove the diversity and
efficiency of ensemble learning approaches. Khan et al. (Khan et al., 2016) in 2016 explained various
machine learning approaches in their survey. Rajkumar et al. (Rajkumar et al., 2015) in 2015 applied
various machine learning approaches for thyroid problem diagnosis.

The decision tree was initially developed by Quinlan in 1986 (Quinlan et al., 1986). The initial
version of the decision tree is called ID3 and it can handle only categorical attributes. C4.5 is an extended
version of ID3 that can handle continuous attributes also was developed by Ross Quinlan (Quinlan et al.,
1986). Both of these decision tree generation algorithms use information as a node splitting criterion.
Ruggieri et al. (Ruggieri et al., 2002) in 2002 developed an efficient C4.5 classifier based on the quicksort
and counting sort algorithms to efficiently calculate information gain of continuous attributes. Safavian
et al. (Safavian et al., 1991) explained different types of decision tree classifiers and their building
methods in detail in their survey. k-NN is a non-parametric classifier initially developed by Evelyn Fix
and Joseph Hodges in 1951 (Fix et al., 1989). In this classifier value of k is fixed and for the prediction
of the class label of the testing sample, it checks the labels of k-nearest neighbors and assigns a label to
the testing sample based on the majority labels of nearest neighbors.Zhang et al. (Zhang et al., 2007)
in 2007 developed a lazy learning approach called ML-KNN based on a standard KNN algorithm for
a multi-label classification problem like test classification. Cheng et al. (Zhang et al., 2014) in 2014
developed a new k nearest neighbors algorithm based on sparse learning with data-driven k values and
neglecting the correlation of samples.

After studying previous literature, we develop a hybrid approach based on k-nearest neighbors and
decision tree. The main contributions of the projected work are listed below:

1. A new decision tree pruning approach called distance-based pruning is proposed to prune decision
tree nodes. Detailed steps of the distance-based decision tree pruning approach are explained in
section 3.2.

2. Standard k nearest neighbor algorithm has O(n) running cost which is reduced to O(log n) + c in
our proposed approach. KNNs are added at leaf nodes of decision tree in training phase to reduce
the running cost.

3. The CART decision tree is generated using distance based pruning approach and instead of storing
class labels, k nearest neighbors are stored on leaf nodes of the decision tree.

4. The concept of weights is introduced based on the sigmoid function in the prediction phase to make
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standard k nearest neighbors more effective. Weights are inversely proportional to the distance of
nearest neighbors from the point under consideration.

3. Proposed approach

This section of the research article explains the notations used to formulate our proposed approach,
working of proposed approach and running time cost of our proposed approach.

3.1 Notations
A variable X ∈ Rn∗m represents training data. Where n represents the total number of training

samples and m represents the total number of independent attributes (dimensions of the dataset). Symbol
K − Matrix is used to describe k-nearest neighbors matrix where each element of K − Matrix is
represented by symbol eij . Variable i means ith row, and j represents the jth column of the matrix.
Tolerance is a global parameter that contains a value between 0 and 1. Pi in m dimensional space
represents each training sample.

3.2 Working of approach
This article proposes a hybrid approach based on distance-based pre-pruned classification and re-

gression tree and weighted k-nearest neighbors. The proposed approach in this article considers all
training samples as m dimensional points, where m is number of independent attributes in the dataset.
A KNN-matrix (K − Matrix) is generated in which element eij = 0 if jth training sample is not
the nearest neighbour of ith training sample and element eij = 1 if jth training sample is considered
as the nearest neighbor of ith training sample. After calculation of KNN-matrix, maximum distance
Maxdistance among all points is calculated based on Euclidean distance formula and a constant param-
eter Tolerance is introduced to control the decision tree generation. At each decision tree node, the

Algorithm 1 Pseudo code of proposed approach (WK-Tree)
Input: Training Samples X , Training Classes Y
Output: Binary Classification Confusion Matrix

// X training samples
// Y labels attached to training samples

*Training phase of proposed approach*
Step 1: All training samples are considered as points in m dimensional space and the largest distance
among all points is computed using Euclidean distance shown in equation (4).
Step 2: KNN’s of all training samples are calculated using equation (3) and the matrix is created as
shown in section 3.
Step 3: The CART decision tree is created with distance-based pre-pruning.

// pruning strategy is explained in detail in section 4.2.
Step 4: KNN’s of all samples are stored in leaf nodes instead of storing class labels.

// KNN’s are stored without repetition
// all duplicate KNN’s are removed

*Testing phase of proposed approach*
Step 1: The first step is to reach the leaf node of the decision tree; the testing sample under consid-
eration belongs.
Step 2: Label of the point under consideration is assigned based on weighted labels of nearest
neighbors of the leaf node.
//smaller distance has more weight than the larger distance
Step 3: Confusion matrix is created based on predicted values by WK-Tree and actual values
Step 4: Accuracy, Recall (sensitivity), Precision, and F1-Score is calculated based on Confusion
Matrix

Maxdistance ∗Tolerance condition is checked, if the node’s training samples satisfy this condition then
that node is considered as a leaf node and instead of storing class labels, nearest neighbors based on
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KNN-matrix are stored at that leaf nodes. Detailed steps and pseudo code of the proposed approach are
given in algorithm 1.

Figure 1 represents the flow chart of our proposed approach.

Fig. 1. Flow chart of the proposed approach

3.3 WK-Tree generation
This section of the research article explains the WK-Tree generation process in detail. Steps to

develop WK-Tree are explained as below:

1. Calculation of largest distance: In the first step of proposed the approach, all training samples are
considered as points in m dimensional space and the largest distance among all points is computed
as shown in Figure 2.

Fig. 2. Grid of training samples in m dimensional space

In figure 2 distance between point P2 and point, P5 is the largest among all points. It can be con-
sidered for decision tree pruning. Distance computed among all training samples in m dimensional
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space is Euclidean distance and can be calculated based on equation (1)(Danielsson, 1980).

d(Pi, Pj) = max
1≤i,j≤n

√√√√ m∑
k=1

(
P

(k)
i − P

(k)
j

)2
(1)

Where m is the total number of dimensions/features and n is the total number of training samples.
k is variable to iterate over the number of dimensions and i & j are variable to iterate over the
number of training samples.

2. KNN matrix generation: A n ∗ n matrix of k-nearest neighbors is generated for all training
samples. Here n is the total number of training samples. sqrt(n) + c function is selected to
find the nearest neighbors and an example of 5 ∗ 5 KNN matrix is shown in equation (2) with all
diagonal elements equal to 1. If element eij of K- matrix is 1 then point j is considered as the
nearest neighbor of point i on the other hand if element eij of KNN matrix is 0 then point j is not
considered as the nearest neighbor of point i. The final matrix will be a binary square matrix with
all diagonal elements as 1. All diagonal elements are 1 because the point under consideration is
always considered as the nearest neighbor of it and stored in the leaf node of the decision tree.

K −matrix =


1 1 0 1 0
1 1 0 0 1
0 0 1 1 1
1 1 0 1 0
0 1 1 0 1

 (2)

After performing pruning of decision tree node instead of storing class label, nearest neighbors of
training samples of the pruned node are stored based on the KNN matrix.

3. Decision tree creation: A decision tree is created based on the Gini index node splitting method
with distance-based pre pruning. There are two types of decision tree node pruning methods pre-
pruning and post-pruning. Pre-pruning based on the maximum depth of each leaf node from the
root of the tree is not an effective approach so we have done distance-based pre-pruning which is
explained in section 3.4 in detail. In distance-based pruning, a constant parameter Tolerance is
initialized between 0 and 1, and Maxdistance is multiplied with Tolerance to prune decision tree
nodes.

4. Labelling of testing samples: In the labeling phase first classification and regression tree is tra-
versed to reach the leaf node and then the weighted k-nearest neighbor approach is applied to
assign the final label of the testing sample. Weights are assigned to each nearest neighbor based
on equation (3) from the testing sample.

wi =

(
1.0− 1

1 + e−dij

)
∗ Li (3)

Where wi is the weight assigned to nearest neighbor i and value of Li = −1 for non-fault prone
classes and Li = +1 for fault-prone classes.

3.4 Distance-based pruning
In distance-based pre-pruning of decision tree first, we find out the maximum distance among all

points and then take the fraction of maximum distance to prune decision tree. Maximum distance is
calculated to cover all points. Detailed steps of pre-pruning based on the fraction of maximum distance
among all training samples are explained as under:
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1. All training samples are considered as points in m dimensional space in this strategy. Here m is
the number of independent attributes.

2. Parameter Maxdistance is calculated based on equation (4).

Maxdistance = max
0≤i,j≤k

(distance(xi, yj)) (4)

Where k is the total number of training samples in a particular node of the decision tree and
(distance(x)i, yj) is the distance between point xi and point (y)j .

3. Global parameter Tolerance is adjusted between 1 and 0 manually based on the density of points.
If the parameter value is adjusted to 1, it means the whole dataset is considered as nearest neighbors
and the decision tree will be able to build only root node on the other hand if the parameter value
is adjusted to 0 then the full decision tree will be built without any pruned node.

4. While building the decision tree, at each decision tree node Maxdistance ∗ Tolerance is tested
for all training samples at that node. If the condition is satisfied for all training samples then the
decision tree node is pruned and marked as a leaf node.

3.5 Time complexity
Training time is a one-time investment, so we will discuss only the testing time complexity of our

proposed approach. The Decision tree traverses from the root node to the leaf node in the prediction
phase in O(log n) time complexity. Instead of storing labels, k-nearest neighbors are stored at leaf nodes
in our proposed approach so a little constant c is added to the actual testing time complexity of the
decision tree. The total running time complexity of our proposed approach in this research article is
O(log n+ c).

4. Results and analysis

This section of the research article explains about the model validation approach, performance measure-
ment metrics, datasets used , and comparison of results of the proposed approach with other machine
learning models.

4.1 Model validation
In this research article K-fold, cross-validation is used with the value of K set to ten. Dataset is

divided into ten equal parts and then the training phase of the approach is applied on nine parts and
tested on the remaining part. The process is repeated for each part of the K-fold dataset and the final
results are the average of all ten-part results.

4.2 Performance measurement
Four performance metrics are used to evaluate the performance of proposed approach that are calcu-

lated based on equations (5), (6), (7), and (8) (Ferri et al., 2009).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(8)
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4.3 Datasets used
In this research article, we have used 11 NASA MDP datasets. Datasets are freely available and

downloaded from the PROMISE and OPENML repositories (Karim et al., 2017),(Bischl et al., 2017).
Dataset names, number of attributes, number of instances, and fault percentage per dataset are given in
Table 1.

Table 1. Datasets used for experimentation

Dataset Name Language Total attributes Total instances Fault percentage
CM1 C 22 498 9.83
KC1 C++ 22 2109 15.45
KC2 C++ 22 522 20.49
KC3 JAVA 40 458 9.38
MC1 C and C++ 39 9466 0.71
MC2 C 40 161 32.29
MW1 C 38 403 7.69
PC1 C 22 1109 6.94
PC2 C 37 5589 0.41
PC3 C 38 1563 10.23
PC4 C 38 1458 12.20

PC2 is the largest dataset with 5589 instances and MC2 is the smallest dataset with only 161 in-
stances. But MC2 has the highest fault rate 32.29% on the other hand PC2 has the lowest fault rate with
only 0.41% fault-prone modules.

4.4 Results
The proposed approach in this article is developed and tested on a machine with corei5 processor

and 8GB RAM. Anaconda3 is used to develop this approach and compare it with other machine learning
models.

4.4.1 Accuracy
In this research article proposed approach is applied to eleven open-source NASA MDP datasets

taken from the OPENML repository (Bischl et al., 2017). Table 2 compares our proposed approach with
decision tree variations (C4.5 and CART), random forest, k-nearest neighbors, and three variations of
support vector machine in terms of accuracy performance metric. The experiment is done by setting a
tolerance parameter equal to 0.05. The best results for each dataset are shown in bold letters in Table 1.
Accuracy is calculated up to five decimal places.

Out of all eleven datasets, our proposed approach gives better results in the case of nine datasets,
including large-scale datasets like KC1, MC1, PC2, PC3, and P4, which contain more than 1500 mod-
ules. In the case of MC1, WA-SVM and GA-SVM give similar results as our proposed approach, which
is more than 99%. In the case of MC2, the k-nearest neighbor gives slightly better performance, and
in the case of PC1, GAWA-SVM gives marginally better results. In both cases, our proposed approach
provides the second-best performance. The last row of Table 2 shows the average accuracy comparison
of all datasets. Our proposed approach gives better results than all other approaches used for comparison
purposes in the case of average accuracy.
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Table 2. Accuracy Comparison of the proposed approach with other machine learning approaches, the
value of constant Tolrance = 0.05

Dataset C4.5 GA-SVM CART RF KNN WA-SVM GAWA-SVM WK-Tree
CM1/22 0.78417 0.90351 0.78768 0.87311 0.9 0.90175 0.90505 0.93333
KC1/22 0.76352 0.85143 0.75134 0.68693 0.75941 0.84527 0.84621 0.86729
KC2/22 0.76403 0.79894 0.74316 0.82322 0.75271 0.81611 0.80061 0.83439
KC3/40 0.87568 0.90352 0.87501 0.89979 0.90646 0.90391 0.90357 0.91304
MC2/40 0.64007 0.67095 0.66471 0.70735 0.71434 0.65808 0.67022 0.71428
MW1/38 0.88087 0.91829 0.87535 0.91285 0.92285 0.92317 0.91829 0.95041
PC1/22 0.87139 0.93669 0.86678 0.92566 0.93 0.93403 0.93676 0.93093
PC2/37 0.99177 0.99588 0.99213 0.99606 0.99588 0.99588 0.99588 0.99761
PC3/38 0.8714 0.90144 0.86309 0.89447 0.89767 0.90018 0.90272 0.91257
PC4/38 0.88103 0.88206 0.87517 0.87648 0.87789 0.88337 0.87790 0.88127
MC1/39 0.99461 0.99503 0.9945 0.99408 0.71434 0.99503 0.99492 0.99503
Average 0.84714 0.88706 0.84444 0.87181 0.85195 0.88697 0.88655 0.90274

Figure 3 shows the comparison of the accuracy of our proposed approach with other machine learn-
ing approaches. The accuracy distribution of our proposed approach is shown by pink colored box plot,
which clearly shows better performance of the proposed approach in this article than other machine
learning approaches.

Fig. 3. Average accuracy comparison of all datasets in terms of box plots

4.4.2 Other performance metrics
Table 3 shows the average precision, recall, and f1-score of all techniques used for comparison

on eleven datasets. The best performance value is shown in bold letters. For precision and f1-score
performance metrics, proposed approach in this article gives better performance than all other approaches
used for the comparison but in the case of recall GA-SVM and GAWA-SVM perform slightly better than
our proposed approach. GAWA-SVM gives the best performance as shown in bold letters in Table 3.
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Table 3. Average precision, recall, and f1-score of all techniques used for comparison

Technique Precision Recall F1-Score
C4.5 0.90790 0.90950 0.89874

GA-SVM 0.89014 0.99470 0.93736
CART 0.90778 0.91206 0.89920

RF 0.88811 0.95419 0.91559
KNN 0.86958 0.96455 0.90392

WA-SVM 0.89398 0.98684 0.93670
GAWA-SVM 0.89022 0.99223 0.93665

WK-Tree 0.91053 0.98521 0.94569

Figure 4 shows the comparison of other metrics like precision, recall, and f1-score for all eight
techniques used for comparison purposes. In this parallel bar graph, red-colored bar graphs show the
precision value of different techniques, blue-colored bar graphs show recall value and green-colored bar
graphs shows the f1-score comparison of all techniques used for comparison purpose.

Fig. 4. Average precision, recall, and f1-score comparison of all datasets

4.4.3 Running time
The running time complexity of our proposed approach O(log n)+c. Figure 5 shows the comparison 

of running time in seconds of our proposed approach with k-nearest neighbors and weighted k-nearest 
neighbors.
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Fig. 5. Running time comparison of the proposed approach with KNN and WKNN

5. Conclusion

This article proposes a hybrid approach of pre-pruned classification and regression tree (CART) and
k-nearest neighbors. The decision tree is pruned based on the distance among points in m dimensional
space and leaf nodes of the decision tree store nearest neighbors of training samples on leaf nodes instead
of storing class labels. The proposed approach is applied on eleven software fault prediction datasets and
results are compared with eight machine learning models. Results show significant improvement in
performance.

In future work, more hybrid approaches based on standard machine learning approaches can be
developed to improve performance and make them work for real-life projects. Work can be done on
running time complexity reduction to make the approach practical.
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Abstract

Fingerprint based human identification is one of the authentic biometric recognition systems due to the
permanence and uniqueness of the finger impressions. There is the extensive usage of fingerprint recog-
nition in personalized electronic devices, security systems, banking, forensic labs, and especially in law
enforcement agencies. Although the existing systems can recognize fingerprints, they lack in case of
poor quality and latent fingerprints. The latent fingerprints are captured by law enforcement agencies
during the crime scene to find the criminal. Consequently, it is essential to develop a novel system that
can efficiently recognize both complete and latent fingerprints. The current work proposes an efficient
Gravitational Search Decision Forest (GSDF) method, which is a combination of the gravitational search
algorithm (GSA) and the random forest (RF) method. In the proposed GSDF approach, the mass agent of
GSA determines the solution by constructing decision trees in accordance with the random forest hypoth-
esis. The recognition of the fingerprints is accomplished by mass agents in the form of a final generated
decision forest from the set of hypothesis space as the mass agents can create multiple hypotheses using
random proportional rules. The experiments for fingerprint recognition are conducted for both the latent
fingerprints (NIST SD27 dataset) and the complete fingerprints (FVC2004 dataset). The effectiveness
of the proposed GSDF approach is analyzed by evaluating the results with machine learning classifiers
(random forest, decision tree, back propagation neural networks, and k-nearest neighbor) as well. The
comparative analysis of the proposed approach and incorporated machine learning classifiers indicates
the outperformed performance of the proposed approach.

Keywords: Back propagation neural networks; decision tree; fingerprint recognition; gravitational
search algorithm; k-nearest neighbor; latent fingerprints; machine learning; random forest

1. Introduction

There are numerous biometric systems for human identification, including iris recognition, face recogni-
tion, fingerprint recognition, etc. (Nadeem et al., 2022). Among these methods, fingerprint recognition
is the most widely adapted method in practice. The concept of fingerprint recognition can be repre-
sented in two aspects: verification and identification (Maltoni et al., 2009). The verification aspect is the
1:1 comparison of a human’s fingerprints with previously stored data. The identification aspect is the
1:N comparison to determine the identity of a human by comparing the unknown fingerprints with the
available overall fingerprint databases. The verification aspect is used for complete fingerprint based bio-
metric systems, and the identification aspect is used by law enforcement agencies to identify the suspect
on the basis of acquired latent or complete fingerprints. The current work focuses on both aspects by
experimenting with both complete and latent fingerprints. An illustration of latent and complete finger-
prints is depicted in Figure 1. Latent fingerprints are poor quality distorted finger impressions, whereas
complete fingerprints can be plain or rolled impressions. Plain finger impressions are made by pressing
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Latent Fingerprint Plain Fingerprint Rolled Fingerprint 

Fig. 1. Types of Fingerprints.
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Fig. 2. Process of Fingerprint Recognition (a) Fingerprint Consideration, (b) Preprocessing, (c) Feature
Extraction & Selection, and (d) Fingerprint Matching.

the finger on a surface, whereas rolled finger impressions are made by rolling the finger from one side of
the fingernail to the other.

The process of fingerprint recognition is discussed by different modules: fingerprint consideration;
preprocessing; feature extraction & selection; and fingerprint matching. A brief overview of the finger-
print recognition process is described in Figure 2. For the incorporated fingerprints, the preprocessing
module enhances the poor quality and latent fingerprints by using the ridge dictionary and Gabor filter.
Further, the minutiae-based features are extracted by using the crossing number concept. In the feature
selection phase, the spurious minutiae are removed prior to beginning the fingerprint matching. The fi-
nal module of fingerprint matching is performed using the proposed GSDF approach, which recognizes
the fingerprints by constructing the decision forest with the help of mass agents. The amalgamation of
the machine learning based RF algorithm with the GSA algorithm is owing to the stability of the GSA
method, which is theoretically modeled using Newton’s laws. In addition, the GSA’s effective use in sev-
eral fields of bioinformatics, digital image processing, robotics, and optimization (Kumar et al., 2020)
has prompted its use in the present work of fingerprint recognition. The main contributions of the work
are summarized as follows.

• The proposal of an efficient GSDF approach by amalgamating GSA and RF algorithms for finger-
print recognition.

• The autonomous enhancement of latent and poor quality fingerprints using a combination of ridge
dictionary and Gabor filter.

• The incorporation of a feature selection module to remove spurious minutiae extracted during the
minutiae extraction phase. The removal of spurious minutiae enhances recognition accuracy.

• The testing of the proposed approach for both the latent fingerprints (NIST SD27 dataset) and the
complete fingerprints (FVC2004 dataset).

The organization of the remaining portions of the paper is as follows: Section 2 presents the state-
of-the-art work related to fingerprint recognition. Section 3 describes the preprocessing of the input
fingerprint images. Section 4 depicts the minutiae based feature extraction and selection module for
fingerprint matching. Section 5 explains the proposed GSDF approach, which is utilized for fingerprint
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recognition. Section 6 evaluates the results for the experiments on the FVC2004 and NIST SD27 datasets.
Also, the comparative analysis of the proposed approach with incorporated machine learning classifiers
is conducted in Section 6. Finally, Section 7 illustrates the conclusion of the work along with future
directions.

2. Related work

Fingerprint recognition systems should be autonomous and reliable. Inaccurate information might lead
to mishaps, especially in the case of latent fingerprints acquired from the crime scene. In 2004, the FBI
erroneously detained a man from Oregon in connection with the explosion investigation. This raised
problems regarding the fundamentals of forensic science and technology (Newman, 2007). This incident
has increased the focus of researchers on the development of efficient fingerprint recognition technolo-
gies. Here, the recent studies in the field of fingerprint recognition are discussed.

Guo et al. (2014) adapted the decision tree rule-based approach for fingerprint classification. The
authors also incorporated the methods of balance arm flow and center to data flow for the recognition of
indistinguishable fingerprints. Hsieh & Hu (2014) hybridized the support vector machine (SVM) with
particle swarm optimization (PSO) for the classification of fingerprints. The hybridized approach was
served with multi-objective optimization to handle the penalty errors of the SVM algorithm. Babatunde
(2015) proposed minutiae-based matching for the fingerprints from the different data sources. The spa-
tial and Euclidean relations among the minutiae were evaluated, and pattern matching was conducted
from the singular core points. Murugan & Rose (2017) used the back propagation neural network for
the recognition of plain and rolled fingerprint images. Lee et al. (2017) worked on the recognition of
partial fingerprints using ridge shape features (RSF) and minutiae information. The authors designed this
algorithm to improve the recognition of fingerprints on small scanning devices such as smart phones.

Cao & Jain (2018) focused on latent fingerprint matching using the convolutional neural network.
The feature attributes of minutiae information and texture templates were adapted for the fingerprint
feature representation. Castillo-Rosado & Hernández-Palancar (2019) used the distinctive ridge point
method for latent fingerprint matching. Wong & Lai (2020) adapted the orientation field information
along with the multi-tasking convolutional neural network for the restoration of corrupted fingerprints.
Kumar & Garg (2020) introduced the hybrid approach of particle swarm optimization and cuckoo search
for latent fingerprint recognition. Jindal & Singla (2021) used an ant colony optimization algorithm for
matching the minutiae of latent fingerprints with original fingerprints. Deshpande et al. (2021) presented
a ratio to minutiae triangles based method which is a rotation and scale invariant approach. The pre-
sented method was used for the identification of latent fingerprints. Pradeep & Ravi (2022) incorporated
the artificial neural network (ANN) for fingerprint classification after extracting the features using Ga-
bor filter. Singla et al. (2022) hybridized the features of pores and minutiae points for the identification
of latent fingerprints. Existing studies indicate the usability of different techniques for latent and com-
plete fingerprint recognition systems. This work addresses the following research gaps in some existing
studies.

• The focus of the researchers is observed either on the complete fingerprints with some noise value
or latent fingerprints with good quality images. There is a need to develop a system that can handle
the complete as well as latent fingerprints of low quality images.

• The manual analysis of complex latent fingerprint structures is also challenging for matching with
complete fingerprints. The present work autonomously performs the module.

• The recognition accuracy of the existing fingerprint recognition systems should be improved, es-
pecially the latent fingerprint recognition, as false values can lead to punishment for any benign
person.

• During fingerprint extraction, there may be false minutiae extracted along with the actual minutiae.
The removal of spurious minutiae information should also be incorporated as the post processing
step to reduce the false positive and false negative rates. The present work also addresses this
concern as the feature selection module.
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Fig. 3. Preprocessing of Fingerprints.

3. Fingerprint preprocessing

Fingerprint preprocessing is the essential module of the fingerprint recognition process as poor quality
fingerprints cannot extract the minutiae features efficiently. Fingerprint preprocessing is composed of
four essential steps: fingerprint orientation estimation; orientation improvement using a ridge dictio-
nary; enhancement; and binarization. These steps are also depicted in Figure 3 by considering a latent
fingerprint image from the NIST SD27 dataset.

3.1 Fingerprint orientation estimation
Initially, the fingerprint images are segmented and normalized to estimate the orientation of the fin-

gerprints. Segmentation separates the foreground region from the background while preserving the fin-
gerprint ridges and other features. The region of interest (finger impression) from the image is extracted
using the variance method. For this process, the image I(i, j) is splitted into 16×16 blocks and the vari-
ance V (I) is evaluated for each block. The blocks with a variance value greater than the threshold are
retained because the background regions possess a lower threshold value. The obtained finger impression
is normalized to reduce the variations in the grey-level of fingerprints while retaining the valley and ridge
information unaffected. The normalization N(i, j) of the image at pixel-level is conducted by consider-
ing the desired mean and variance values of M0 and V0, respectively. The normalized image is processed
for orientation estimation using the gradient vectors, which determine local orientation towards the ridge
direction flow (Jindal & Singla, 2021).

The orientation image illustrates the invariant coordinates of the fingerprints and analyzes the local
ridge information. For the gradient vector method, the normalized image N(i, j) is divided into blocks
of size 16×16. At each pixel (i, j) of each block, orientation O(i, j) is estimated with least square
estimation using Equation (1).

O(i, j) =
1

2
tan−1

(
Gy(i, j)

Gx(i, j)

)
(1)
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Fig. 4. Samples of Orientation Patches from the NIST SD4 dataset for Ridge Dictionary Construction.

Where, the gradient vector Gx(i, j) and Gy(i, j) are evaluated using the Sobel operator (Hong et
al., 1998) for the gradients ∂x(i, j) and ∂y(i, j) with respect to the x-axis and y-axis, respectively. The
calculated orientation values are kept as matrices.

Due to the low quality of the input latent fingerprint, as seen in Figure 3, the estimated orientation
field is noisy. Consequently, orienting is enhanced with the use of ridge dictionary. Further, the ridge
dictionary is constructed and the orientation field is smoothed.

3.2 Orientation improvement using ridge dictionary
The ridge dictionary is constructed from the NIST SD4 dataset, which is composed of high-quality

rolled fingerprints. The orientation patches, including ridge information, are retrieved from the fin-
gerprints of this dataset with a block size of 16×16 pixels. Each orientation patch consists of 10×10
orientation elements. Figure 4 shows some of the high-quality orientation patches that were taken from
the NIST SD4 dataset (Cao & Jain, 2015).

In the constructed ridge dictionary, only the unique patches with a quality index greater than the
threshold are included, with no recurrence of ridge patterns. With the addition of the ridge dictionary,
fingerprint orientation gets corrected to a great extent. Further, the fingerprint image with corrected ridge
orientation is smoothed using a low-pass filter (Jain et al., 2000) in which the image is initially converted
to a continuous vector field as depicted by Equations (2)-(3).

Φx(i, j) = cos(2θ(i, j)) (2)

Φy(i, j) = sin(2θ(i, j)) (3)

Where, Φx and Φy are the vector field components with respect to the x and y axes respectively. As
per the low-pass filter, the resulting vector field is determined in terms of Φ′

x and Φ′
y using Equations (4)-

(5).

Φ′
x(i, j) =

wΦ/2∑
u=−wΦ/2

wΦ/2∑
v=−wΦ/2

W (u, v)Φx(i− uw, j − vw) (4)

Φ′
y(i, j) =

wΦ/2∑
u=−wΦ/2

wΦ/2∑
v=−wΦ/2

W (u, v)Φy(i− uw, j − vw) (5)

Where, W (u, v) is the low-pass filter with a filter size of wΦ×wΦ. Further, the final ridge orientation
O′ is estimated using Equation (6).

O′(i, j) =
1

2
tan−1

Φ′
y(i, j)

Φ′
x(i, j)

(6)
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The corrected orientation image with the help of the ridge dictionary is illustrated in Figure 3.

3.3 Fingerprint enhancement
Enhancement is conducted to remove the undesired noise and preserve the corrected ridge and ori-

entation information. The attributes of the Gabor filter, such as orientation-selective and frequency-
selective, can efficiently remove the noise by preserving the ridge structure and orientation information.
Moreover, it is efficient in both the frequency and spatial domains. This makes the Gabor filter a perfect
fit for the enhancement process. The formulation of the Gabor filter (Hong et al., 1998) in the spatial
domain is described by Equations (7)-(9).

H(x, y; f, ϕ) = exp

{
−1

2

[
x2ϕ
δ2x

+
y2ϕ
δ2y

]}
cos(2πfxϕ) (7)

xϕ = x cosϕ+ y sinϕ (8)

yϕ = −x sinϕ+ y cosϕ (9)

Where, f is the filter frequency, and ϕ is the orientation of the Gabor filter. δx and δy are the standard
deviations with respect to axes x and y.

3.4 Binarization
The binarization process transforms the grey-level filtered image into a binary image. Here, the

local adaptive binarization approach is adapted for transformation in which the mean intensity value is
evaluated as a threshold value. The final image is obtained by assigning the value of 1 to the pixels whose
values are higher than the threshold, and the assigning value 0 to the rest of the pixels.

4. Feature extraction and selection

For fingerprint recognition, minutiae-based features are extracted, which are specific to normal pixel,
ridge bifurcation, and ridge endings. Here, the crossing number method is utilized to evaluate the
minutiae-based features. It determines the feature types by analyzing the surrounding pixels of a pixel
P within the 3×3 pixel window. The finding of crossing numbers 1, 2, 3, or greater than 3 reveals the
minutiae features of ridge ending, a normal ridge pixel, and ridge bifurcation, respectively. Figure 5
depicts the assessment of features using the crossing number approach. These minutiae feature types are
extracted for fingerprint matching.

Prior to considering the extracted minutiae features for fingerprint matching, these features are fil-
tered to exclude any irrelevant minutiae. The feature selection procedure eliminates spurious minutiae
such as dots, ladders, lakes, triangles, breaks, etc. Here, the ridge dictionary is utilized to identify the
spurious minutiae. The feature selection is required since spurious minutiae might lead to erroneous
fingerprint matching. The selected feature set is stored for fingerprint matching. A sample of minutiae
features after the feature selection is illustrated in Figure 6.

Crossing Number =1 

Normal Pixel Ridge Ending Ridge Bifurcation 

Crossing Number =2 Crossing Number =3 

Fig. 5. Minutiae Feature Types using the Crossing Number Method.
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5. Fingerprint matching using proposed GSDF approach

The fingerprint matching is conducted using the proposed GSDF approach, which is an amalgamation of
GSA and RF algorithms. The GSA algorithm is a physics-inspired meta-heuristic algorithm that follows
Newton’s laws of gravity and motion for optimization (Jindal et al., 2022). The RF algorithm is an
ensemble of decision trees constructed with randomly selected characteristics (Manpreet & Chhabra,
2022). In the proposed GSDF approach, GSA’s mass agents construct decision trees by following the
hypothesis of a random forest algorithm in which random solutions are generated based on splitting rules
and thresholds. The mass agents also determine the new random sub-space to handle the increasing
decision trees and keep the tradeoff between exploration and exploitation. This amalgamation process
conducts the fingerprint matching with better accuracy compared to the decision tree alone (Kozak,
2019). The process of GSDF approach initiated by considering N number of mass agents, with the
initial position of ith agent as Xi, the initial gravitational constant G0, and a decision table with decision
attributes da. The initial force acting (Rashedi et al., 2009) on the agent i by the agent j in d-dimensions is
determined by Equation (10). The mass agents describe the pixels of the fingerprint image and construct
an overall decision forest to determine which fingerprint in the fingerprint database matches the input
fingerprint.

F d
ij(t) = G(t)

Mpi(t)×Maj(t)

Rij(t) + ε

(
xdj (t)− xdi (t)

)
(10)

Where, G(t), Mpi, and Maj are the gravitational constant, passive mass for agent i, and active mass
for agent j respectively. The term ε is constant and Rij is the Euclidean distance between mass agents.
The addition of stochastic attributes to the GSDF upgrades the Force on mass agents as depicted by
Equation (11).

F d
i (t) =

N∑
j=1,j ̸=i

randjF
d
ij(t) (11)

Where, randj is a random number in the range [0, 1].
For the movement of the mass agents in nodes to construct the decision trees, the acceleration value

is also evaluated by following Newton’s law of motion. The formula to evaluate the acceleration adi (t) is
depicted by Equation (12).

adi (t) =
F d
i (t)

Mii(t)
(12)

Where, Mii(t) is the inertial mass of ith agent.
As the inertial and gravitational masses are computed using the fitness function, which states that a

higher mass value indicates a superior agent. For a better solution space with heavy masses, the inertial
and gravitational masses are equalized. This updates the masses as described in Equations (13)-(14).

Mii = Mpi = Mai = Mi (13)

Mi(t) =
mi(t)∑N
j=1mj(t)

(14)

Where, the value of mi(t) is evaluated (Equation (15)) by considering the best (best(t)) and worst
(worst(t)) values for mass agents.

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(15)

Where, fiti(t) is the fitness function.
Each mass agent constructs the decision tree by adapting the random attributes of the RF algorithm.

Further, the generated multiple decision trees are ensembled and a final decision is made for the fin-
gerprint matching. There is a test on the attributes of each node of the decision tree as depicted by
Equation (16).

test : O → Rtest (16)
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Where, the set of objects is defined by O and the possible tests are annotated with Rtest = {r1, r2, . . . , rz}.
Further, the applicability of the test for the attributes a : O → A is described by Equation (17).

test : A → Rtest (17)

Here, the possible sub-trees (T1, T2, . . . , Tz) can be constructed by each node which tests (r1, r2, . . . , rz)
for the consideration of the assumption that Ti sub-trees are created by test ri. This derives the hypothesis
h(x), as shown in Equation (18).

h(x) =


h1(x), test(x) = r1
h2(x), test(x) = r2

...
hz(x), test(x) = rz

(18)

For the n number of nodes, the size of constructed decision tree is evaluated using Equation (19).

s(T ) =
1

n
(19)

In the GSDF approach, the heuristic function ηAi,Vj for the attributes Ai and values Vj is calculated
by following the Twoing splitting criteria to attain the best split of the tree. It also retains the maximum
homogeneity of the nodes in the tree (Vives et al., 2021). The formula for the evaluation of ηAi,Vj is
described by Equation (20).

ηAi,Vj =
PlPr

4

[
D∑

d=1

∣∣∣p(d|nodel(Ai,Vj)

)
− p

(
d|noder(Ai,Vj)

)∣∣∣]2

(20)

Where, D is the maximum number of possible decision classes, Pl and Pr are the probabilities for
the left and right nodes. p

(
d|nodel(Ai,Vj)

)
and p

(
d|noder(Ai,Vj)

)
are the conditional probabilities for

the left and right nodes, respectively.
The movement of the mass agents from one node to another makes it necessary to determine the

updated position and velocity of agents. The changes in position and velocity values as per the GSA
algorithm are determined by Equations (21)-(22).

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (21)

vdi (t+ 1) = randi × vdi (t) + adi (t) (22)

The process of construction of the decision tree continues, and iterations are also increments. In the
later iterations, the mass agents can be trapped in the local optimum due to the heaviness of the masses
with the increasing iterations. This situation is handled by introducing the function of Kbest which is a
function of time. The Kbest agents also possess the highest mass value, the best fitness, and it decreases
linearly with time. At the end, there will be the applicability of force by one agent to others, and the
change in force is described by Equation (23).

F d
i (t) =

∑
jϵKbest,j ̸=i

randjF
d
ij (t) (23)

To determine the final match for the fingerprints, the outcome of each decision tree is analyzed which
will be further ensembled to determine the outcome of the decision forest by following the attributes of
the RF algorithm. The fingerprint classification and recognition outcome by each decision tree (T (S))
with training sample (S) is determined by Equations (24)-(25).

ϵ (T (S) , Dst) =
∑

(x,y)ϵU

Dst (x, y) .L (y, T (S) (x)) (24)
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Fingerprint Image 
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Fingerprint Image 

Complete Fingerprint
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Minutiae Matching of Latent Fingerprint with the Database
of Complete Fingerprint Images using the Proposed GSDF

Approach 

Recognized Complete
Fingerprint with respect to
Input Latent Fingerprint

Image using the Proposed
GSDF Approach 

Fig. 6. Fingerprint Recognition using the Proposed GSDF Approach.

L (y, T (S) (x)) =

{
1, if y ̸= T (S) (x)

0, if y = T (S) (x)
(25)

Where, the possible values of attributes are denoted by U and the distribution is denoted by Dst.
The overall results of the fingerprint classification are evaluated as a decision forest by combining the

outcomes of the decision trees with the help of voting criteria. The availability of diversity in attributes of
the GSDF approach makes the agents to choose different nodes for the construction of decision trees with
different combinations, hence the ensemble decision forest. The final solution set is determined by the
completion of maximum iterations and the evaluation of the solution by all the mass agents. The pseudo-
code of the proposed GSDF approach for fingerprint recognition is described by Algorithm 1. The
pictorial representation of the fingerprint recognition using the proposed GSDF approach is described in
Figure 6.
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Algorithm 1: Pseudo-Code of the Proposed GSDF Approach for Fingerprint Recognition
Initialize the parameters of the GSA and RF algorithms.
decision forest=null;
iteration=1;
while iteration ≤ iterationmax do

for (j = 1 to number of decision trees) do
best decision tree=null;
fingerprint classifier=choose objects // Consider mass agents for the pixels of the
fingerprint image data with equal probability.

for (N = 1 to number of mass agents) do
Construct decision trees by considering subset of attributes at each node using

attributes of GSDF approach.
new decision tree=decision tree construction using GSDF attributes.
if (new decision tree quality) > (best decision tree quality) then

best decision tree = new decision tree;
end

end
Update position and velocity of mass agents.
decision forest.add (best decision tree);

end
iteration=iteration+1;

end
Outcome=decision forest // with final classification and recognition of fingerprints.

6. Results and discussion

The fingerprint recognition results are evaluated for the latent fingerprint dataset of NIST SD27 and the
complete fingerprint dataset of FVC2004. In the NIST SD27 dataset (Garris & McCabe, 2000), a total
of 258 fingerprint images along with their rolled fingerprints are available. These latent fingerprints are
available in three categories: ugly, bad, and good, with respective images of 85, 85, and 88. Further, the
FVC2002 dataset is a composition of four sub-datasets of DB1, DB2, DB3, and DB4, collected using
various sensors and technologies (Maio et al., 2002). Each sub-dataset consists of 80 fingerprint images.
The sample images of the NIST SD27 and FVC2004 datasets are illustrated in Figure 7.

The proposed GSDF approach determines the match of fingerprints by evaluating the similarity score
of minutiae features. For the latent fingerprints (NIST SD27 dataset), the minimum threshold value of
similarity score is considered to be 75% as the latent fingerprints are incomplete fingerprints. On the
other hand, the similarity score is set to be 95% for the complete fingerprints (FVC2004 dataset). The
attainment of the mentioned similarity score threshold signifies the accurate match of the fingerprints.
The performance results are calculated in terms of precision, recall, f-measure, and recognition rate
by using similarity score values. To analyze the effectiveness of the proposed approach, the results
are also calculated for the machine learning algorithms of random forest (RF) (Manpreet & Chhabra,
2022), decision tree (DT) (Azad et al., 2022), back propagation neural networks (BPNN) (Kiran et al.,
2021), and k-nearest neighbor (KNN) (Manpreet & Chhabra, 2022). Tables 1-3 present the performance
evaluation results for the NIST SD27 dataset, and Tables 4-7 describe the performance evaluation results
for the FVC2004 dataset.

The results depicted in Tables 1-3 for latent fingerprint (NIST SD27 dataset) recognition indicate that
the proposed GSDF approach has matched the latent fingerprints with complete fingerprints efficiently.
The proposed approach has attained the recognition rate of 87.06% for the ugly class, 91.76% for the bad
class, and 98.86% for the good class of latent fingerprints. The incorporated machine learning algorithms
have also matched the latent fingerprint with complete fingerprints, but performance is inferior to the
proposed GSDF approach.
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Ugly Bad Good

(a) NIST SD27 Dataset

DB1 DB2 DB3 DB4

(b) FVC2004 Dataset

Fig. 7. Sample Images of the (a) NIST SD27 Dataset, and (b) FVC2004 Dataset.

Table 1. Performance Evaluation Results for the Ugly Fingerprint Class of the NIST SD27 Dataset.

Method Precision (%) Recall (%) F-Measure (%) Recognition Rate (%)
GSDF (Proposed) 72.55 87.06 79.14 87.06

RF 61.11 77.65 68.39 77.65
DT 54.46 71.76 61.92 71.77

BPNN 47.46 65.88 55.17 65.88
KNN 43.90 63.53 51.92 63.53

Table 2. Performance Evaluation Results for the Bad Fingerprint Class of the NIST SD27 Dataset.

Method Precision (%) Recall (%) F-Measure (%) Recognition Rate (%)
GSDF (Proposed) 76.47 91.76 83.42 91.76

RF 64.81 82.35 72.54 82.35
DT 60.91 78.82 68.72 78.82

BPNN 56.36 72.94 63.59 72.94
KNN 58.93 77.65 67.01 77.65

Table 3. Performance Evaluation Results for the Good Fingerprint Class of the NIST SD27 Dataset.

Method Precision (%) Recall (%) F-Measure (%) Recognition Rate (%)
GSDF (Proposed) 83.65 98.86 90.63 98.86

RF 76.47 88.64 82.11 88.64
DT 70.48 84.09 76.68 84.09

BPNN 69.23 81.82 75 81.82
KNN 72.12 85.23 78.13 85.23

The results for the complete fingerprint recognition illustrated in Tables 4-7 also indicate that the
proposed GSDF approach is more efficient than incorporated machine learning algorithms. For the
FVC2004 dataset, the proposed approach has attained a recognition rate of 98.75% for the DB1 class,
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Table 4. Performance Evaluation Results for the DB1 Class of the FVC2004 Dataset.

Method Precision (%) Recall (%) F-Measure (%) Recognition Rate (%)
GSDF (Proposed) 96.34 98.75 97.53 98.75

RF 89.16 92.5 90.80 92.5
DT 83.53 88.75 86.06 88.75

BPNN 82.14 86.25 84.15 86.25
KNN 85.71 90 87.81 90

Table 5. Performance Evaluation Results for the DB2 Class of the FVC2004 Dataset.

Method Precision (%) Recall (%) F-Measure (%) Recognition Rate (%)
GSDF (Proposed) 96.30 97.5 96.89 97.5

RF 90.12 91.25 90.68 91.25
DT 83.72 90 86.75 90

BPNN 80 85 82.42 85
KNN 83.33 87.5 85.37 87.5

Table 6. Performance Evaluation Results for the DB3 Class of the FVC2004 Dataset.

Method Precision (%) Recall (%) F-Measure (%) Recognition Rate (%)
GSDF (Proposed) 91.46 93.75 92.59 93.75

RF 83.33 87.5 85.37 87.5
DT 75.58 81.25 78.31 81.25

BPNN 77.91 83.75 80.72 83.75
KNN 72.41 78.75 75.45 78.75

Table 7. Performance Evaluation Results for the DB4 Class of the FVC2004 Dataset.

Method Precision (%) Recall (%) F-Measure (%) Recognition Rate (%)
GSDF (Proposed) 93.90 96.25 95.06 96.25

RF 85.71 90 87.81 90
DT 80.23 86.25 83.13 86.25

BPNN 74.71 81.25 77.84 81.25
KNN 79.07 85 81.93 85

97.5% for the DB2 class, 93.75% for the DB3 class, and 96.25% for the DB4 class of the dataset which
are superior to machine learning algorithms.

Furthermore, the overall comparison of the proposed approach with machine learning algorithms
is conducted by incorporating the parameter of recognition rate. For overall comparison, the mean of
the results for all the categories of the NIST SD27 and FVC2004 datasets is calculated separately. The
comparative analysis is described by Figure 8.

In the overall results, the proposed approach has attained the recognition rate of 92.56% for latent
fingerprints and 96.56% for complete fingerprints. For NIST SD27 dataset (Figure 8a), the recognition
rate of the proposed GSDF approach is 9.68% better than the RF algorithm, 14.33% better than the
DT algorithm, 19.01% better than the BPNN algorithm, and 17.09% better than the KNN algorithm.
For FVC2004 dataset (Figure 8b), the recognition rate of the proposed GSDF approach is 6.25% better
than the RF algorithm, 10% better than the DT algorithm, 12.5% better than the BPNN algorithm, and
11.25% better than the KNN algorithm. These comparative analysis results clearly indicate that the
proposed GSDF approach is efficient compared to incorporated machine learning algorithms for both the
latent and complete fingerprints.
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(a) (b)

Fig. 8. Performance Comparison of the Proposed GSDF Approach with Machine Learning Algorithms
for Experiments on (a) NIST SD27 Dataset (b) FVC2004 Dataset.

7. Conclusion

The paper has presented an automated fingerprint recognition system with the proposal of a novel GSDF
approach. Initially, the fingerprints from the considered datasets (NIST SD27 and FVC2004) are prepro-
cessed to enhance the poor quality images using a combined ridge dictionary and Gabor filter approach.
Further, the minutiae-based features are extracted and spurious minutiae are filtered. The selected fea-
tures feed into the proposed GSDF approach for fingerprint matching. The proposed approach efficiently
determines the match of the fingerprints by constructing the decision trees using mass agents following
the hypothesis of random forest. The final fingerprint match is determined by combining the outcomes
of all the decision trees. The proposed approach has attained an average recognition rate of 92.56% for
latent fingerprints (NIST SD27 dataset) and 96.56% for complete fingerprints (FVC2004 dataset), which
are superior to incorporated machine learning algorithms of RF, DT, KNN, and BPNN.

Although the proposed approach has yielded efficient performance results for fingerprint recognition,
the recognition rate for ugly latent fingerprints can be further optimized. It will also boost the overall
performance of the proposed approach. In the future, we will combine the GSA method with a more
effective classifier to improve the performance of ugly quality of the latent fingerprint.
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Abstract

Energy scarcity is a major problem for resource constrained Internet of Things (IoT) devices. Nowadays,
Energy Harvesting (EH) has emerged as a promising solution to prolong the network lifetime using radio
signals in wireless relay networks. In this article, we propose an optimization algorithm, based on meta-
heuristic, to enhance the energy efficiency of amplify and forward relay IoT networks. Energy constraint
relay exploits power-splitting based relay protocol to acquire energy from the source and transfer infor-
mation to destination. We derive an expression for energy efficiency of the system using the throughput
at destination and outage probability for performance evaluation. This investigation studies energy ef-
ficiency of the network against the various system parameters which are relay location, power-splitting
factor, power transmitted, data rate, energy conversion efficiency and noise power and it enables us to
find out which parameters need to be optimized. Further, an objective function is formulated to achieve
the optimal solution for power transmitted by the source and an adaptive particle swarm optimization
(OPA-APSO) algorithm is proposed to attain maximized energy efficiency. OPA-APSO differs from
most existing approaches as it provides the best amount of energy harvested while optimizing the en-
ergy efficiency. Finally, simulation results demonstrate that OPA-APSO improves energy efficiency and
throughput of the network significantly as compared to other existing techniques.

Keywords: Energy harvesting; internet of things; meta-heuristic; relaying protocol; wireless energy.

1. Introduction

In the past few years, a new trend Internet of Things (IoT) has evolved in the wireless communication
area. IoT represents a 3A idea according to which any media can be connected anytime anywhere
(Srivastava, 2006). IoT has become very popular in the information industry due to its applications in
each and every aspect of life e.g. Figure 1.

To meet these numerous applications, billions of devices are required to be connected which are
battery powered with limited life-time. Recharging and supplanting batteries can improve the device
lifetime, but it can be costly and risky when devices are deployed in unfavorable conditions e.g., health,
military applications, etc. To address this limited power battery problem in IoT, Energy Harvesting
(EH) has become very popular in research areas and is a promising solution for power limited environ-
ments (Do et al., 2017; Yan and Liu, 2017; Rekha and Garg, 2018).

EH enabled relay based IoT networks is very captivating in studies, as in (Lv et al., 2018; Omoniwa
et al., 2018; Rauniyar et al., 2019; Ashraf et al., 2021). Transmitting simultaneous wireless information
and power transfer (SWIPT) is not a new concept. Dual use of RF signals was first highlighted by (Varsh-
ney, 2008). To take advantage of SWIPT, (Zhou et al., 2013) proposed two architectures, time-switch
and power-split, for the relay nodes.
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Fig. 1. IoT Scenario

(Chen et al., 2014) studied the impact of power-splitting factor in dual-hop cooperative relaying sys-
tem for the SWIPT scheme and evaluated the outage probability and ergodic capacity of the system. For
the same relaying system, (Shah et al., 2016) investigated the throughput of dual-hop cooperative relay-
ing system by introducing a SWIPT scheme and analytical results described that at higher transmission
rate (Shah et al., 2016) outperformed (Chen et al., 2014). Further, (Huang et al., 2018) studied another
network, in which both relay and direct branches can be used for transmission, but only a single branch
is active at a time. In this, authors evaluated the performance of switch and stay technique using outage
probability. In addition to this, (Yan et al., 2018) introduced a framework for RF energy harvesting in
relay based underlay cognitive networks. In this paper, prime focus was on energy harvesting using the
SWIPT approach.

Further, the impact of energy harvested by the relay on outage probability and throughput was in-
vestigated in (Do, 2015). Authors proposed a scheme for an energy harvesting cooperative network and
evaluated it using monte-carlo method. Later, authors introduced a dynamic allocation scheme exploiting
PSR protocol for AF relaying network in (Do, 2019) and the monte-carlo method was used for analysis.
Also, (Zou et al., 2019) introduced PS based EH enabled optimal relay selection approaches in IoT
network. (Nasir et al., 2013) analyzed dual-hop AF system relay system (using both TSR and PSR)
for optimal throughput using numerical analysis. Later, (Nasir et al., 2014) examined throughput and
ergodic capacity of EH enabled relay network by employing TSR and PSR protocols. Results showed
PSR outperforms TSR protocols at a wide range of SNR, small relay distance etc.

Also, there are research works in literature which aim to optimize their objective to improve the
performance of EH-enabled relaying networks. (Tang et al., 2018) proposed an optimization algorithm
to solve optimal power allocation problem for wireless acoustic relay sensor networks and analyzed the
throughput of the system. (Rauniyar et al., 2018) developed an algorithm to maximize sum-throughput
using the Golden section search method and evaluated it in a PS based IoT relay system.

In addition to this, (Gurjar et al., 2018), analyze the impact of SNR and target rate on throughput
and energy efficiency of EH enabled IoT communication system. It can be inferred from the results that
the energy efficiency depends on SNR value. Further, (Ji et al., 2018) focused on energy efficiency of
IoT network exploiting the PS relaying scheme. For this situation, the authors formulated an optimiza-
tion problem to focus on energy management and solved this using the Lagrangian multiplier method.
Also, (Lv et al., 2018) introduced the iterative optimization algorithm employing Lagrange multipliers
to maximize the energy efficiency of an IoT network.
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As mentioned above, the majority of the existing studies mainly deal with outage probability and
throughput of the system. The techniques in literature attain the optimal value of throughput/energy
efficiency using numerical analysis or analytical analysis without considering the amount of energy har-
vested by the relay.

1.1 Contributions

Here, we propose a meta-heuristic algorithm for energy efficiency optimization in EH-enabled IoT
networks to reduce time and mathematical formulation complexity. Algorithm optimizes the energy
efficiency as well as gives the best value of the amount of energy harvested by relay for that particular
value of energy efficiency. To the best of our knowledge, this is the first work to study energy efficiency
of a system against various parameters and to propose a meta-heuristic based optimization scheme. Main
contribution of this article is listed as below:

1. Considering the dual-hop AF relay network, we present the single expression for energy efficiency
of the network in delay-limited transmission mode. For achievable energy efficiency, first we
obtain the outage probability, and then we evaluate throughput at the destination.

2. To gain insights, we analyze the impact of various system parameters Power transmitted (Ps),
energy conversion efficiency (η), power-splitting factor (ρh), Transmission Rate (R), relay location
and noise variances on achievable energy efficiency.

3. Further, based on this analysis, we propose a meta-heuristic based OPA-APSO algorithm to op-
timize the energy efficiency of a system constrained to signal-to-noise ratio. In addition to opti-
mized energy efficiency, the proposed algorithm provides the best value of the amount of energy
harvested corresponding to the achieved energy efficiency.

4. Results demonstrate significant improvement in throughput and energy efficiency compared to
existing approaches. Further, statistical analysis has been carried out to evaluate the performance
of the proposed algorithm.

Nomenclature: Various types of symbols used throughout this article and their meanings are given in
Table 1.

1.2 Organization

Organization of remaining paper is as follows. Section 2, gives the description network model with
its assumptions and information processing and energy harvesting process in detail. This Section also
presents mathematical expressions for system’s throughput and energy efficiency. Following this, the
optimization problem is formulated in Section 3. To solve this formulated problem, Section 4 explains
OPA-APSO algorithm in detail. Section 5 demonstrates obtained results and a comparison with existing
approaches. Finally, we summarize the paper in Section 6.

Table 1. Nomenclature

Parameters Meaning Parameters Meaning
Ps Power transmitted by source nar additive white Gaussian noise (AWGN) at relay node
T Time Block ncr additive conversion noise at relay
η RF to power conversion efficiency nad additive white Gaussian noise at destination
si Transmitted signal ncd additive conversion noise at destination
ρh Power splitting factor P Power received by relay
dsr Distance between source and relay Eh Energy harvested by relay
drd Distance between relay and destination Pout Outage Probability
m Path loss exponent SNRd Signal-to-noise ratio at destination
R transmission Rate EE Energy Efficiency of system
h and g Channel gain between source and relay and between relay and destination γthr minimum value of SNR at destination node
Note: In the article symbol S represents the signal. Symbols r/s/d in subscript represent whether signal is at relay, source or destination.
Symbols rec/tra in superscript of S represent whether signal is transmitted or received.
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2. Network model and description

In this article, we consider a scenario as presented in Figure 2 for AF IoT relay network. This system
consists of 3 nodes, featuring a single antenna for each node. In this dual-hop communication system,
source (S) transmits wireless information to destination (D) via relay node. There is no direct com-
munication between S and D, and communication takes place through R only. Relay node is power
restrained. First, R acquires energy using a signal received from S and then uses the energy to amplify
and forward the data to D. Channel gain coefficients from S to R and R to D are denoted by h and g
respectively. For this system, quasi-static block fading channels are assumed which are independent and
remain fixed over one time block.

Fig. 2. System Model

2.1 Energy harvesting and information processing in PSR based IoT network

Figure 3 depicts the transmission block diagram according to PSR(Nasir et al., 2014) for wireless
information and energy transmission. In this protocol, the total time block (T) is partitioned into two
slots. During the first slot, T/2, communication takes place by transferring data from source to relay. In
the second slot, the relay node communicates with the destination. Relay harvests the energy along with
information processing in the first time slot. Relay harvests the energy by using a fraction (ρh) of power
received (P ), i.e (ρhP ), and the rest of received power, i.e ((1− ρh)P ), is for data processing.

Fig. 3. PSR protocol illustration

Relay scavenges the energy first in the energy harvesting phase which is consumed in the transmis-
sion phase. Energy harvested by relay depends on both power received by relay and time duration of
harvesting phase. Relay scavenges the energy for T/2 time period. So, harvested energy by relay (Eh)
is

Eh =
ηρhPs|h|2

dmsr
T/2, (1)

where, η is between 0 and 1 and its value depends on the circuitry (Shaikh and Zeadally, 2016).
Signal received by relay is not the same as transmitted by source. Hence, after adding the noise signal
nar by the receiver at relay, signal received at relay Srecr is

Srecr =

√
Ps(1− ρh)hsi√

dmsr
+ (1− ρh)nar , (2)

where si is signal transmitted with unit power, h∼ CN(0,1) is channel gain between source and relay.
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Relay processes Srecr by converting it from RF to baseband. During the conversion, additive noise
ncr is added to the signal due to conversion. So, Ŝrecr , signal obtained after the down conversion at relay
node, is given as

Ŝrecr =

√
Ps(1− ρh)hsi√

dmsr
+ (1− ρh)nar + ncr, (3)

Before retransmitting the received signal, it is amplified at the relay node. Hence, relay transmits
information Strar which is as follows

Strar =

√
PrŜrecr√

(1−ρh)Ps|h|2
dmsr

+ (1− ρh)(σar )2 + (σcr)
2
, (4)

where, Pr is transmitted power to destination by the relay. Pr can also be calculated as

Pr =
Eh
T/2

=
ηPs|h|2ρh

dmsr
, (5)

T/2 is the total duration during which communication takes place between relay and destination. De-
nominator in eq.(4) represents the power constraint factor at the relay node. By replacing the variance of
nar and ncr with nr ,

√
(1− ρh)nar +ncr, combined variance σ2r , (1− ρh)(σar )2+(σcr)

2, eq.(4) can be
expressed as

Strar =

√
PrŜrecr√

(1−ρh)Ps|h|2
dmsr

+ (σr)2
. (6)

Destination node receives signal Srecd which can be given as

Srecd =
gStrar√
dmrd

+ nad + ncd, (7)

Using eq.(3),(5) and (6), signal received at destination in eq.(7) can be simplified as

Srecd =

√
ηρh(1− ρh)Psgh2si√

dmrdd
m
sr

√
(1− ρh)Ps|h|2 + dmsr(σr)

2︸ ︷︷ ︸
Signal Part

+

√
ηρhPsghnr√

dmrd
√
(1− ρh)Ps|h|2 + dmsr(σr)

2
+ nd︸ ︷︷ ︸

Noise Part

, (8)

where nd , nad + ncd is combined AWGNs at destination. Srecd in eq.(8) consists of two parts, i.e.,

signal part and noise part. Hence, the signal-to-noise ratio (SNRd), i.e. E{Signal Part2}
E{Noise Part2} at node D can be

expressed as eq.(9).

SNRd =
ηρh(1− ρh)P 2

s g
2h4

ηρhPsg2h2dmsr(σr)
2 + Ps|h|2dmsrdmrd(1− ρh)(σd)2 + (dmsr)

2dmrd(σr)
2(σd)2

(9)

Throughput: This article considers delay limited transmission mode where throughput of the system
is analyzed by calculating outage probability (Pout) for a particular data rate (R bits/sec/Hz) and R ,
log2(1+γthr), where γthr is threshold SNR, i.e γthr = 2R−1, for which destination can correctly detect
the data. The Pout can be determined as

Pout = Pr(SNRd < γthr) (10)

The outage probability of destination for the protocol is given by the following proposition(Nasir
et al., 2013).
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Proposition 1: For PSR protocol, outage probability at destination D can be determined as

Pout = 1− 1

Mh

∫ ∞
k= z

y

e
−
(

k
Mh

+ wk+x

(yk2−zk)Mg

)
dk (11)

Pout ≈ 1− e−
z

yMh βK1(β) (12)

For convenience, we have defined

w = Psd
m
srd

m
rdσ

2
d(1− ρh)γthr,

x = d2msr d
m
rdσ

2
rσ

2
dγthr,

y = ηρh(1− ρh)P 2
s ,

z = ηρhPsd
m
srσ

2
rγthr,

β =

√
4w

yMhMg
,

here, Mh and Mg represent means for the exponential random variables |h|2 and |g|2 respectively.
AndK1(.) denotes first order modified Bessel function of the second kind(Gradshteyn and Ryzhik, 2014).
Detailed derivation of this proposition is given in (Nasir et al., 2013)1. Here, effective communication
time is T/2, hence throughput at destination is give as:

THR =
(1− Pout)RT

2T
=
R(1− Pout)

2
(13)

Energy Efficiency: Energy efficiency of a system is characterized as a ratio of spectrum efficiency
of a system over the whole power consumption of an IoT network. Here, total power expenditure is
represented as aPs + b as in (Ji et al., 2018). a > 1 and b > 0 are factors considering power conversion
efficiency and the hardware circuits in the power consumption model. Thus, using eq.(13), we present
energy efficiency at node D here, which can be determined as given below

EE =
THR

aPs + b
=
R(1− Pout)

2(aPs + b)
(14)

3. Problem formulation

To enhance the energy efficiency of the system, this section deals with the first step of optimization i.e.
optimization problem formulation to attain the optimal value of Ps. Here, we formulate our objective
function to maximize the energy efficiency of the system subjected to constraint to minimum SNR at
destination as follows:

Max
Ps

EE (Ps) ,

s.t. SNRd ≥ γthr
(15)

Here, EE (Ps) represents energy efficiency as a function of power transmitted by source. Further,
formulated objective function can be given as by inserting eq.(14) into eq.(15):

Max
Ps

(1−Pout)R
2(aPs+b)

s.t. ηρh(1−ρh)P 2
s g

2h4

ηρhPsg2h2dmsr(σr)
2+Ps|h|2dmsrdmrd(1−ρh)(σd)2+(dmsr)

2dmrd(σr)
2(σd)2

≥ γthr
(16)

The optimization problem represented by eq.(16) is a non-linear constraint problem. Also, complex
computational terms involved in computing outage probability need to be solved iteratively with low
implementation and time complexity. Therefore, we proposed an OPA-APSO algorithm to attain the
optimal solution.

1Detailed proof is provided in (Nasir et al., 2013) and omitted here due to the space limitation.
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4. Proposed algorithm

This section introduces a novel optimization algorithm OPA-APSO to maximize the energy efficiency
of a system. OPA-APSO optimizes system parameters to maximize the achievable energy efficiency.
Further, the proposed algorithm has an extra characteristic that it keeps track of the amount of energy
harvested while maximizing the energy efficiency. OPA-APSO uses a meta-heuristic approach to give the
finest energy efficiency for the considered IoT network. To solve the intractable optimization problem,
meta-heuristics techniques are very impressive in the research area (Mortazavi and Ahmadi, 2019; Rao
et al., 2020; Gupta et al., 2021; Devi and Prabakaran, 2021). There is no doubt that this field will
continue to develop in the near future in the studies (Dokeroglu et al., 2019). Also, opposite to exact
methods which require high computational time to find the optimal solution, meta-heuristic techniques
attain near optimal solution rather quickly (Hussain et al., 2019).

(Poli et al., 2007) introduced a meta heuristic approach inspired by the social behaviour of birds and
fishes known as “Particle Swarm Optimization (PSO)”. Many optimization problems have been solved
successfully using PSO. PSO has the ability to explore the global space and exploit local space. PSO is
very robust and also converges to optima very fast. Also, PSO has been used in a large and various real
life applications. So, we opt the PSO for energy efficiency optimization. To get better results, we make
it adaptive by varying the inertia weight. Using the time-varying inertia weight, premature convergence
and local optima is avoided.

Fig. 4. Flowchart of OPA-APSO

Here, we present the Optimal Power Allocation algorithm using Adaptive PSO (OPA-APSO) to solve
the optimization problem formulated in eq.(16). Flow chart of the proposed scheme is shown in Figure 4.
Here, the algorithm is explained in detail.

Algorithm 1 is divided into two sections: Initialization and Updation. In the initialization section
, all the algorithm parameters are initialized and in the updation section, values are updated to find the
optimal result.

4.1 Initialization
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Algorithm 1 : Optimal Power Allocation algorithm using Adaptive PSO
Procedure OPA-APSO

1: Initialize the nPop, MaxIt, c1, c2, wMax, wMin, gBest=0
2: for i=1 to nPop do
3: Initialize the positions of particles xi by assigning random values of power transmitted by source.
4: Initialize the velocity of particle vi using random value
5: Evaluate the fitness EE(xi) using Algorithm 2
6: Set the pBesti to the current position xi
7: for i=1 to nPop do
8: if EE(pBesti) > EE(gBest) then gBest=pBesti
9: if EE(pBesti) = EE(gBest) then

10: if EH(pBesti) > EH(gBest) then gBest=pBesti
11: for it=1 to MaxIt do
12: for each particle xi do
13: Update the velocity of particle using eq.(17)
14: Update new position using eq.(18)
15: Evaluate the Fitness EE(xi) using Algorithm 2
16: if EE(xi)> EE(pBesti) then pBesti=xi
17: if EE(xi)= EE(pBesti) then
18: if EH(xi)> EH(pBesti) then pBest=xi
19: if EE(pBesti) > EE(gBest) then gBest=pBesti
20: if EE(pBesti) = EE(gBest) then
21: if EH(pBesti) > EH(gBest) then gBest=pBesti
22: Update inertia w=wMax-it*((wMax-wMin)/MaxIt);
23: return gBest

From steps 1 to 8, all the parameters are initialized. In step 1, various parameters are set which are:

a. nPop: Total number of population.

b. MaxIt: Total number of iterations.

c. Learning Parameters (c1,c2): c1 is a cognitive learning parameter and represents the particle’s
desirability moving towards its own success. c2 is a social learning parameter and represents the
particle’s desirability moving towards the neighbor’s success.

d. Inertia weight (w): used to control variation of velocity in the succeeding iteration from the pre-
vious one. The value of w has an impact on exploration and exploitation. Higher value of w
facilitates exploration, while smaller w is beneficial for local search.

In steps 3 and 4, population vector and velocity vectors are initialized. In the population vector, each
particle is assigned position xi randomly. Velocity vector is initialized by assigning a random velocity vi
to each particle. Then calculate the fitness of particles using step 5. Assign current particle position to
personal best (pBest) for each particle in step 6, which is the best position of particle till now. From all
the personal bests, find the global best position (gBest) in step 7 to step 10. If EE of the personal best
is greater than the global best then set gBest to pBest in step 8. If EE of the pBest and gBest are the
same then their energy harvested is checked in step 9. If the EH(pBest) is greater than the EH(gBest)
then gBest is reset to pBest in step 10.
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4.2 Updation

In this section, values are updated to find the optimal solution.

a Velocity Update: In step 13, the velocity of each particle is updated in each iteration using personal
best position and global best. The velocity is updated using eq.(17) to move the particle towards
global best and its own best (Chen and Yu, 2005).

vij = w ∗ vij + c1 ∗ r1 ∗ (pBesti − xij)︸ ︷︷ ︸
particle personal best

+ c2 ∗ r2 ∗ (gBest− xij)︸ ︷︷ ︸
global best

(17)

Here, xij and vij are the position and velocity of ith particle in jth iteration respectively. r1 and
r2 are random values between 0 and 1.

b Position Update: Using the updated velocity in step 13, the position of each particle is updated so
that the particle can move towards optimal value. In step 14, a new position for each particle is
obtained using eq.(18) in each iteration. As the velocity is calculated using both personal best and
global best factors, the same impact will be on particle position.

xij = xij + vij (18)

c Personal Best Update: Step 15 calculate the fitness value for each particle and then based on new
fitness, each particle’s personal best is updated. If the new fitness value is higher than the pBest
of the particle the pBest is updated to that position in steps 16-18.

d Global Best Update: Based on the previous steps, steps 19-21 update the global best to current
best position. It yields the highest fitness value among all personal bests till that iteration along
with the highest energy harvested for the same energy efficiency.

e Inertia Weight Update (w): Value of w affects the ability of exploitation and exploration. We need
to avoid local minima and exploit the global space. Hence, to obtain exploration & exploitation
trade-off, time adaptive w is used (Shi and Eberhart, 1998). The inertia weight is calculated as:

w = wMax− it ∗ ((wMax− wMin)/MaxIt), (19)

where, wMax represents initial inertia weight and wMin is the final value of inertia weight. it is
the current iteration.

If the number of iteration exceeds MaxIt then the algorithm stops by returning the gBest.

Algorithm 2 : Evaluate Fitness EE(x) and Energy Harvested EH

1: Input all the parameters Ps,a,b,g,h,η, ρh, dsr, drd, σd, σr
2: Calculate SNRd at destination using eq.(9)
3: Calculate outage probability Pout using eq.(12)
4: Calculate throughput THR of system using eq.(13)
5: Calculate energy harvested EH by relay using eq.(1)
6: Calculate energy efficiency EE of system using eq.(14)
7: return EE and EH

Algorithm 2 describes the evaluation of fitness function. Step 1 initializes the various parameters for
the system model. Using all the parameters and eq.(9), signal-to-noise ratio at destination is calculated in
step 2. Then using SNRd and eq.(12), step 3 calculates the outage probability which is used in step 4 to
obtain the throughput. Step 5 provides the energy harvested by the relay node. Finally, in step 6 energy
efficiency of the system is evaluated which is our objective function.
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4.3 Computational complexity

OPA-APSO aims to maximize the system energy efficiency with the best value of energy harvested
by relay. In each iteration, OPA-APSO moves towards the convergence by finding the optimal value of
power transmitted. Computational complexity is analyzed under the worst case scenario, i.e, convergence
is obtained after completing every iteration.

We assume that the algorithm takes m population size and n number of iterations. Step 1 initializes
all the parameters with O(1) time complexity. For loop (Steps 2 to 6) runs for m times to calculate the
pBest of each particle. So, the complexity of this loop is O(m).

The next pBest of ith particle (i=1,....., m) is achieved by some set of operations like addition, mul-
tiplication and comparison. Hence, predicting the pBest of each particle is computed in m computation
time. Therefore, the computation time of steps 7 to 10 is O(m), as all the operations have O(1) time
complexity. Now, each operation from steps 13 to 21 is performed for each particle in each iteration, i.e,
m times. So, the time complexity of steps 11 to 22 is equivalent to O(m*n).

Hence, overall complexity of proposed OPA-APSO is O(m)+O(m)+O(m*n) in dual-hop relay based
IoT system which is equivalent to O(m*n).

5. Results and analysis

Analytical results using the expressions derived in the previous section are presented here. We have
obtained results into two sets using MATLAB 2016. First set is carried out to investigate the effect
of system parameters on energy efficiency. This set provides how energy efficiency varies with each
parameter. And based on this analysis, the second set is used to optimize the energy efficiency keeping
in consideration to give the best value of energy harvested.

We compare our approach with approaches (Ji et al., 2018), (Nasir et al., 2013) and (Do, 2019). (Ji
et al., 2018) consider a dual-hop relay network system exploiting PSR protocol and optimize the energy
efficiency at the destination. Authors optimize the solution by using the optimal value of the power-
splitting factor. (Nasir et al., 2013) study the impact of various parameters on throughput of the system
for both TSR and PSR protocols and optimize the throughput. They provide the analysis which protocol
performs better in which situation. Further, (Do, 2019) optimizes the throughput of relay based model
using PSR. They find the optimal value of the power-splitting factor to optimize the throughput of the
system. Mentioned approaches use numerical methods to solve the optimization problem.

5.1 Impact of various system parameters

In our considered system, default values for the various parameters are adopted as Ps =1 Joules/sec,
η =1, m =2.7 and R =3 bits/sec/Hz. dsr and drd are normalized to 1. Antenna noise covariances (σ2a)
and conversion noise covariances (σ2c ) at both relay and destination are assumed equal for simplicity.
The mean values Mh and Mg of channel gain parameters |h|2 and |g|2 are assigned unit values. These
simulation settings are in line with work by (Nasir et al., 2013). Power consumption parameters: a
varies from 2 to 10 and b = 10,100 and 300 (Ji et al., 2018).

From eq.(14), it can be seen that a system’s energy efficiency depends on various parameters Ps, R, η,
ρh, dsr, drd, σ

2
c , σ

2
a, etc. So, we study the analysis of different parameters on the system’s energy effi-

ciency individually keeping all other parameters fixed.
Figure 5 plots energy efficiency of the system vs. power transmitted by the source node for various

values of power consumption parameters. From Figure 5, it is obvious that the energy efficiency increases
with the increase in Ps till it reaches an optimal value and then it starts decreasing for each curve.
It is due to an increase in total network power consumption (aPs+b) with the increase in transmitted
power. Throughput increases as Ps increases. For lower value of power, increase in throughput is more
considerable than the total power consumption. On the other hand, increase in total power consumption
is more considerable than throughput at the higher values of power. So this results in first increasing the
energy efficiency of the system upto optimal value then it starts decreasing. Total power expenditure is
low for the lower values of a and b, but it increases with increase in a and b. For the lower values of
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Fig. 5. Energy Efficiency vs. Ps

b, aPs is considerable when Ps changes. It results in a significant change in energy efficiency with an
increase in Ps for lower values of a and b. But due to the high value of b, change in aPs is significantly
low as compared to b with the increase of Ps. Hence, there is negligible change in energy efficiency.

Fig. 6. Energy efficiency vs. power splitting factor (ρh)

Figure 6 shows achievable energy efficiency as a function of power splitting factor (ρh). We can see
the energy efficiency of the system first increases upto some optimal point and then start decreasing as ρh
approaches to 1 for various values of a and b as depicted in Figure 6. Reason is that for the smaller values
of ρh relay harvests less power which yields lower energy efficiency of the system. On the contrary, for
the values of ρh larger than the optimal value, the relay node has more power to harvest and less energy to
process the information. Therefore, the relay node has low signal strength and it results in lower energy
efficiency.

Further, the location of the relay (dsr) between source and destination also affects the efficiency as
shown in Figure 7. Here, drd is set to drd = 2 − dsr for all curves. As we can see from Figure 7, the
system’s energy efficiency decreases as dsr increases. It is due to the reason that as dsr increases both
signal received and energy harvested by the relay decrease which results in lower energy efficiency.

Figure 8 plots the variation of energy efficiency with different values of R. Energy efficiency increases
with increase in R upto optimal value and then starts decreasing as shown in Figure 8 for every curve.
At lower data transmission rate energy efficiency increases with increase in data rate. Contrary to this, at
higher values of R, the receiver is not able to decode a large amount of data correctly in a limited period.
Therefore, there is an increase in outage probability (Pout), which leads to decrease in energy efficiency.

Figure 9 plots the variation of energy efficiency with different values of energy conversion efficiency
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Fig. 7. Energy efficiency vs. distance between source and relay (dsr)

Fig. 8. Energy efficiency vs. data transmission rate (R)

Fig. 9. Energy efficiency vs. energy conversion efficiency (η)

(η). Energy efficiency increases with increase in η.
Figure 10 depicts the effect of conversion noise variance (σ2c ) on the energy efficiency of a system by

keeping all other parameters fixed. From Figure 10, it can be observed that energy efficiency decreases
with increase in σ2c . The increased conversion noise affects the throughput at destination which results
in lowering the energy efficiency for various values of a and b. And the similar trend is followed in
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Fig. 10. Energy efficiency vs. conversion noise variance

Figure 11, which plots the variation of energy efficiency with different values of antenna noise variance
(σ2a).

Fig. 11. Energy efficiency vs. antenna noise variance

Fig. 12. Optimized Energy Efficiency for various parameters
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5.2 Optimized energy efficiency using OPA-APSO

In the previous section, we analyzed how energy efficiency of system is affected by various system
parameters. Energy efficiency varies linear fashion with η, dsr, σ2c and σ2a while with Ps, ρh, R param-
eters varies in parabolic pattern. Based on this analysis, we employ the OPA-APSO to find the optimal
values of power transmitted to optimize the energy efficiency. Based on this analysis, we employ the
OPA-APSO to find the optimal values of system parameters to optimize the energy efficiency. OPA-
APSO optimizes the energy efficiency against only one parameter at a time. We also optimize the R and
ρh using OPA-APSO. Figure 12 represents the optimized energy efficiency of the system for the various
parameters and the obtained optimal values of different system parameters Ps, R, η, ρh, dsr, σ2c , σ

2
a are

2.0468,2.6288,0.63799,1.2024E-07,0.0001,0.0001 and 1 respectively.

5.3 Statistical analysis

We run the OPA-APSO algorithm over 15 cycles and the simulation results are represented by the
mean values. To evaluate the statistical performance of the proposed algorithm, we have used the stan-
dard deviation and coefficient of variance (CoV). Standard Deviation (SD) is a method used to measure
the distribution of the data about the mean value. CoV% is calculated as:

CoV% =
SD

Mean
∗ 100

Lower values of SD and CoV mean results provided by the algorithm are stable. Table 2 gives the values
of mean, SD and CoV for various parameters.

Table 2. Statistical Analysis of Results

Parameter Mean SD CoV%
Data Rate 0.061872 1.11E-05 0.018
Power 0.070682 1.24E-05 0.01756
Antenna Noise Variance 0.077338 1.51E-05 0.01954
Conversion Noise Variance 0.087339 1.48E-05 0.01689
Distance 0.125 2.23E-05 0.01782
Power Splitting Factor 0.061559 1.17E-05 0.01895
Energy Conversion Efficiency 0.053423 1.07E-05 0.01998

Fig. 13. Optimized Energy efficiency of OPA-APSO and (Ji et al., 2018) at various ρh values

5.4 Comparison of OPA-APSO with existing approaches
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To show the efficacy of the proposed approach, we compare OPA-APSO with already existing relay-
ing techniques (Nasir et al., 2013; Ji et al., 2018; Do, 2019) for energy harvesting. Table 3 summarizes
above discussed approaches w.r.t. to parameters, objective and method used to achieve optimal results.

Figure 13 shows the comparison of optimized energy efficiency between OPA-APSO and (Ji et al.,
2018). Optimized energy efficiency values of (Ji et al., 2018) are shown for three different values of ρh
0.1, 0.5 and 0.9 as shown in Figure 13. OPA-APSO achieves 96% higher efficiency than (Ji et al., 2018).

Fig. 14. Comparison of optimized throughput with existing approaches at various parameters

Figure 14 presents a comparison between throughput of the considered IoT system by using OPA-
APSO and approaches used in (Do, 2019) and (Nasir et al., 2013) and it is observed that OPA-APSO
gives better results than these approaches for optimal value of power-splitting factor, data rate, antenna
and conversion noise variance, and distance respectively. The results show that there is a considerable
improvement in the throughput using the OPA-APSO algorithm to find out the optimal transmission
power. Throughput is enhanced by 50% and 35% over approaches (Do, 2019) and (Nasir et al., 2013)
respectively.

Table 3. Comparison of proposed approach with existing approaches

Author (Nasir et al., 2013) (Ji et al., 2018) (Do, 2019) OPA-APSO
System Dual-Hop Dual-Hop Dual-Hop Dual-Hop
Type Amplify-and-Forward Amplify-and-Forward Amplify-and-Forward Amplify-and-Forward
Technique Numerical Analysis Lagrangian multiplier method Monte Carlo Method Adaptive PSO
Objective Throughput Energy Efficiency Throughput Energy Efficiency
Parameter Power-Splitting Factor Transmitted Power Power-Splitting Factor Transmitted Power
Throughput 0.724 - 0.65 0.98955
Energy Efficiency No 0.036 No 0.070682
Considering Amount of Energy Harvested No No No Yes

6. Conclusions and future directions

In this article, we have studied the EH enabled cooperative communication network for IoT devices.
Relay employs PSR to harvest the energy and process the information in the amplify-and-forward IoT
network. Our main motive is to optimize the system’s energy efficiency. For this, we present the ex-
pressions for the outage probability and energy efficiency for delay limited transmission mode under
quasi-static block fading. Also, we investigate the impact of Ps, R, η, ρh, dsr, drd, σ2c , σ

2
a on energy ef-

ficiency individually. Numerical results reveal how these parameters affect energy efficiency and drive
us to optimize the parameters to obtain the maximized energy efficiency. Further, we formulate the op-
timization problem for achievable energy efficiency at the destination, simultaneously considering the
amount of energy harvested by the relay. In order to solve the optimization problem, we have proposed
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a meta-heuristic based OPA-APSO algorithm to achieve the maximized energy efficiency. The proposed
approach also gives the best value of the amount of harvested energy by the relay node for the achieved
energy efficiency. Results show the efficacy of OPA-APSO over the existing schemes. Further, statistical
analysis is performed which shows the stability of the algorithm. In the future, it would be interesting to
optimize other important factors along with energy efficiency as multi-objective optimization problem.
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Abstract 

Congestion is a significant issue for event-based applications due to the continuous data collection 
and transmission by the sensors constituting the network. The congestion control technique 
monitors the process of adjusting the data and intends to manage the network traffic level to the 
threshold value. The information gathered from an intensive study is required to strengthen the 
knowledge base for devising a QoS based congestion evasion clustering framework of wireless 
sensor networks. In this scheme, the cluster heads are optimally determined and dispersed over the 
network. The data aggregation approach has been applied in a clustered network and set out a 
crucial paradigm for WSN routing. The proposal employs to mitigate congestion while messages 
are being forwarded via an alternate route to distribute the traffic and increase the throughput. This 
technique aims to balance the energy ingestion among the sensor nodes, reduce energy 
consumption, improve network lifetime, and achieve the quality of services. The result analysis 
revealed that the proposed scheme recommends 22.5% better throughput, 21% lesser end-to-end 
delay, 25.5% better delivery ratio, and efficiently relieves congestion while preserving the 
network's performance for attaining QoS in wireless sensor networks. 

Keywords: Clustering; congestion control; data aggregation; quality of services; wireless sensor 
networks. 

1. Introduction

Wireless sensor networks comprise profuse sensor nodes to create an ad hoc distributed data 
proliferation network that collects context information about the physical environment (Shahraki 
et al., 2020). Routing (Zear et al., 2021; Saha et al., 2021) would not be an intricate calculation 
and can acclimate to dynamic topology changes, ensuring consistent energy indulgence across a 
network while also helping to accomplish the quality of services. The multipath routing strategy is 
extensively utilized in WSN to increase network performance by efficiently using the available 
network resources. Clustering (Ali et al., 2020) is a network management technique for designing 
hierarchical structures that are both scalable and resilient. Hierarchical routing employs multi-hop 
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communication among the network nodes in a particular region and performs data aggregation to 
reduce the total delivered messages to the sink node to maintain energy consumption effectively.  

Congestion (Pandey et al., 2020) is one of the predominant snags due to the restricted 
resources for data processing, communication capacity, and energy supply. Sensor nodes near the 
sink node are more susceptible to node-level congestion where packet loss is encountered and 
affects the network's lifetime. Multiple sensor nodes attempt to access the transmission medium 
concurrently in link-level congestion. In order to achieve QoS, end-to-end congestion control 
adjusts the traffic rate of source and intermediary nodes. WSN applications have their specific QoS 
(Kaur et al., 2019) requirements and are categorized as; network-specific QoS and application-
specific QoS. Due to diverse traffic flows, changing network conditions, and the resource-
constricted sensor nodes, accomplishing the quality-of-service requirements of several applications 
remnants a hard challenge for routing protocols. Several sensors in each location will acquire 
numerous redundant data due to the random distribution of network nodes. Route discovery in a 
flat network is made by flooding, where duplicate messages expand network load and necessitate 
additional bandwidth.  

To solve the problem, we propose a QoS based congestion evasion clustering framework for 
sensor networks to enrich the network performance.   
The followings are the main contributions of the proposed framework:   
• We have introduced cluster formation mechanism, where dynamic cluster head selection

process ensures even dissemination of energy among the sensor nodes to ensure that no nodes
would run out of energy. The maximum number of cluster members is restrained during cluster
formation to balance the energy consumption and create routing trees where cluster heads
appear as the child node of the tree.

• We have proposed cluster member level and cluster head level data aggregation strategies to
assure distinct data delivery to sink node.

• We have forged the node level congestion mitigation technique for priority and regular data
where sensor nodes would be aware of the congestion level of the upstream or downstream
neighbour nodes before forwarding the data packets.

• In this proposal, the message forwarding has been carried out via multipath routing, which is
crucial for maintaining alternate routes, distributing traffic loads, and increasing throughput.

Extensive simulation shows that our proposed framework outperforms other existing 
protocols and achieves better network lifetime, energy efficiency, and accomplishes the quality of 
services. 

The rest of the paper is delineated as follows. Section 2 attempts to introduce a holistic view 
of the state-of-the-art congestion control technique along with the hierarchical cluster-based 
routing. A comprehensive study of QoS mechanisms is offered here. In section 3, we have proposed 
a QoS based congestion evasion clustering framework of wireless sensor networks. The simulation 
in section 4 reveals that the proposed technique outperforms than other existing algorithms. This 
paper has been concluded in section 5. 
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2. Related Works

This section includes a comprehensive fine-grained survey on the distinct routing protocols of 
WSN. Several well-known clustering algorithms have been studied to recognize the pros and cons 
of those proposals for designing the novel hierarchical clustering routing. 

The LEACH (Heinzelman et al., 2000) protocol employs a cluster-based hierarchical 
architecture with random cluster head rotation to disperse the energy load across the sensor nodes 
but is inappropriate for large networks and cannot confirm load balancing. The data aggregation in 
EELEACH (Arumugam et al., 2015) impedes a significant amount of energy while routing is 
implemented based on adequate data collection and optimum clustering. In CDAS (Devi et al., 
2020), latency and packet loss reduction lessen the overhead and end-to-end delay while improving 
energy utilization and network lifetime. In (Khediri et al., 2020), intra-cluster communication 
employs single hop; in contrast, inter-cluster communication manages multi-hop communication 
mode and achieves energy utilization. Although the network lifetime is the most significant concern 
(Han et al., 2020), offline parameter optimization has a high-level complexity, creates 
computational overhead, and does not concern multi-hop communication. EASS (Khan et al., 
2020) defines different states depending on the sensor node's internal elements and aligns them 
based on the contents of data packets and the incidence of produced traffic. In (Salim et al., 2021), 
cluster heads are designated based on the continuing energy and distance between the cluster heads 
and confirms fault tolerance level. In (Behera et al., 2021) presented an adaptive, resilient cluster 
head selection where the threshold value of CH election is adjusted based on enduring energy and 
the optimum number of clusters. Brainstorm optimization with levy distribution-based clustering 
was proposed in (Cho et al., 2021), whereas data aggregation approaches for curtailing energy 
intemperance are not considered. In Q-DAEER (Yoo et al., 2021), a data aggregation method is 
utilized to compute the optimum path to extend the network's lifespan while minimizing energy 
utilization. Priority would be calculated using the priority function in CPMEA (Ranga et al.,2016), 
and accordingly, actors would be chosen. The major objective is choosing the smallest number of 
actors or the smallest overlap between their respective positions. In (Adhikary et al., 2021), the 
clustering scheme achieves load distribution and ensures energy efficient route discovery, but this 
proposal does not consider data aggregation mechanism. The preceding study shows that the choice 
of cluster heads is a crucial issue in hierarchical cluster routing. Incredibly, the construction of 
clusters and the rotation of the cluster head have a substantial effect on the entire network's 
performance.  

To identify the congestion-related parameters, we have studied a variety of congestion 
control mechanisms to weigh the benefits and drawbacks of those proposals. In (Bhandari et al., 
2018), a multi-criteria decision-making method and different routing metrics are used to identify 
the optimum substitute parent node that is used to alleviate the congestion. In (Singh et al., 2018), 
the proposal uses a multi-objective optimization strategy to limit the arrival rate depending on 
priority by allowing priority-based communication. The authors (Farsi et al., 2019), proposed 
congestion-aware clustering routing to reduce end-to-end delay and extend the network's lifetime 
by selecting the primary and secondary cluster head. Authors (Srivastava et al., 2019), devised an 
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algorithm that lowers the total end-to-end delay while increasing network endurance using the 
firefly optimization technique. The alternate hop selection method (Adil et al., 2021) diverts sensor 
communication to the neighbors and regulates network traffic in a congested environment while 
also extending the network lifetime.  

The aforesaid study identifies that the network performance has been affected due to the 
congestion. Congestion evasion methods should be implemented to regulate the network traffic 
when there is likely to be transitory congestion. 

QoS mechanisms have been put through a thorough analysis that highlights the performance 
issues, which would help design the proposed proposal. In (Deepa et al., 2020), an alternative path 
was dynamically selected, reducing transmission latency and communication overhead to save 
energy consumption and improve load balancing. The clustering technique (Faheem et al., 2018) 
consolidates sensor nodes into a linked hierarchy for energy and traffic load distribution within the 
network that shrinks data route loops and network latency. Clustering, duty cycling, and 
collaborative communication combine in ECO-LEACH (Bahbahani et al., 2018) to achieve 
improved energy efficiency and energy-neutral operation across several layers of the system 
architecture. EADCR (Panchal et al., 2020) employs the residual energy, Euclidean distance, and 
cluster centroid as crucial factors in extending network lifespan. Efficient and secure path inference 
with the lowest latency and optimal bandwidth use are significant aspects of the proposed method 
(Alghamdi et al., 2021) that improve network performance. The hybrid protocol (Sharma et al., 
2021) was devised for diverse networks and executed based on the multi-objective optimization 
approach for rate optimization and governing the data transfer rate from child to parent node. It's 
been revealed that uneven traffic load allocation among sensor nodes might lead to sensor node 
energy depletion quicker than expected. In QoS protocol, energy utilization should be distributed 
equally across the sensor nodes along the path to the sink node. 
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During the above study following limitations have been identified. It has been observed that 
most of the researchers have concentrated on the cluster head selection and cluster formation 
process, but very few proposals are associated to the restriction of the maximum number of cluster 
members has been discussed. Rather than concentrating on both cluster member and cluster head 
level aggregation, maximum authors concentrated on cluster head level aggregation. There has not 
been any precise proposal put out to alleviate the congestion for the priority data. It is unlikely that 
less attention is paid to reduce bottleneck conditions of the hierarchical cluster routing tree. In light 
of data aggregation and congestion mitigation, no specific solution has been noticed to attain the 
quality of services. To overcome the above concerns, we have proposed a novel QoS based 
congestion evasion clustering framework of WSN that optimizes energy management and achieves 
the quality of services. 
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3. Proposed framework: QoS based congestion evasion clustering framework of WSN

The previous section reveals a wide range of congestion control mechanisms and found that 
congestion significantly impacts the overall network performance of WSN. According to the 
findings of the study, cluster head selection and proper cluster formation have a considerable 
influence on network performance. Before sending data to the sink node, data aggregation is 
recommended to minimize the number of messages delivered to the node. Energy efficiency is 
often recognized as a significant design consideration to solve the inadequacies of the previously 
outlined approaches. It is a challenge to design a new framework that can fulfill all these objectives 
while still being as simple to implement as possible. We present a QoS based congestion evasion 
clustering framework of wireless sensor networks to optimize energy efficiency and improve 
network performance to achieve the quality of services.   

The proposed framework consists of five modules. Module 3.1 introduces the cluster head 
selection process, whereas Module 3.2 depicts the cluster formation technique. Module 3.3 
represents an aggregation technique. Module 3.4 discusses a method for congestion mitigation. 
Module 3.5 implements an alternate path creation technique to carry out the communication 
operation. 

Fig. 1. System Flow of the Proposed Framework 

Module 3.1: Cluster Head Selection  

This module proposes a dynamic cluster head selection mechanism where node-specific 
information is deemed for cluster head selection. This process is initiated and monitored by sink 
node. The current cluster head will be substituted by the new cluster head when the energy level 
drops lower than the threshold value. A balanced energy distribution among the sensor nodes is 
confirmed by rotating the cluster head, guaranteeing that none of the nodes run out of power owing 
to their responsibilities. Each sensor node would find its maximum number of neighbors within a 
single hop distance.  

The degree difference (∆𝑛𝑠!) for every node is: 

∆𝑛𝑠! = ∑ (𝑑"! − 𝑑"")#!€%(#) ,  *where	𝑠! ≠ 𝑠( 	and	4	𝑑𝑖𝑠𝑡7𝑠! , 𝑠(9 ≤ 	 𝑡);< (1) 

Cluster Head Selection 

Cluster Formation Procedure

Data Aggregation Mechanism

Congestion Mitigation Technique

Communication Procedure
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For each network node, the average distance among the neighbors is: 

∆𝑎𝑑𝑠! =
*
+
	>∑ 𝑑𝑖𝑠𝑡7𝑠! , 𝑠(9	#"€%(#) ?, where n ≥ 1 and 𝑑𝑖𝑠𝑡7𝑠! , 𝑠(9 is the euclidean

distance between node 𝑠! and node 𝑠( . 
(2) 

The distance between the sensor node and the sink node is:  ∆𝑠𝑛𝑑𝑠! = 𝑑𝑖𝑠𝑡(𝑆𝑁, 𝑠𝒊)  

The minimum distance with the sink node is: [𝑚𝑖𝑛|∆𝑠𝑛𝑑𝑠!|} =
min{𝑑𝑖𝑠(𝑆𝑁, 𝑠𝒊)} ∀	𝑠𝒊	€	𝑆 = [	∑(𝑆𝑁 −	𝑠𝒊)-| 	∀	𝑠𝒊	€	𝑆	] 

(3) 

The maximum distance with the sink node is: [𝑚𝑎𝑥|∆𝑠𝑛𝑑𝑠!|} =
max{𝑑𝑖𝑠(𝑆𝑁, 𝑠𝒊)} ∀	𝑠𝒊	€	𝑆 = [	∑(𝑆𝑁 −	𝑠𝒊)-| 	∀	𝑠𝒊	€	𝑆	] 

(4) 

After a specific time interval, compute the energy ratio of each node and update the  
ND_ENGY_TBL	{𝑠! , 𝑒𝑖𝑛𝑠!, 𝑒𝑟𝑠! 𝑒𝑟𝑡𝑠!, 𝑡+} table. Depends on the initial energy and residual energy, 
the energy ratio (𝑒𝑟𝑡𝑠!) is calculated as:  

𝑒𝑟𝑡𝑠! = [ .)"!
.!+"!

\  (5) 

The tier id (𝑡𝑖𝑑𝑠𝒊)	of each node is calculated based on the energy ratio and the distance between 
the sensor node and sink node: 
𝑡𝑖𝑑𝑠𝒊 = ⌈[ .)/"!

∆"+1"!
\⌉      (6)

Based on the initial energy, residual energy, distance between the sensor node and sink node, 
calculate the node priority (𝑝𝑠!):  

𝑝𝑠! = {𝑎 ∗ ) 𝑒𝑟𝑠𝑖𝑒𝑖𝑛𝑠𝑖
* + 𝑏 ∗ )1 − ∆#$%#!&	()*	 |∆#$%#!|

(,-	 |∆#$%#!|&()*	 |∆#$%#!|	
*}, 𝑤ℎ𝑒𝑟𝑒{[0 ≤ (𝑎 + 𝑏) ≤ 1] (7) 

Calculate node state (𝑠"/.):

𝑠"/. = 𝑓{𝑝𝑠! , 𝑓𝑙𝑔}, set 𝑓𝑙𝑔=0.25, iff, 𝑠! already executed as cluster head, otherwise
set 𝑓𝑙𝑔=0.75 

(8) 

Evaluate the cluster coefficient for each node by using the equation; 		 

𝑐𝑓𝑠! = {∏ (𝑥!)78!}9
!:* ,	 𝑤ℎ𝑒𝑟𝑒	 ∑ 𝑐𝑓! = 19

!:* , [0 < 𝑐𝑓! < 1] and 	[𝑥* =
𝑝𝑠! , 𝑥-:	𝑒𝑟𝑡𝑠! , 𝑥; = ∆𝑎𝑑𝑠! , 𝑥< = ∆𝑛𝑠! , 	𝑥= = 𝑠"/. , 	𝑥9 = 𝑡𝑖𝑑𝑠!] 

(9) 

The node with the highest cluster coefficient value would select as cluster head.  

Algorithm: Cluster Head Selection  
Input: Node information 
Output: Selection of cluster head 
Begin 
For each network node (𝑠!) 
Repeat 
Step 1: Identify the degree of connectivity (𝑑𝑠!) 
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Step 2: Degree difference (∆𝑛𝑠!) is populated using equation (1) 
Step 3: Compute the average distance (∆𝑎𝑑𝑠!) using equation (2) 
Step 4: Calculate the minimum [min	 |∆𝑠𝑛𝑑𝑠!|] and maximum distance [max	 |∆𝑠𝑛𝑑𝑠!|]	with 

the sink node using equation (3) and (4)  
Step 5: Calculate energy ratio (𝑒𝑟𝑡𝑠!) using equation (5) 
Step 6: Calculate tier id (𝑡𝑖𝑑#𝒊)	using equation (6) 
Step 7: Compute node priority (𝑝𝑠!) using equation (7)   
Step 8: Calculate node state (𝑠"/.) using equation (8)   
Step 9: Evaluate cluster coefficient (𝑐𝑓𝑠!) using equation (9)   
Step 10: Find max|𝑐𝑓𝑠!| and corresponding node select as cluster head (𝑐ℎ!) 
Step 11: If 𝑒𝑟7>! < 𝑒𝑟/> 
Step 12: Then repeat Step1 to Step 10 to select a new cluster head 
Step 13: Else 
Step 14: Continue with the current cluster head 
Step 15:  End if 
End 

Module 3.2: Cluster Formation Procedure 

In the first phase, cluster members are connected to the cluster head through 𝑀𝐴𝑋_𝐻𝐸𝐴𝑃  
technique, wherein the second phase, cluster heads connect to neighbor cluster heads through 
𝑑𝐴𝑅𝑌_𝐻𝐸𝐴𝑃 topology. We presume that the sink node acts as the root, where cluster heads act as 
the child node of the constructed tree. The load balancing mechanism can distribute the network 
nodes among different clusters by impeding the maximum cluster members in a cluster.  

The communication cost is estimated as: 𝑐𝑜𝑚𝑚7?"/ =
!+/)@7>%!&'
A>#%%!&'

	, where, 

𝑖𝑛𝑡𝑟𝑎𝑐ℎ1!"/ = 𝑑𝑖𝑠𝑡(𝑐ℎ! , 𝑠!) and 𝐶ℎ𝑆𝑁1!"/ = 𝑑𝑖𝑠𝑡(𝑆𝑁, 𝑐ℎ!) 

(10) 

The node rank is calculated as: 𝑟𝑛𝑘"! =
.)7>!

1!"/(7>!,"!)∗.)"!
 (11) 

𝑐ℎ𝑗𝑜𝑖𝑛"! = {𝛼* ∗ 𝑒𝑟𝑡𝑠! + 𝛼- ∗ (	1 −
∑ 𝛽! ∗	-
!:* 𝑝!
𝑟𝑛𝑘"!

) + 𝛼; ∗ 𝑏𝑓𝑟𝑎𝑣𝑠!} 
(12) 

𝑐ℎ! broadcasts the	 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺4𝑐ℎ! , 𝑚𝑠𝑔!1,𝑐𝑓𝑐ℎ! , 𝑒𝑟𝑐ℎ! , 𝑡𝑡𝑙; and receives the 
𝐶𝑀_𝑅𝑃𝐿𝑌_𝑀𝑆𝐺	{𝑐ℎ! , 𝑠! , 𝑐ℎ𝑗𝑜𝑖𝑛"! , 𝑚𝑠𝑔!1 , 𝑒𝑟𝑠! , 𝑡𝑡𝑙} from neighbour nodes and store 
𝑁𝐻_𝑇𝐵𝐿	[𝑠! , 𝑐ℎ𝑗𝑜𝑖𝑛"! , 𝑚𝑠𝑔!1 , 𝑡𝑡𝑙] table. Based on 𝑐ℎ𝑗𝑜𝑖𝑛"! , 𝑀𝐴𝑋_𝐻𝐸𝐴𝑃   is constructed where 
𝑐ℎ! act as the root of the corresponding cluster. By sending the 
𝐶𝐿𝑀_𝐶𝑁𝐹_𝑀𝑆𝐺{𝑐ℎ! , 𝑐𝑓𝑐ℎ! , 𝑒𝑟𝑐ℎ! , 𝑐𝑚( , 𝑝𝑐𝑚( , 𝑡𝑡𝑙}, 𝑐ℎ! confirms cluster membership to 𝑐𝑚(. 
Maximum number of nodes belong to cluster ≤ (2>D* − 1), [𝑤ℎ𝑒𝑟𝑒	ℎ = 𝑙𝑒𝑣𝑒𝑙	𝑜𝑓	𝑐ℎ!]  
Case 1. If 𝑠! receives only one message 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{𝑐ℎ! , 𝑚𝑠𝑔!1 , 𝑐𝑓𝑐ℎ! , 𝑒𝑟𝑐ℎ! , 𝑡𝑡𝑙} from 𝑐ℎ!, 
then it would send the 𝐶𝑀_𝑅𝑃𝐿𝑌_𝑀𝑆𝐺	{𝑐ℎ! , 𝑠! , 𝑐ℎ𝑗𝑜𝑖𝑛"! , 𝑚𝑠𝑔!1 , 𝑒𝑟𝑠! , 𝑡𝑡𝑙}  to join in the 
corresponding 𝑐ℎ!.  
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Case 2. If 𝑠! receives two or more 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺	{𝑐ℎ! , 𝑚𝑠𝑔!1 , 𝑐𝑓𝑐ℎ! , 𝑒𝑟𝑐ℎ! , 𝑡𝑡𝑙} from the different 
𝑐ℎ!, then based on the equation (12) it would send the 
𝐶𝑀_𝑅𝑃𝐿𝑌_𝑀𝑆𝐺{𝑐ℎ! , 𝑠! , 𝑐ℎ𝑗𝑜𝑖𝑛"! , 𝑚𝑠𝑔!1 , 𝑒𝑟𝑠! , 𝑡𝑡𝑙}	 to the particular 𝑐ℎ! and would want to 
become a cluster member of the stated cluster.  

In the second phase, we assume that sink acts as root node at level 0. 𝑐ℎ! adds itself as the 
child of the sink node and sets its level to 1 when it has its place within the transmission range of 
the sink node. The remaining cluster heads in the network use the same technique, and a tree 
formation is carried out. 

Algorithm: Cluster Formation Procedure 
Input: Cluster head details 
Output: Cluster formation  
Begin 

  For each network node, do 
Step 1: 𝑐ℎ! Broadcast 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{	}  
Step 2: If ((isClusterHead) || (isExistingClusterMember)) received 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{} 
Step 3: Then discards 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{	} 
Step 4: End If 
Step 5: If (isSingleClusterHead sends 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{}) then 
Step 6: 𝑠! receives 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{} from one 𝑐ℎ! 
Step 7: 𝑠! calculates 𝑐ℎ𝑗𝑜𝑖𝑛"! 	by using Equation (12) 
Step 8: 𝑠! reply 𝐶𝑀_𝑅𝑃𝐿𝑌_𝑀𝑆𝐺{} to corresponding 𝑐ℎ! 
Step 9: 𝑐ℎ! maintains NH_TBL[𝑠! , 𝑐ℎ𝑗𝑜𝑖𝑛"! , 𝑚𝑠𝑔!1 , ttl] 
Step 10: CM_HEAP ( ) 
Step 11: 𝑐ℎ! sends 𝐶𝐿𝑅_𝐹𝑅𝑀_𝑀𝑆𝐺{}	 and confirms the membership to 𝑐𝑚( 
Step 12: Else 

 If (isMultipleClusterHead send	𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{}) then 
Step 13: Repeat Step7 and send reply 𝐶𝑀_𝑅𝑃𝐿𝑌_𝑀𝑆𝐺{} to 𝑐ℎ! having [max|𝑐𝑓𝑐ℎ!|] 
Step 14: End If 
Step 15: End If 
Step 16: Level of SNß0 
Step 17: 𝑑𝐴𝑅𝑌_𝑃𝑎𝑟𝑒𝑛𝑡(𝑖) = �!D1E-

1
�  

Step 18: For each 𝑐ℎ! do 
Step 19: Repeat 
Step 20: Broadcast RT_MSG{}  
Step 21: For i=1 to n do 
Step 22: dARY_HEAP ( ) 
Step 23: If ((|𝑒𝑟𝑡𝑐ℎ!| > 𝑡ℎ.)	)	&&	(|𝐶ℎ𝑆𝑁1!"/| ≤ 𝑡ℎ1!"/	))	then 
Step 24: Reply with SNC_MSG{}  to Parent Node SN 
Step 25: 𝑑𝐴𝑅𝑌_𝐶ℎ𝑖𝑙𝑑(𝑖, 𝑗) = [(𝑖 − 1)𝑑 + 𝑗 + 1]  
Step 26: End If 
Step 27: End For 
End 
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Algorithm: dARY_HEAP ( ) 
Step 1: MAX_HEAP (A) 
Step 2: For i=length[A] downto 2 do 
Step 3: swap(A[1] ↔ A[i]) 
Step 4: HeapSize[A] ß HeapSize[A]-1 
Step 5: dARY_MAX_HEAP(A,1) 
Step 6: End For 
End 

Algorithm: MAX_HEAP (A) 
Step 1: HeapSize[A] ß length[A] 
Step 2: For i=k down to 1 do, [where k=�GHIJKL	[N]E-

1
�] 

Step 3: dARY_MAX_HEAPIFY (A, i+1) 
Step 4: End For 
End 

Algorithm: dARY_MAX_HEAPIFY (A, i) 
Step 1: SNßi 
Step 2: largest ß i+1 
Step 3: For j= 1 to d do 
Step 4: If (j<= HeapSize[A] && A[Child (i+1, j)] > A[i+1] then 
Step 5: largest ß child (i+1, j)] 
Step 6: End If 
Step 7: End For 
Step 8: If (largest! = i+1) then 
Step 9: swap(A[i+1] ↔ A[largest]) 
Step 10: dARY_MAX_HEAPIFY (A, largest) 
Step 11: End If 
End 

Module 3.3: Data Aggregation Mechanism 

Due to the high-level node density in sensor networks, many sensor nodes sensed similar data, 
causing redundancy. Additional bandwidth is required for redundant data transmission that makes 
the network more volatile. This section introduces two-level data aggregation strategies, i.e., 
cluster member level and cluster head level aggregation, to forward the aggregate data to the sink 
node and achieve energy optimization while minimizing the number of transmissions. In query 
driven WSN, sensor nodes forward the aggregated data in reply to the query request of the sink 
node.  

In order to calculate the performance of the aggregation function, aggregation ratio and 
packet size co-efficient (Cui et al., 2014) have been considered:  Aggregation ratio (w) is defined 
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as the ratio of the number of aggregated packets (n) and total packets generated (N), where w ∈
[0,1]. Let, 𝑠! transmits the number of units of raw data φ(v), the number of unit-size packets 
forwarded denoted by 𝛿(v) that is defined as; 𝛿(v) = ⌈P(Q)	

R
⌉. Packet size co-efficient (λ) shows 

the change in packet size due to the aggregation function >λ	 = 		1(!
1!
?, where 	𝑑S! is the size of the 

aggregated packet, and 𝑑! is the size of the original packet. At 𝑡!DT  time instance sensor node 
collects 𝑑!DT 	raw data and checks for the data similarity. According to the similarity index, the 
concerned cluster members would make packet forwarding decisions. 

𝑑"!U7𝑑!,𝑑!DT	9 = �1!	∩	1!*+
1!∪	1!*+

�  (13) 

In this proposal, the similarity threshold index	(∆thXIYZ	) is set to 0.5. If the data similarity is less 
than the threshold index, then sensor nodes send both data packets to the cluster head; otherwise, 
apply the aggregation technique on the collected data. In this framework, the aggregation cost is 
introduced during cluster head-level aggregation. i.e., [𝑎𝑔𝑔𝑟7?"/ = > [∗\

)+]&!
? ∗ 𝑑"!U]. The 

aggregation level of each cluster head depends on the aggregation cost and energy ratio. i.e., 
𝑎𝑔𝑔𝑟 ._.^ = 𝑓(𝑎𝑔𝑔𝑟7?"/ , 𝑒𝑟𝑡𝑐ℎ!). A number of standard mathematical functions are taken into 
account in the development of this model.  

Case 1. Sensor nodes collect the same data. The final aggregation value is: {𝑑"U	(𝑎𝑔𝑔𝑟) =
[ `%,
--.,

+ `%/
--./

+ `%0
--.0

……+ `%1
-
\} where [𝛼1* = 𝛼1- = 𝛼1; = 𝛼1] and ‘n’ is no of nodes.] 

Case 2. Sensor nodes collect different data, i.e., The total amount of data gathered from all 
contributing sensors would be the final aggregate value.  
{(𝑑18	(𝑎𝑔𝑔𝑟) = 7∑ 𝛽1!]

!:* 9}, 𝑤ℎ𝑒𝑟𝑒	𝛽1* ≠ 𝛽1- ≠ 𝛽1; ≠ 𝛽1]] 
Case 3. Few sensor nodes collect the same data, and others collect different data, i.e., The final 
aggregation value is: {(𝑑"U18	(𝑎𝑔𝑔𝑟) = ( ¥%,

-2.,
+ ¥%3

-2./
+ ¥%4

-2.0
……+ ¥%1.,

-
) + (¥1- + ¥1; +

¥1])}
Case 4. The values collected by multiple sensor nodes for the same attribute; Maximum,
Minimum, and Median value from the collected data is:

{(𝑑Ub	(𝑎𝑔𝑔𝑟)} = 	𝑓(𝑆*…𝑆+) = 𝑚𝑎𝑥|𝑆!|, where	i	 = 	1	. . n 
{(𝑑U+	(𝑎𝑔𝑔𝑟))} = 	𝑓(𝑆*…𝑆+) = 𝑚𝑖𝑛|𝑆!|, where	i	 = 	1. . n 
{(𝑑U1+	(𝑎𝑔𝑔𝑟))} = ∑ 𝑆)+

!:* ,	 where	r	 = (i + 1)/2  

Based on the query request from the sink node, sensor nodes forward the aggregated data packets 
to the cluster head. Depending on the aggregation level, 𝑐ℎ!   applies aggregation mechanism on 
the received data from 𝑐𝑚( . Total data packets received by 𝑐ℎ!  is  𝑑(𝑐ℎ!) = ∑ 𝑑(𝑐𝑚()+

(:* . The total 
aggregated data received by the sink node is: ∑ 𝑑(𝑐ℎ!)U

!:* = ∑ ∑ 𝑑(𝑐𝑚()+
(:*

U
!:*
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Algorithm: Data Aggregation Mechanism 
Input: Collected data  
Output: Aggregated data 
Begin 
For each network node do 
Repeat 
Each 𝒕𝒊D𝜻 instance sensor node collects raw data  
Step 1: 𝑐𝑚!( 	measures the data similarity {𝑑"!U7𝑑!,𝑑!DT	9} using equation (13) 
Step 2: If {𝑑"!U7𝑑!,𝑑!DT	9} < 	∆thXIYZ	then 
Step 3: 𝑐𝑚!( sends {𝑑"U	(𝑎𝑔𝑔𝑟)} data to 𝑐ℎ! 
Step 4: Else 
Step 5: 𝑐ℎ!  broadcasts SN_Query_Msg {} to each 𝑐𝑚( 
Step 6: Based on the query message,  𝑐𝑚( applies aggregation technique on the 

collected data and sends it to 𝑐ℎ!  
Step 7: Case 

a: 

a𝑐𝑚( sends {(𝑑18	(𝑎𝑔𝑔𝑟)} to 𝑐ℎ!

Case 
b: 

𝑐𝑚( sends {(𝑑"U18	(𝑎𝑔𝑔𝑟)} to 𝑐ℎ!

Case 
c: 

𝑐𝑚( sends {(𝑑Ub	(𝑎𝑔𝑔𝑟)} to 𝑐ℎ!

Case 
d: 

𝑐𝑚( sends {(𝑑U+	(𝑎𝑔𝑔𝑟)} to 𝑐ℎ!

Case 
e: 

𝑐𝑚( sends {(𝑑U1+	(𝑎𝑔𝑔𝑟)} to 𝑐ℎ!

Step 8: End If 
Step 9: 𝑐ℎ!  receives data from 𝑐𝑚( , 𝑑(𝑐ℎ!) =� 𝑑(𝑐𝑚()

+

(:*
Step 10: While ( 𝑎𝑔𝑔𝑟 ._.^ ≥ 𝑡ℎ^._.^) do 
Step 11: 𝑐ℎ! 	measures data similarity using Equation (14) 
Step 12: If {𝑑"!U7𝑑!,𝑑!DT	9} < 	∆thXIYZ	then 
Step 13: 𝑐ℎ! sends {𝑑"U	(𝑎𝑔𝑔𝑟)} to next-hop neighbour 
Step 14: Else 
Step 15: 𝑐ℎ! repeats step 7 and forwards aggregated data to the next-hop neighbour 

Step 16: endif 
Step 17: If (𝑁𝑒𝑥𝑡>?e == 𝑆𝑁 ) then 
Step 18: 𝑐ℎ!   sends aggregated data to SN 
Step 19: Total aggregated data received by sink node is: ∑ 𝑑(𝑐ℎ!)U

!:* =

∑ � 𝑑(𝑐𝑚()
+

(:*

U
!:*

Step 20: Else 
Step 21: 𝑐ℎ!  sends aggregated data to the next upper-level neighbour cluster head  
Step 22: Repeat from step 9 onwards 
Step 23: End If 
Step 24:   End While 
Step 25: If ( 𝑎𝑔𝑔𝑟 ._.^ < 𝑡ℎ^._.^) then 

Soumyabrata Saha, Rituparna Chaki

185



Step 26:  𝑐ℎ!  forwards the collected data to the same level neighbour cluster head, having 
[max|𝑒𝑟𝑡𝑠!|].   

Step 27:  Repeat from step 9 onwards 
Step 28: End If 
END 

Module 3.4: Congestion Mitigation Technique 

We assume that during each slot σ! , child nodes transferred data packets to their parent node. 
𝑆fg 	(𝑆) represents the set of slots, αh(𝑠!) is the rate of data collection, βh(𝑠!) denotes the rate of 
data reception, γh(𝑠!) signifies the rate of data forwarding during a slot {σ	€	𝑆fg(𝑆)}.  In this 
framework, we have calculated the congestion scheduling ratio (𝑐𝑔𝑠𝑟𝑠!) of node 𝑠!.	{𝑐𝑔𝑠𝑟𝑠! =
7ie]")"!
7i">"!

}	, where congestion packet scheduling (𝑐𝑔𝑠ℎ𝑠!) is defined as the number of packets 

schedules per unit time to forward to the next hop. Congestion packet service rate (𝑐𝑔𝑝𝑘𝑠𝑟𝑠!) is 
the average rate at which packets have been forwarded to the next neighbour.  
Let, 𝐷"! 	𝑎𝑛𝑑	𝑈"! 		are the downstream and upstream neighbors of 𝑠!. For ∀ j∈ 𝐷#!, ∀ k∈ 𝑈#!, (i, j) 
are downstream links of node 𝑠!, while (k, i) are upstream links of 𝑠!. Let 𝐷𝑆𝑅#!#"4∀𝑠! ∈ 𝑁, 𝑠( ∈

𝐷#!; is the average downstream data rate from 𝑠( to 𝑠! and 𝑈𝑆𝑅#1#!4∀𝑠! ∈ 𝑁, 𝑠] ∈ 𝑈"!;	be the 
average upstream data rate from node 𝑠! to 𝑠]. To mitigate the congestion, 𝑠! 		adjusts the packet 
receiving and packet forwarding rate. 
𝑐𝑔𝑙𝑣𝑙𝑠! = {(𝑐𝑔𝑠𝑟𝑠! + ∑ 𝐷𝑆𝑅#"#!""∈k5!

−	∑ 𝑈𝑆𝑅#!]"1∈l&!
), ∀𝑠! , j, k, ∈ 𝑁} (14) 

Two different queues have been identified for storing the priority and regular data. 
𝑄mU@b	𝑎𝑛𝑑	𝑄mU!+ identifiers are used of priority data where as 𝑄nU@b	𝑎𝑛𝑑	𝑄nU!+ used for regular 
data. When the queue length is less than the minimum threshold that ensures no congestion occurs, 
the congestion index is set to 0, and accordingly, the child node’s transmission rate may be 
updated. The received data packets would be stored, i.e., {𝑄f ≤ 𝑄nU!+, 𝑄f ≤
𝑄mU!+, 𝑠𝑒𝑡	𝐶𝑜𝑛𝑔𝑠!+1b = 0}.  

When queue length is greater than a maximum threshold, significant congestion is recorded, 
and congestion index is assigned to 1, i.e., {𝑄nU@b ≤ 𝑄f , 𝑄mU@b ≤ 𝑄f , 	𝑠𝑒𝑡	𝐶𝑜𝑛𝑔𝑠!+1b = 1}. The 
received data packets would be dropped, and the child node does not send the data packets to its 
parent node. For moderate congestion, the congestion index is set between 0 and 1 while the queue 
length is i.e., {𝑄nU!+ ≤ 𝑄f ≤ 𝑄nU@b , 𝑄mU!+ ≤ 𝑄f ≤ 𝑄mU@b, 𝑠𝑒𝑡	𝐶𝑜𝑛𝑔𝑠!+1b€[0,1]}. Few packets 
of low priority will be discarded, while a few packets of high priority will be stored. 

𝐷𝑃! = {𝛾* ∗ 𝑝𝑠! + 𝛾- ∗ 𝑐𝑔𝑙𝑣𝑙𝑠! + 𝛾; ∗ ℎ𝑜𝑝𝑐𝑛𝑡},	where ∑ 𝛾! = 1, [0 < 𝛾! < 1]	;
!:*  (15) 

When 𝐷𝑃! exceeds a predetermined threshold, data is designated as a priority; otherwise, it 
is treated as regular. Received data will be put in the appropriate buffer queue based on the category 
and prevent to discard the data due to a lack of capacity. 
𝑃𝐴𝐶𝐾{𝑠! , 𝑄f , 𝑄m , 𝑄mU@b , 𝑄n , 𝑄nU@b , 	𝐶𝑜𝑛𝑔𝑠!+1b , 𝑡𝑡𝑙} would be sent to adjacent nodes when the 
buffer threshold value is updated. Neighbour nodes would decide for packet forwarding to the 
upstream node based on the 	𝑐𝑜𝑛𝑔𝑠!+1b	and available buffer space.  
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Algorithm: Congestion Mitigation Technique 
Input:  Packet schedule rate, Packet service rate 
Output: Minimize congestion 
Begin 
For each network node do 
Repeat 
Step 1: Calculates 𝑐𝑔𝑠𝑟𝑠! 
Step 2: 𝑠! broadcast {𝑐𝑔𝑠𝑟𝑠! , 𝑏𝑢𝑓𝑙𝑣𝑙𝑠!} 
Step 3: If (𝑐𝑔𝑠𝑟𝑠! < 𝑐𝑔/>)	then 
Step 4:  No congestion occurs 
Step 5: Else If (𝑐𝑔𝑠𝑟𝑠! > 𝑐𝑔/>) then 
Step 6: 𝑐𝑔𝑠ℎ𝑠! 	𝑔𝑟𝑒𝑎𝑡𝑒𝑟	𝑡ℎ𝑎𝑛	𝑐𝑔𝑝𝑘𝑠𝑟𝑠! ,	and due to buffer overflow congestion 

occurs 
Step 7: 𝑠! informs to downstream child nodes 
Step 8: Child nodes control the data transfer rate for (δ) time 
Step 9: Else If (𝑐𝑔𝑠𝑟𝑠! > 1) then 
Step 10: 𝑐𝑔𝑝𝑘𝑠𝑟𝑠! 	is	greater	than	𝑐𝑔𝑠ℎ𝑠! and 𝑠! adjusts the scheduling rate for 

(δ) time 
Step 11: End If 
Step 12: End If 
Step 13: End If 
Step 14: Calculate 𝑐𝑔𝑙𝑣𝑙𝑠! using equation (14) 
Step 15: Data categorization 𝐷𝑃! 	 executed using equation (15) 
Step 16: If (𝐷𝑃! > 𝑡ℎ) then 
Step 17: Identify ‘Priority’ data or otherwise marked as ‘Regular’ data 
Step 18: End If 
Step 19: 𝑄mU!+	ß0 and 𝑄nU!+	ß [⌈𝑄f/2⌉+1]  
Step 20: While (!(𝑄mU@b == [⌈𝑄f/2⌉ − 1])	||	(𝑄nU@b == [𝑄f − 1])) do 
Step 21: Repeat 
Step 22:      Store the categorized data in the corresponding locations. 
Step 23: End While 
Step 24: If(𝑄mU@b == [⌈𝑄f/2⌉ − 1]	||	𝑄nU@b == [𝑄f − 1]) then 
Step 25: Forward PACK {} to the neighbours  
Step 26: Neighbour nodes explore the alternative path for data forwarding 
Step 27: Else 
Step 28: The data transfer process continues 
Step 29: End If 
END 

Module 3.5: Communication Procedure 

The proposed framework allows both intra-cluster and inter-cluster routing while consuming less 
energy. To prepare the traversing list, traversal strategies have been employed as; in-order, pre-
order, post-order, level-order. The cluster head applies the TDMA technique to assign a 
transmission time slot to each member depending on the traversing list. According to the assigned 
slot, the member node forwards aggregated data packets at the beginning of the time slots. The 
cluster head receives aggregated data from cluster members, and the downstream cluster head 
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transmits the aggregated data packets to the upstream cluster head for delivery to the sink node via 
multipath routing. When the sensor node receives a PACK message from neighbour nodes, it does 
not send any data packets to its neighbours to avoid data loss. A new time slot would be allotted 
to the sensor node for data transmission to neighbours; otherwise, find the alternative neighbour 
cluster head through which data would be forwarded. As the sink has numerous child nodes and 
by using round-robin scheduling, data is transmitted to the sink through the different child nodes 
that minimize the bottleneck problem and manage the energy optimization. 

Algorithm: Communication Procedure 
Input: Network information 
Output: Data transfer to sink node 
Begin 
For each network node do 
Repeat 
Step 1: Based on the traversing technique, formulate the traversing list 𝑇𝐿[	] 
Step 2: 𝐶ℎ! assigns transmission slot 𝑇𝑆[𝑖] for each 𝐶𝑚( 	 
Step 3: 𝐶𝑚(sends aggregated data to 𝐶ℎ!  
Step 4: 𝐶ℎ! forwards aggregate data to {𝑢𝑝𝑠𝑡𝑚(𝐶ℎ!)} 
Step 5: If 	𝐶ℎ! receives PACK from upstream neighbour Then 
Step 6: It doesn’t send data packets to the corresponding 𝐶ℎ! within 𝑇𝑆[𝑖] 
Step 7: Allocate new 𝑇𝑆[𝑖 + 1] slot for data transfer  
Step 8: Select new 𝐶ℎ! 	based on [𝑓{(max|𝑐𝑓𝑐ℎ!|), (! (𝑐ℎ𝑙𝑑_𝑢𝑝𝑠𝑡𝑚(𝐶ℎ!)))}]	
Step 9: Forwards the data to the new next-hop neighbour 𝐶ℎ! 
Step 10: End If
Step 11: If multiple neighbour cluster heads have the same metric then 
Step 12: Data packets would forward to the upstream node using round robin 

mechanism 
Step 13: Repeat from step4 onwards unless the data is reached to sink node 
Step 14: End If 
END 

Table 2. Data Dictionary 
Parameter Details Parameter Details 

𝑠! Sensor node 𝑐ℎ! Cluster ead 
𝑒𝑖𝑛𝑠! Initial energy of 𝑠! 𝑐𝑚. Cluster member 
𝑒𝑎𝑣𝑔𝑠! Average energy of 𝑠!   𝑒𝑟/0! Residual energy of cluster head 
𝑝𝑠!  Priority of Node 𝑠! 𝑟𝑛𝑘#! Rank of the node 𝑠! 
SN Sink node 𝑡$ Time instance 
𝑡1 Transmission range 𝑒𝑟20 Threshold energy 
𝑠!34/ Location of 𝑠! 𝑐𝑓! Coefficient factor 
𝑚𝑠𝑔!% Message id 𝑐𝑓𝑠! Cluster coefficient of node 𝑠! 
𝑡𝑡𝑙 Time to leave 𝑐𝑜𝑚𝑚/4#2 Communication cost 

𝑐𝑙𝑠𝑡𝑟/56/2 Cluster compactness 𝑒𝑛𝑟𝑔/4#2 Energy cost 
𝑖𝑛𝑡𝑟𝑎𝑐ℎ%!#2 Intra cluster distance PACK Positive acknowledgment 
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Fig. 2. Working Flow of the Proposed Framework 
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#Case Study: Example Network # 

Fig. 3(a). Cluster Head Selection Fig. 3(b). Cluster Formation 

• In Fig.3(a), Each participating node evaluates cluster coefficient. Sensor node (S6) having
the maximum cluster coefficient and select as cluster head (Ch1).
• In Fig.3(b), Ch1 broadcasts 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{}  and neighbour nodes received the
𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{}, calculate 𝑐ℎ𝑗𝑜𝑖𝑛"!.
• In Fig.3(b), S1, S4, S8, S12, S2, S3, S11, S5 nodes reply 𝐶𝑀_𝑅𝑃𝐿𝑌_𝑀𝑆𝐺{} to corresponding
cluster head (Ch1)
• In Fig.3(b), Ch1 sends 𝐶𝐿𝑅_𝐹𝑅𝑀_𝑀𝑆𝐺{} and confirms the membership to these nodes and
they would act as the cluster member of the said cluster.
• In Fig.3(b), The same process is applicable for other cluster, where Ch2 acts as cluster head
and S26, S18, S23, S20, S22, S19, S10, S17 nodes are selected as the cluster member of the said
cluster.
• In Fig.3(b), S10 receives the 𝐶𝐻_𝐴𝐷𝑉_𝑀𝑆𝐺{} from Ch1 and truncates the message as it is
already connected with Ch2. The similar process is applicable for S8 also, as this node is already
the member of Ch1.

Fig. 3(c). Data Aggregation Fig. 3(d). Congestion Mitigation 

QoS based congestion evasion clustering framework of wireless sensor networks

190



• In Fig.3(c), [Without Aggregation Mechanism]: Cluster members (S3, S5, S11) collect data
T1 and T2 time instance where few data are redundant, and others are distinct. The said
cluster members send the collected raw data to Ch1. Cluster head received the redundant
data along with distinct data from its cluster members.

• In Fig.3(c), [Considering Aggregation Mechanism]: Cluster members applied aggregation
mechanism on the collected data and send the aggregated data to the cluster head. Ch1
applies aggregation mechanism on the received data from cluster members and forwards to
next hop.

• In Fig.3(d), 𝑄mU@b , 𝑄mU!+ are used of priority data and 𝑄nU@b , 𝑄nU!+ are used for regular
data. when {𝑄f ≤ 𝑄nU!+, 𝑄f ≤ 𝑄mU!+}, it identifies that ensures no congestion occurs,
𝑠𝑒𝑡	𝐶𝑜𝑛𝑔𝑠!+1b = 0. When {𝑄nU@b ≤ 𝑄f , 𝑄mU@b ≤ 𝑄f} the significant congestion is
recorded, 	𝑠𝑒𝑡	𝐶𝑜𝑛𝑔𝑠!+1b = 1. For moderate congestion, {𝑄nU!+ ≤ 𝑄f ≤ 𝑄nU@b , 𝑄mU!+ ≤
𝑄f ≤ 𝑄mU@b, 𝑠𝑒𝑡	𝐶𝑜𝑛𝑔𝑠!+1b€[0,1]}.

• In Fig.3(d), Neighbour nodes would decide for packet forwarding to the upstream node
based on the 	𝑐𝑜𝑛𝑔𝑠!+1b	and available buffer space.

In Fig.3(e), The proposed framework allows intra-
cluster and inter-cluster communication. The 
communication paths are: [S2àCh1àSink], 
[S23àCh2àCh1àSink] 

Fig. 3(e). Communication 

4. Comparative performance analysis

The performance of our proposed framework is analyzed using MATLAB 2018a over a 64bit 
Windows 10 operating system. The simulation compares the performance to prominent WSN 
state-of-the-art routing protocols as; LEACH (Heinzelman et al., 2000), EELEACH (Arumugam 
et al., 2015), OQoSCMRP (Deepa et al., 2020), CDAS (Devi et al., 2020), DHSSRP (Adil et al., 
2021), CMEEBZ (Adhikary et al., 2021)  

Table 3:  Simulation Parameters 
Parameters Value Description 
WSN Area [(0,0)∼(200,200)] m Area of Deployment  

Sensor Nodes 0~50 Number of Nodes 
Network Topology Random Deployment Distribution of Nodes 

Initial Energy 3 J Each Node’s Initial Energy 
Sink Location (50, 80) Location of the Sink 
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The following QoS metrics as, the energy requirement of cluster formation, throughput, 
packet delivery ratio, end-to-end latency, network lifetime, etc., have been identified to measure 
the network performance of the proposed framework that helps to attain the QoS. Fig.4. reveals 
the relationship between the number of nodes engaged in cluster formation and the required 
energy. The proposed QC2EF technique has been found to consume less energy than the existing 
well-known routing algorithms as; LEACH, EELEACH, OQoSCMRP, CDAS. 

Fig. 4.  Number of Nodes vs. Required Energy 

Total data received in a certain period of time is used to calculate throughput. This is defined as; 
Throughput = ∑ 𝑃"+

!:o 𝐿e where 𝑃" is the total number of messages successfully received at the 
destination. A higher throughput would be achieved by multipath routing, which allows for greater 
𝑃". Fig.5. shows that the proposed QC2EF produces 22.5% higher throughput than the existing 
routing protocols.  

Fig. 5.  Number of Nodes vs. Throughput 
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The packet delivery ratio is calculated as; >𝑃𝐷𝑅 = ∑%qUr.)_	?8_m@7]./_n.7.!_.1
∑%qUr.)_?8_m@7]./_#.+1

?. In this proposal, 

congestion control and data aggregation mechanism are included to minimize unwanted data 
transfer in the network and help to enhance network performance. Fig.6. depicts that the PDR of 
the proposed QC2EF system offers 25.5% higher performance than the existing well-known 
selected routing protocols.  

 Fig. 6. Number of Nodes vs. Packet Delivery Ratio 

The overall time takes for a data packet to deliver from the source node to sink node  is known 

as the end-to-end delay and calculated as; ¬End	to	end	Delay =

> ∑@))!_.@^	/!U.E".+1!+i/!U.
∑%qUr.)	?8	7?++.7/.1	%.!i>r?q)"	

?®. The proposed approach aggregates and forwards data more 

rapidly to the next neighbors with less routing load, resulting in a smaller delay and better QoS. 
Fig 7 compares the end-to-end delay of the proposed QC2EF protocol with other well-known 
protocols and finds that in all cases, the delay of the proposed mechanism is 21% lesser than of 
the other selected approaches.  

Fig. 7. Number of Nodes vs. End-to-End Delay 
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The network lifetime is the time it takes for all of its nodes to run out of energy. A number 
of important issues are considered while designing the proposal, such as dynamic cluster head 
selection and cluster formation, two-level data aggregation technique, congestion mitigation, and 
communication between network nodes using multipath routing. The proposed data aggregation 
methods reduce redundant data transfer while also consuming less energy. Congestion 
minimization strategy restricts the unsolicited data flowing over the network, all of which help to 
increase the network lifetime.  

Fig. 8. Number of Nodes vs. Network Lifetime 

The Fig.8. compares the network lifetime of the proposed QC2EF scheme with the others existing 
protocols and indicates that the proposed technique augments the network lifetime compared to 
others. As a result of packet drops and delays being reduced during communication, throughput 
has increased, helping to improve the lifetime of a network significantly. The above results identify 
that the proposed system outstrips better than the existing protocols and offers better throughput, 
less end-to-end delay, improved delivery ratio, energy efficiency, better network lifetime, and 
achieves the quality of services.  

5. Conclusions

This comprehensive study of diverse clustering approaches and congestion control mechanisms 
reveals the pros and cons of the prevailing approaches. The empirical study to recognize several 
QoS metrics facilitates authors in assessing network performance and attaining the quality of 
services. The dynamic cluster head selection ensures an equitable energy load distribution among 
the sensor nodes and ensures that no sensor node would run out of energy earlier due to the 
additional responsibilities. Cluster members are connected to the cluster head through max heap 
topology. Cluster heads serve as child nodes of the sink node and are connected to neighbours 
through the dARY_HEAP topology. Two-level data aggregation techniques have been applied to 
curtail the redundant data flow that helps to minimize energy consumption. Prior to data 
transmission, the buffer occupancy level would sync with all relevant neighbours, ensuring that no 
data is lost due to congestion and optimal network performance is attained. The load balancing 
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mechanism provides the load distribution among the sensor nodes through multipath approaches. 
There is less possibility of a bottleneck forming since the sink node has an assorted number of 
children. Depending on the routing strategy, data can be routed to sink through any of the children. 
Alternative path construction is another crucial aspect for enabling real-time communication 
without introducing an additional delay.  

The proposed framework has a greater throughput and better delivery ratio than the well-
known existing techniques, as packet drops, and end-to-end delays are minimized during 
communication. Due to less energy consumption, the network has a more extended network 
lifetime and achieves the quality of services. The objective of the proposed QC2EF is attained. In 
future, this framework can be enhanced with a machine learning algorithm and would apply in the 
covid waste management systems in aspects of smart city.  
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Abstract

Human activity recognition (HAR) encompasses the detection of daily routine activities to advance us-
ability in detecting crime and preventing dangerous activities. The recognition of activities from videos
and image sequences with higher exactitude is a major challenge due to system complexities. The ef-
ficient feature optimization approach can reduce system complexities by removing ineffective features,
which also improves the activity recognition performance. This research work presents a novel quantum
behaved intelligent gravitational search algorithm to optimize the features for human activity recogni-
tion. The proposed intelligent variant is termed as INQGSA, which optimizes the features by using the
advantageous attributes of quantum computing (QC) and intelligent gravitational search algorithm (IN-
GSA). In INQGSA, the intelligent factor avoids the trapping of mass agents in later iterations by using
the information of the best and worst agents to update the position of agents. The addition of quantum
computing based attributes (such as quantum bits, their superposition, and quantum gates, etc.) ensures
a better diversity of discrete optimized features. To analyze the superiority of INQGSA, the feature
optimization is also conducted with the gravitational search algorithm (GSA) and the quantum-inspired
binary gravitational search algorithm (QBGSA). Finally, the optimized selected features are utilized by
the deep neural networks (DNN) of ResNet-50V2 and ResNet-101V2 for the classification of activi-
ties. The activity recognition experiments are conducted on the UCF101 and HMDB51 datasets. The
performance comparison of the proposed HAR system with state-of-the-art techniques signifies that the
proposed system is superior and effective in detecting the different activities.

Keywords: Deep neural networks; feature optimization; gravitational search algorithm; human activ-
ity recognition; quantum computing

1. Introduction

The concept of video-based HAR has aroused the interest of industrialists and academicians in devel-
oping intelligent recognition systems. The effective recognition of activities can fulfil the future needs
of building smart homes and intelligent monitoring systems. The data captured as RGB videos with the
cameras is an effective means of recognizing the activities with great ease. The digitization of the world
has increased the use of cameras in daily life with their already existing presence in public places such
as airports, banks, hospitals, etc. Moreover, human beings themselves generate a massive amount of
video content and upload it on social networking and other online websites. The primary motivation for
adapting to video-based human activity recognition is the availability of a wide range of applications (Xu
et al., 2013; Serpush & Rezaei, 2020; Özyer et al., 2021).

At the early stage of human activity recognition, the researchers focused on recognizing the simple
kinematic activities from a video with a plain background. Recently, the focus of researchers has turned
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towards the determination of activities in real-time and uncontrolled environments. Chen et al. (2012)
used the extreme learning model for human activity recognition, which was a device displacement free
recognition model. Shieh & Huang (2012) adapted a pattern recognition model to take care of aged
people with video surveillance. Moreover, an autonomous falling detection algorithm was utilized to
determine the falling activities. Khemchandani & Sharma (2016) proposed the robust least square twin
support vector machine (RLSTW-SVM) model along with the feature descriptors of optic flow and sil-
houette. The work was effective in handling the heteroscedastic noise and incorporating the outlier effect.
Kushwaha et al. (2017) used contour-based pose features from silhouettes as well as features based on
the rotation invariant local binary approach.The activity classification was conducted using the multi-
class support vector machine. Ijjina & Chalavadi (2017) utilized the deep convolutional neural networks
with features through depth stream videos and RGB motion streams. The presented model could tolerate
robust noise. Bouachir et al. (2018) used different machine learning and ensemble methods to determine
the suicide attempt activities. The authors determined the SVM-RBF (SVM with radial basis kernel)
method as superior among others. Kong et al. (2019) explored the three-stream convolutional neural
network to determine the multi-view falling activities. The first two streams of the model adapted the
Silhouettes and motion history images as the input, and the third stream considered the dynamic images.
The method lacked effectiveness due to inefficient results for the lousy representation of video clips.
Jaouedi et al. (2020) used the Gated Recurrent Neural Network for the recognition of human activities.
The Kalman Filter and Gaussian Mixture Model were used to extract the features to recognize normal
and sports activities. Verma et al. (2020) used RGB and skeleton information as the feature attributes to
recognize human activities. The combined approach of convolutional and recurrent neural networks was
adapted by the authors.

Although different methods are used in the discussed contributions for activity recognition, the us-
ability of machine learning (Khan et al., 2016) and deep learning (Al-Hmouz, 2020) techniques can be
majorly noticed. Simple activities with fixed backgrounds can be easily recognized with higher recogni-
tion accuracy. The recognition of activities with diverse backgrounds, performed by different individuals,
is a complex task. In addition, it is considerably more challenging to build automated systems with bet-
ter precision. Computer vision has been used to make many automated systems, but the current systems
cannot recognise very complicated human actions.

Most of the existing systems have adapted the autonomous approach to extract and select the features
for activity recognition, which is less effective. The different types of activities captured in unconstrained
scenarios need their relevant feature attributes to determine the type of activity. The present work has
adapted distinct strategies for the different modules of the human activity recognition process. The
proposed HAR system is described in four major modules: pre-processing, feature extraction, feature

Input
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Feature Extraction using
Uniform Rotation

Invariant LBP

Classification using
DNN Models 
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Fig. 1. Architecture of proposed HAR system.
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selection, and classification. The architecture of the proposed HAR system is illustrated in Figure 1.
In the proposed HAR system, the process of recognising the activities begins with the pre-processing

module that segments the background region from the extracted video frames. The processed frames
(images) are evaluated to determine the features using the uniform rotation invariant LBP (Local Binary
Pattern) technique. The extracted features need to be optimized to reduce the feature dimensionality and
computation time by eliminating redundant and irrelevant features. Here, the INQGSA is proposed for
the feature set optimization. The DNN models of ResNet-50V2 and ResNet-101V2 use the selected fea-
tures to classify the activities. The performance of the proposed system is accessed for the UCF101 and
HMDB51 datasets. The UCF101 dataset consists of 101 different activities, and the HMDB51 dataset
is composed of 51 different activities. The focused section of the paper is the proposal of INQGSA for
the feature optimization which selects the discrete feature set by adapting the attributes of an intelligent
variant of GSA and the quantum computing concepts. In summary, the key contributions of the work are
described as follows:

• The proposal of a novel INQGSA approach to optimize the features for the application of human
activity recognition. The INQGSA approach avoids the trapping of mass agents in local optima by
intelligently incorporating the advantageous attributes of QC and INGSA.

• The incorporation of advanced techniques of uniform rotation invariant LBP for multi-pose fea-
ture extraction and Deep Neural Networks (ResNet-50V2 and ResNet-101V2) for human activity
recognition.

• The extensive experiments of the proposed HAR system for the video-based datasets of UCF101
and HMDB51.

The organization for the rest of the paper is described as follows. Section 2 presents the work related
to feature selection and optimization techniques for human activity recognition. Section 3 illustrates
the video data processing and feature extraction modules for activity recognition. Section 4 discusses
the proposed INQGSA approach for the optimization of features. Section 5 exhibits the classification
modules of the activities using DNN models. Section 6 describes the results and discussion of the
experiments on the UCF101 and HMDB51 datasets. Section 7 concludes the paper with some future
viewpoints.

2. Related work

The automation of the HAR from videos is an imperative research domain in pattern recognition as it
is essential to meet the demand for a smart future in terms of automated video surveillance and smart
homes. But the selection/optimization of features is the major concern in pattern recognition. During
the feature extraction phase, the feature extractor can extract the different types of features for activity
recognition. But the increasing feature vector can grow the dimensions of the Eigen vector, which in-
creases the computational complexities and time consumption. Therefore, the selection and optimization
of features is essential as it can determine higher recognition accuracy by consuming the least but appro-
priate features. The feature optimization phase contributes the relevant selected features to the HAR by
removing the redundant and irrelevant features. The section describes the feature optimization based on
relevant studies for video-based human activity recognition.

The feature optimization improves the HAR system performance compared to the usability of the
entire feature set (Wang et al., 2016). Siddiqi et al. (2014) presented the method of stepwise linear
discriminant analysis for feature selection, which evaluates the localized features from video frames.
The method was determined as efficient for the experiments on the single subject based dataset, but
it lacks for the experiments on the real-time datasets having different subjects for different activities.
Fang et al. (2014) used the inter-class distance method for feature selection and neural networks with a
back propagation algorithm for activity recognition. The authors tested the results by incorporating six
different feature sets and a recognition method that was evaluated as efficient compared to the Hidden
Markov Model and Naive Bayes algorithm. Zheng (2015) adapted a hierarchical feature selection ap-
proach along with the classifiers of Naive Bayes and Least Squares Support Vector Machine for human
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activity recognition. The authors defined the requirement to place the sensors at the correct place to
determine the activity accurately. Mazaar et al. (2016) explored the ensemble learning model by incor-
porating the methods of random forest and gradient boosting for feature optimization. The classification
of the activities is performed using support vector machine with a linear kernel. Baldominos et al. (2017)
conducted the feature optimization at the dimension level and attribute level using the genetic algorithm.
The authors presented four different feature selection methods by incorporating with and without fea-
ture sensibility for both the dimension and attribute levels. Wang et al. (2018) optimized the features
using the correlation-based binary particle swarm optimization approach. In this approach, the k-nearest
neighbor method was used as a fitness method to determine the performance of the optimized feature
set. Siddiqui et al. (2018) presented a codebook-based feature selection approach that includes models
of visual vocabulary learning, quantization of features based on learned visual vocabulary, and represen-
tation of images by using the frequency of visual words. In the final module, activity classification was
conducted using the support vector machine algorithm.

Furthermore, Siddiqi et al. (2019) used a normalized mutual information-based feature selection
technique for the optimization of features. The authors also used linear discriminant analysis to reduce
the feature space for the extracted features by using the curvelet transform. The final classification of fea-
tures was performed using a hidden Markov model. Sharif et al. (2019) explored strong correlation and
the Euclidean distance method to select the optimal feature for activity recognition. Berlin & John (2020)
used a particle swarm optimization approach with a multi-objective function to reduce the feature space
by selecting an appropriate feature set. The activity recognition was conducted using a deep learning
neural network model. Helmi et al. (2021) proposed a hybrid approach of Grey Wolf Optimizer (GWO)
and Gradient-Based Optimizer (GBO) for feature optimization. The GWO method was used to optimize
the performance of the GBO algorithm. Tian et al. (2021) presented a feature selection methodology
by combining the wrapper and filter feature selection approach. In this method, the initial feature se-
lection was conducted using a game-theory filter approach, and further reselection was performed using
the wrapper approach of the binary firefly algorithm. Fan & Gao (2021) integrated the deep Q-network
with bee swarm optimization for the feature optimization. The bee swarm optimization approach retains
the exploration and exploitation balance in the feature space, and the deep Q-network uses the advanta-
geous attributes of reinforcement learning to make the local search space more efficient. Bulbul et al.
(2022) focused on enhancing the performance of 3D auto-correlation gradient features. The space-time
auto-correlation of gradients descriptor was used to obtain the three vectors in the method. Siddiqi &
Alsirhani (2022) employed the mutual information algorithm for feature selection. The method was the
extension of the max-relevance and min-redundancy to select the more appropriate and relevant features
for activity recognition. In the future, the authors indicated testing the presented method in a real-time
scenario.

As per the existing studies, the feature optimization techniques significantly contribute to improving
the system accuracy in HAR. However, the higher recognition accuracy requires the use of an appro-
priate technique that can select relevant features without redundancy and can reduce the computational
complexities. In addition, the standard and individual optimization techniques are observed with lacking
feature attributes that increase computational cost due to higher feature dimensionality (Helmi et al.,
2021). The improved and ensemble approaches are essential to increase the feature optimization abil-
ity in HAR. The current work proposes the INQGSA approach, which ensembles the attributes of the
quantum computing concept with an intelligent gravitational search algorithm for feature optimization.
To determine the superiority of the proposed INQGSA approach, the feature optimization is also per-
formed using the standard GSA (Rashedi et al., 2009) and QBGSA (Ibrahim et al., 2012). The GSA
and QBGSA use Kbest agents to maintain the balance of exploration and exploitation, but the Kbest
is a reducing function, so its value decreases over time and iterations. This decreasing value leads to
the trapping of agents at later iterations. The proposed INQGSA approach overcomes this drawback by
using an intelligent variant of GSA in which the position of agents is updated intelligently by using the
worst (gWorst) and best (gBest) information values of the agents (Mittal & Saraswat, 2019). The mass
agents get attracted towards the gBest information to attain the best position and start getting away from
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the gWorst. This avoids the trapping of agents in local optima and optimizes the features effectively.

3. Video data processing and feature extraction

The section describes the pre-processing and feature extraction modules of the HAR process. These are
the initial and essential modules for activity recognition.

3.1 Pre-processing
The pre-processing module segments the background region from the foreground of the image se-

quence (video frames). The image sequences for the proposed system are processed with a statistical
model, which evaluates the variance to analyze the absolute variations and co-variance to determine the
relative variations of the pixels (Singh et al., 2019).

For an array of frames (ηi = (ϕ, ψ)) with a starting value of SF and an ending value of EF , the
variance (V ar) is determined with Equation (1), and the co-variance (Cov(α, β)) between the frames α
and β is evaluated with Equation (2).

V ar =

(
1

EF

EF−1∑
i=0

(ηi − η̄)2
)

(1)

Cov(α, β) =

(
1

EF

EF−1∑
i=0

αiβi

)
−

(
1

EF

EF−1∑
i=0

αi

) 1

EF

EF−1∑
j=0

βj

 (2)

Where, 0 ≤ i < EF and η̄ is the mean of all the frames.
The variation in the intensity of the pixel compared to other pixels is evaluated based on the co-

variance between frames. The variance and co-variance values for all the pixels are stored in the reference
image Ref(ϕ, ψ). The objects are differentiated based on the reference image.

Further, the background model is updated to incorporate the change in intensity value and background
of the different frames. Exceeding the threshold value of the counter ρ indicates the requirement to update
the background model. The change in the background model is performed with Equation (3).

Refnew(ϕ, ψ) = (1− µ)× frameρ(ϕ, ψ) + µ×Ref(ϕ, ψ) (3)

Where, Refnew(ϕ, ψ) denotes the updated model. The symbol µ describes the updating speed, and
frameρ(ϕ, ψ) depicts the current frame of the video.

3.2 Feature extraction
The features are extracted using the uniform rotation invariant LBP (Local Binary Pattern) technique

from the pre-processed image sequence. The incorporation of the uniform rotation invariant is conducted
to handle the activities that possess multi-view poses. The image sequences are initially converted into
grayscale images to extract the features. In an LBP operator, the features of an image I(x, y) with gc as
the gray level of the central pixel and gp as the gray level of its neighbor pixels can be extracted using
Equation (4) (Pietikäinen et al., 2011).

LBPP,D(xc, yc) =

p−1∑
p=0

s(gp − gc)2
p (4)

Where, P is the set of sample pixels in the circular neighborhood of the central pixel with radius D,
p = 0, 1, . . . , (P − 1), and 2p is adapted to determine the size of histograms for the LBP operator. The
values of s(z) can be determined as described in Equation (5).

s(z) =

{
1, z ≥ 0
0, z < 0

(5)

The local circular neighbor pixels around the central pixel with a radius of D are described in Fig-
ure 2. Here, only the uniform patterns (U ) of the LBP code are incorporated to retain the statistical
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robustness. The uniform patterns hold the transition from 0 to 1, and the mapping of uniform LBP
patterns produces P (P − 1) + 3 labels for the P sampling points.

(a) (b)

Fig. 2. Circular neighbors for central pixels in format (P,D): (a). (4,1), (b). (8,2).

With the rotation of the image I(x, y), the LBP patterns are translated to another location for the
rotation around their origin. The rotation of the patterns can be normalized with the rotation invari-
ant mapping in which the LBP binary code is rotated to the minimum possible value, as depicted in
Equation (6).

LBP ri
P,D = min

i
ROR(LBPP,D, i) (6)

Where, ROR(LBPP,D, i) is the circular bit-wise rotation with i steps.
The features with the uniform rotation invariant LBP operator are extracted using Equations (7)- (8)

that retain the robustness and higher stability (Singh et al., 2019).

LBP riu2
P,D =

{∑p−1
p=0 s (gp − gc) , if U(LBPP,D ≤ 2)

P + 1, otherwise
(7)

where,

U(LBPP,D) = |s(gp−1 − gc)− s(g0 − gc)|+
p−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)| (8)

The value of s(z) is evaluated using Equation (5). The uniform operator U(LBPP,D) is a rotation
invariant operator with varying bits of 0 and 1 in circular symmetry.

4. Feature optimization using proposed INQGSA approach

The optimization of features is essential for the classifier to improve the performance of the system. The
present work proposes the INQGSA approach to optimize the features for human activity recognition.
The GSA is a population-based meta-heuristic algorithm inspired by the physics-based Newton′s laws
of motion and gravity to optimize the solution set for high dimensional problems (Rashedi et al., 2009).
The proposal of the INQGSA approach is presented as the standard GSA (Rashedi et al., 2009) and
QBGSA (Ibrahim et al., 2012) algorithms lack feature optimization. In the meta-heuristic algorithm,
the balance of exploration and exploitation is essential for optimization. The GSA and QBGSA use
the Kbest agents to retain this balance, but the value of Kbest decreases with the increasing iterations
because Kbest is a reducing function. This decreasing value leads to the trapping of agents at later
iterations. The proposed INQGSA approach adapts the advantageous attributes of QC and intelligent
variant of GSA to tackle the trapping of agents. In the proposed INQGSA approach, the position of
agents is updated intelligently by using the worst (gWorst) best (gBest) information values of the
agents (Mittal & Saraswat, 2019). The mass agents get attracted towards the gBest information to attain

Quantum behaved intelligent variant of gravitational search algorithm with deep neural networks for human activity recognition

203



the best position and start getting away from the gWorst. This avoids the trapping of agents in local
optima and optimizes the features effectively.

The proposed INQGSA algorithm begins by considering an n-dimensional system having N mass
agents in which the position of the ith agent can be defined by Equation (9).

Xi = (x1i , x
2
i , . . . , x

d
i , . . . , x

n
i ); i = 1, 2, 3, . . . , N (9)

Where, xdi is the position of the ith mass agent in dth dimension.
The force acting by the considered ith agent on the jth agent is determined by Equation (10).

F d
ij(t) = G(t)

Mpi(t)×Maj(t)

Rij(t) + ε
(xdj (t)− xdi (t)) (10)

Where, ε is a constant and the masses are considered as active mass (Maj) and passive mass (Mpi)
for the jth agent and ith agent, respectively. In Equation (10), the distance R is incorporated instead of
R2 (in law of gravity) due to better performance with only R as per the existing studies (Rashedi et al.,
2009). Here, the Euclidean distance Rij is determined by Equation (11).

Rij(t) = ∥Xi(t), Xj(t)∥2 (11)

Further, the addition of stochastic attributes changes the force evaluation with the total force acting
on the agent i as depicted in Equation (12). By considering the total force, the acceleration evaluation is
depicted in Equation (13).

F d
i (t) =

N∑
j=1,j ̸=i

randjF
d
ij(t) (12)

adi (t) =
F d
i (t)

Mii(t)
(13)

Where, randj is the random number that lies in [0, 1] and Mii indicates the inertial mass.
Further, the movement of the particles is determined by evaluating the change in position, velocity,

and masses by Equation (14)- (16).

vdi (t+ 1) = randi × vdi (t) + adi (t) (14)

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (15)

Mi(t) =
mi(t)∑N
j=1mj(t)

(16)

Where, Mi = Mii = Mpi = Mai as the inertial and gravitational masses are assumed to be equal
and calculated by the fitness function fiti(t). In Equation (16), mi(t) is evaluated using Equation (17).

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(17)

In the current research work, feature optimization is a minimization problem as it needs to minimize
feature dimensionality. For the minimization problem, the values of best(t) and worst(t) are evaluated
by Equations (18) and (19).

best(t) = minjϵ{1,2,...,N}fitj(t) (18)

worst(t) = maxjϵ{1,2,...,N}fitj(t) (19)

In GSA, the mass agents can be trapped in later iterations, which can be avoided by introducing the
intelligent variant of GSA. The INGSA incorporates the worst (gWorst) and best (gBest) information
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values of the agents to update the position of each agent intelligently (Mittal & Saraswat, 2019). For
the current feature optimization problem, which is a minimization problem, the values of gBest and
gWorst are evaluated by Equations (20)- (21).

gBest(t) = xe(t) (20)

gWorst(t) = xs(t) (21)

Where, the notations e and s are concerned with the minimum and maximum fitness functions of the
intelligent mass agents, which are evaluated by Equations (22)- (23).

fite(t) = min {fit1, fit2, fit3, . . . , fitN} (22)

fits(t) = max {fit1, fit2, fit3, . . . , fitN} (23)

The mass agents get attracted towards the gBest information to attain the best position and start
getting away from the gWorst. The update in the position of the mass agents as per INGSA is determined
by Equation (24).

xdi (t+ 1) = xdi (t) + vdi (t+ 1) + b(t)×
(
gBestd(t)− xdi (t)

)∣∣ω × gWorstd(t)− xdi (t)
∣∣ (24)

In Equation (24), the intelligent component is the third term. Here, b(t) is a number that lies in [0,1]
and is determined randomly. ω possesses a constant value of 0.7 and is incorporated to reduce the effect
of gWorst as it tries to mitigate the movement of mass agents towards gBest (Mittal & Saraswat, 2019).
As the mass agents move towards the gBest, the agents′ distance increases from gWorst which helps
to reduce the step size and avoid the trapping of agents in the local optima. Another scenario of greater
distance from gBest allows the agents to explore more.

Further, the concept of quantum computing is introduced with the INGSA. In quantum comput-
ing, the position and velocity of mass agent changes to quantum states with a probabilistic illustra-
tion (Ibrahim et al., 2012). The Q-bit (quantum bit) is considered as the smallest unit and its state can
be either 0 or 1 or their superposition, which can be analyzed for any complex numbers (C1 and C2) by
Equation (25).

|ψ⟩ = C1 |0⟩+ C2 |1⟩ (25)

The complex numbers C1 and C2 are the probability amplitudes for binary numbers 0 and 1, respec-
tively, and they assures the normalization of states to unity by following Equation (26).

|C1|2 + |C2|2 = 1 (26)

The states of the Q-bits are updated by using the quantum gates. Among the eminent quantum gates
of the rotation gate, NOT gate, Hadamard gate, etc., this work incorporates the rotation gate due to its
effective performance in the existing studies (Ibrahim et al., 2012). The solution for the INQGSA-agents
through the rotation gate is presented by Equation (27).

U(∆θ) =

[
cos (∆θ) − sin (∆θ)
sin (∆θ) cos (∆θ)

]
(27)

Where, ∆θ is the rotation angle for i = 1, 2, . . . , n that determines the position of the agents in terms
of quantum state.

In the INQGSA approach, the movement of the quantum mass agents is determined by updating
Equation (24) with the quantum movements, which is illustrated by Equation (28).

θdij(t+ 1) = θdij(t) + ∆θdij(t+ 1) + b(t)×

(
gBestd(t)− θdij(t)

)
∣∣∣ω × gWorstd(t)− θdij(t)

∣∣∣ (28)
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Algorithm 1: Pseudo Code of the INQGSA approach for Feature Optimization
Initialize the parameters of the QC concept and GSA algorithm such as as tmax, ϑ0, ω, etc.
Determine the initial fitness value for the population of intelligent mass agents.
t=1; while t < tmax do

for i = 1 to N do
Evaluate the ϑ and a values for the agents.
Evaluated the θdij(t) and ∆θdij(t) values for the agents
Determine the information for the agents concerning the best and worst fitness
information.

Evaluate the fitness value.
Update the position (θdij(t+ 1)) and velocity (∆θdij(t+ 1)) values for the agents using
Equations (28) and (29).

end
end
Store the optimal features determined by the best agents at optimal positions and best fitness
value.

Where,
∆θdij(t+ 1) = randi ×∆θdij(t) + adij(t) (29)

In Equation (29), adij(t) is evaluated by putting the values of Equations (10)- (12) into Equation (13),
which is further derived as per the INQGSA approach. In Equation (10), the value of ε is neglected as it is
constant. The derived formulation for adij(t) as per the INQGSA approach is presented by Equation (30).

adij(t) =
∑

j=1,j ̸=i

[
randj × ϑ× γki ×

(
θdkj(t)− θdik(t)

)]
(30)

Where, the symbol ϑ is G(t) which decreases from ϑmax to ϑmin depending on the rotation angle.
The ratio of the mass (Maj) and distance (Rij) are presented by a decision parameter (γki ) which is
evaluated by Equations (31)- (32) (Ibrahim et al., 2012).

γki =

{
λki + 1, if fit(θdk(t)) = fit(θdi (t))

λki , otherwise
(31)

λki =

{
1, Mk > Mi and Rik ≤ τ

0, otherwise
(32)

Where, τ represents the maximum number of different bits out of total bits in between the ith and
kth agents that can put the active force on the ith agent.

The optimized features are selected by the intelligent quantum mass agents upon the completion of
their maximum iterations. At maximum iterations, the features selected by the best agents that possess
optimized position, are retained. The pseudo-code of the feature optimization process using the INQGSA
approach is illustrated in Algorithm 1.

5. Classification and recognition of activities

The classification of the activities is conducted with the deep residual networks (ResNet), which possess
the deep neural network (DNN) architecture. DNN models are capable of mapping the features of layer
data within deep networks. The network architecture of ResNet is a series of blocks connected to each
other with parallel shortcut links for the output. The basic structure of the residual network block and its
internal learning process are illustrated in Figure 3.

In Figure 3(a), incorporating the parameterized layer after the Addition module can reduce the
ResNet’s advantages, but incorporating the non-parameterized layer (ReLU) after the Addition has little
impact on the ResNet (Kiliç et al., 2020).The conventional CNN is not significant for in-depth learning
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as the error increases (due to over-fitting) with the increase in the depth of layers. In ResNet, the residual
values are formed after adding the blocks, which are fed to the succeeding layers in the model.

In Figure 3(b), x is incorporated as an input, and the output is obtained after the ReLU operation in
the form of H(x) = F (x) + x. Here, the input (x) is passed from the weight layer (w), and the results
are acquired in the form of F (x). The final output is determined by adding the x input to F (x).

Input

Convolution

Convolution

ReLU

Batch Normalization 

Batch Normalization 

Addition

ReLU

Output

Weight Layer 

ReLU

Weight Layer 

F(x)

ReLU

x

F(x)+x

(a) (b)

Fig. 3. (a) Basic ResNet Block (b) Internal Learning Process of Residual Block.

In this research work, the ResNet with 50 and 101 layers is adapted for the classification of activities.
These networks are constructed using the architecture of 3-layer bottleneck blocks. There are 3.8× 109

and 7.6 × 109 FLOPs in ResNet-50 and ResNet-101 respectively. The complexity of these networks
is lower than VGG16/19, even after increasing the deep layers. The architectures of ResNet-50 and
ResNet-101 are described in Table 1.

Here, version 2 (V2) of the ResNet is incorporated to direct the identity connections from input to
output by removing the last non-linearity, which enhances the learning process and hence the classifi-
cation of activities. In ResNet V2, the weight layers are pre-activated instead of post-activation. The
present research work has incorporated the ResNet-50V2 and ResNet-101V2 for the human activities
classification.

6. Experimental results and discussion

The results for the proposed HAR system are determined using evaluation measures of precision, recall,
and f-measure for the experiments on the UCF101 and HMDB51 datasets. Furthermore, the recognition
accuracy is also evaluated for the quantitative analysis of the proposed HAR system. The recognition
accuracy is described in Equation (33).

Recognition Accuracy =
Correctly Classified Instances

Total Number of Instances
× 100 (33)
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Table 1. Layer Architecture of the Residual Networks.

Layer ResNet-50 ResNet-101 Output Size
Convolutional 1 7× 7, 64, stride 2 112× 112

Convolutional 2
3× 3 max pooling, stride 2

56× 56 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Convolutional 3

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4 28× 28

Convolutional 4

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23 14× 14

Convolutional 5

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3 7× 7

Average Pooling, 1000 Fully Connected Softmax 1× 1

Table 2. Statistics of Datasets.

Parameter UCF101 HMDB51
Actions 101 51

Resolution 320 × 240 320 × 240
Video Clips 13,320 6,766
Frame Rate 25 fps 30 fps

Min. Video Clip Length 1.06 sec 1 sec
Min. Video Clips Per Action 100 101

6.1 Datasets
The present work has utilized the UCF101 (Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011)

datasets, which are video-based datasets. The UCF101 dataset is composed of 101 realistic action videos
gathered from YouTube. There are 13,320 videos of different actions available in this dataset, and the
different activities are divided into five categories: sports, playing musical instruments, human-human in-
teraction, body-motion, and human-object interaction. Whereas, the HMDB51 dataset is collected from
the Prelinger archive, Google, and YouTube videos. The HMDB51 dataset embodies 6,766 video clips
related to 51 action categories, which are majorly divided into five categories: general body movements,
body movement for human interaction, body movement for object interaction, general facial actions, and
facial actions with object manipulation. The statistics of both the datasets are illustrated in Table 2, and
some sample frames indicating different activities are depicted in Figure 4.

6.2 Result evaluation
To perform the experiments for the proposed HAR system, both the datasets (UCF101 and HMDB51)

are divided separately into the training and testing proportions of approximately 90:10. For both the
datasets, 1,650 frames per activity are extracted. A total of 166,650 frames from the UCF101 dataset
and 84,150 frames from the HMDB51 dataset are extracted. Among the total 1,650 frames per activity,
1,500 frames are utilized for training the residual networks and 150 frames are utilized for testing. The
description of the training and testing settings is depicted in Table 3.

Before evaluating the testing results for the proposed HAR system, the data is validated by splitting
the training data frames (151,500 frames of the UCF101 dataset and 76,500 frames of the HMDB51
dataset) into the ratio of 80:20. The 80% of the data (121,200 frames of UCF101 dataset and 61,200
frames of HMDB51 dataset) is utilized for the training and 20% of the data (30,300 frames of UCF101
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Apply Lipstick Cricket Shot Horse Riding PunchShaving Beard 

(a) UCF101

Shoot Gun Climb Flic Flac HugClap 

(b) HMDB51

Fig. 4. Sample Frames illustrating different Activities (a) UCF101 dataset (b) HMDB51 dataset.

Table 3. Training and Testing Setting.

Parameter Value
Input of spatial stream Size of single frame = 3×224×224
Total number of frames 1,650 frames per activity

Number of frames (Training) 1,500 frames per activity
Batch Size 32

Number of Epochs 20
Initial learning rate 5e4

Number of frames (Testing) 150 frames per activity

dataset and 15,300 frames of HMDB51 dataset) is used for the validation. Figures 5- 8 illustrate the
accuracy and loss curves over the 20 epochs during the training and validation for both the UCF101
and HMDB51 datasets. In Figures 5- 8, the results are determined by incorporating the different feature
optimization techniques (GSA, QBGSA, and proposed INQGSA) along with the DNN classifiers of
ResNet-50V2 and ResNet-101V2.

The graphs depicted in Figures 5- 8 indicate the higher oscillation of validation results in the case
of GSA and QBGSA, which is due to the trapping of agents with the increase of epochs. On the other
hand, the proposed INQGSA can be seen with the minor oscillations of result values. The training of
the techniques can be found to be smooth compared to the validation results. The validation results
for the UCF101 and HMDB51 datasets are illustrated in Tables 4 and 5, respectively. These results
clearly indicate the higher accuracy and lower loss values of the proposed models. For the UCF101
dataset, the maximum validation accuracy values of 97.95% and 98.98% are attained by the proposed
INQGSA+ResNet50V2 technique and the proposed INQGSA+ResNet101V2 technique, respectively.
Furthermore, these values are 96.92% and 98.25% in the case of the HMDB51 dataset for the aforemen-
tioned techniques. These validation results are higher than other feature optimization techniques, which
indicate the superiority of the proposed approach. It also indicates that the ResNet-101V2 attained supe-
rior performance to the ResNet-50V2.

Further, the testing results of the proposed INQGSA approach and other optimization techniques
with ResNet-50V2 and ResNet-101V2 classifiers are determined in terms of precision, recall, f-measure
score, and recognition accuracy. The classification results for the UCF101 and HMDB51 datasets are
described in Tables 6 and 7.

From the classification results depicted in Tables 6 and 7, it can be seen that the results values
of INQGSA with both the DNN models (ResNet-50V2 and ResNet-101V2) are higher than the results
evaluated with QBGSA and GSA. It indicates that the INQGSA can optimize the features more efficiently

Quantum behaved intelligent variant of gravitational search algorithm with deep neural networks for human activity recognition

209



(a) Training Accuracy (b) Training Loss

(c) Validation Accuracy (d) Validation Loss

Fig. 5. Performance of ResNet-50V2 Classifier with different Feature Optimization Techniques for the
UCF101 Dataset.

(a) Training Accuracy (b) Training Loss

(c) Validation Accuracy (d) Validation Loss

Fig. 6. Performance of ResNet-101V2 Classifier with different Feature Optimization Techniques for the
UCF101 Dataset.
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(a) Training Accuracy (b) Training Loss

(c) Validation Accuracy (d) Validation Loss

Fig. 7. Performance of ResNet-50V2 Classifier with different Feature Optimization Techniques for the
HMDB51 Dataset.

(a) Training Accuracy (b) Training Loss

(c) Validation Accuracy (d) Validation Loss

Fig. 8. Performance of ResNet-101V2 Classifier with different Feature Optimization Techniques for the
HMDB51 Dataset.
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Table 4. Validation Results for the UCF101 Dataset.

Technique Max. Validation Accuracy Min. Validation Loss
GSA+ResNet50V2 84.59% 0.579
GSA+ResNet101V2 88.06% 0.581

QBGSA+ResNet50V2 91.48% 0.1431
QBGSA+ResNet101V2 93.48% 0.318

Proposed INQGSA+ResNet50V2 97.95% 0.0327
Proposed INQGSA+ResNet101V2 98.98% 0.0243

Table 5. Validation Results for the HMDB51 Dataset.

Technique Max. Validation Accuracy Min. Validation Loss
GSA+ResNet50V2 86.85% 0.837
GSA+ResNet101V2 89.91% 0.631

QBGSA+ResNet50V2 93.85% 0.2247
QBGSA+ResNet101V2 94.82% 0.061

Proposed INQGSA+ResNet50V2 96.92% 0.0415
Proposed INQGSA+ResNet101V2 98.25% 0.0173

compared to the GSA and QBGSA. The maximum recognition accuracy values of 96.16% and 97.11%
are attained by the proposed INQGSA+ResNet101V2 technique for the UCF101 and HMDB51 datasets,
respectively. As the proposed techniques are superior to other optimization techniques, therefore only
the proposed techniques are incorporated for further comparison with state-of-the-art techniques.

6.3 Comparative analysis
The proposed HAR system has incorporated the RGB frames for activity recognition from video

datasets. Therefore, the comparative analysis of the proposed system is conducted with most of the RGB-
based techniques for the experiments on the UCF101 and HMDB51 datasets. The comparative analysis
of the proposed system with state-of-the-art techniques in terms of recognition accuracy is summarized
in Table 8.

The proposed INQGSA approach outperformed with both the classifiers (ResNet-50V2 and ResNet-
101V2) compared to the state-of-the-art techniques. For the UCF101 and HMDB51 datasets, the pro-
posed INQGSA+ResNet101V2 technique has attained 0.78% and 1.27% higher accuracy values than the
INQGSA+ResNet50V2 technique, respectively.

For the UCF101 dataset, the recognition accuracy of the proposed INQGSA+ResNet101V2 tech-
nique is 7.06% higher than MIFS (Multi-skIp Feature Stacking) (Lan et al., 2015), 4.26% than Motion
Map+MIFS (Sun et al., 2018), 7.26% than MiCT-Net (Mixed Convolutional Tube Network) (Zhou et
al., 2018), 4.66% than CNN-OFF (Xu et al., 2021), 3.27% than CNN (weighted product fusion) (Singh
et al., 2021), 4.12% than CNN (weighted average fusion) (Singh et al., 2021), 4.6% than CNN (max fu-
sion) (Singh et al., 2021), 7.49% than CNN (sum fusion) (Singh et al., 2021), 7.93% than CNN (spatio-

Table 6. Classification Results for the UCF101 Dataset.

Technique Precision Recall F-Measure Recognition Accuracy
GSA+ResNet50V2 86.08% 83.14% 84.58% 83.14%
GSA+ResNet101V2 87.89% 86.23% 87.05% 86.23%

QBGSA+ResNet50V2 90.44% 89.53% 89.98% 89.53%
QBGSA+ResNet101V2 94.15% 92.77% 93.45% 92.77%

Proposed INQGSA+ResNet50V2 96.17% 95.38% 95.77% 95.38%
Proposed INQGSA+ResNet101V2 96.91% 96.16% 96.53% 96.16%
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Table 7. Classification Results for the HMDB51 Dataset.

Technique Precision Recall F-Measure Recognition Accuracy
GSA+ResNet50V2 88.12% 85.76% 86.92% 85.76%
GSA+ResNet101V2 90.47% 88.35% 89.40% 88.35%

QBGSA+ResNet50V2 93.48% 92.07% 92.77% 92.07%
QBGSA+ResNet101V2 94.13% 92.97% 93.55% 92.97%

Proposed INQGSA+ResNet50V2 97.09% 95.84% 96.46% 95.84%
Proposed INQGSA+ResNet101V2 98.37% 97.11% 97.74% 97.11%

Table 8. Comparison of the Proposed HAR System with State-of-the-art Techniques.

Technique UCF101 HMDB51
MIFS (Lan et al., 2015) 89.1% 65.1%

Motion Map+MIFS (Sun et al., 2018) 91.9% 73.7%
MiCT-Net (Zhou et al., 2018) 88.9% 63.8%
M-SVM (Sharif et al., 2019) - 92.6%
CNN-OFF (Xu et al., 2021) 91.5% 67.9%

CNN (weighted product fusion) (Singh et al., 2021) 92.89% 64.13%
CNN (weighted average fusion) (Singh et al., 2021) 92.04% 63.87%

CNN (max fusion) (Singh et al., 2021) 91.56% 62.79%
CNN (sum fusion) (Singh et al., 2021) 88.67% 62.32%
CNN (spatio-temp) (Singh et al., 2021) 88.23% 61.89%

CNN (spatial) (Singh et al., 2021) 82.23% 57.20%
MSM-ResNets (Zong et al., 2021) 93.5% 66.7%

PDaUM+DCNN (Khan et al., 2021) - 81.4%
Proposed INQGSA+ResNet50V2 95.38% 95.84%
Proposed INQGSA+ResNet101V2 96.16% 97.11%

temp) (Singh et al., 2021), 13.93% than CNN (spatial) (Singh et al., 2021), 2.66% than MSM-ResNets
(Motion Saliency based multi-stream Multiplier ResNets) (Zong et al., 2021).

For the HMDB51 dataset, the recognition accuracy of the proposed INQGSA+ResNet101V2 tech-
nique is 32.01% higher than MIFS (Lan et al., 2015), 23.41% than Motion Map+MIFS (Sun et al., 2018),
33.31% than MiCT-Net (Zhou et al., 2018), 4.51% than M-SVM (Multi-class Support Vector Machine)
(Sharif et al., 2019), 29.21% than CNN-OFF (Xu et al., 2021), 32.98% than CNN (weighted product fu-
sion) (Singh et al., 2021), 33.24% than CNN (weighted average fusion) (Singh et al., 2021), 34.32% than
CNN (max fusion) (Singh et al., 2021), 34.79% than CNN (sum fusion) (Singh et al., 2021), 35.22% than
CNN (spatio-temp) (Singh et al., 2021), 39.91% than CNN (spatial) (Singh et al., 2021), 30.41% than
MSM-ResNets (Zong et al., 2021), and 15.71% than PDaUM (Poisson distribution along with Univariate
Measures) + DCNN (Deep Convolutional Neural Network) (Khan et al., 2021).

These comparisons indicate the superiority of the results for the proposed techniques over other
techniques. Although the accuracy differences between the proposed techniques and other techniques
are readily visible for both the datasets, a significant improvement in the results can be observed for
the HMDB51 dataset. These results demonstrate that the proposed INQGSA technique considerably
enhances the features that aid in the more accurate recognition of activities.

7. Conclusion

This paper proposed the INQGSA approach to optimize the features for human activity recognition. The
proposed INQGSA approach intelligently updates the position of mass agents to avoid the trapping of
agents in later iterations, which occurred in GSA and QBGSA. In this work, these intelligent attributes
helps to improve the feature optimization for activity recognition. In the overall human activity recog-
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nition system, a sequence of the latest techniques is incorporated for the different modules of activity
recognition. The system incorporated the key techniques of uniform rotation invariant LBP for feature
extraction, the proposed INQGSA approach for feature optimization, and deep neural network mod-
els (ResNet-50V2 and ResNet-101V2) for classification. The feature optimization technique reduces
the complexity of the classifiers by feeding the selected features. The results of the proposed HAR
system are evaluated for the UCF101 and HMDB51 datasets. For the UCF101 dataset, the proposed
INQGSA+ResNet50V2 technique and the proposed INQGSA+ResNet101V2 techniques attained recog-
nition accuracy of 95.38% and 96.16%, respectively. These values for the HMDB51 dataset are 95.84%
and 97.11%, respectively. The comparative analysis of the proposed techniques with GSA and QBGSA
based optimization techniques and state-of-the-art techniques indicates the outperformed performance of
the proposed techniques.

In the future, the proposed INQGSA approach can be utilized for other applications such as net-
work optimization, scheduling, robotic programs, etc. Moreover, the proposed HAR system can also be
implemented in real time to determine abnormal activities in public places.
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Abstract

Navigation for mobile robots in dynamic environments necessitates estimating the path of dynamic obsta-
cles, which is accomplished in this study using an enhanced kalman filter. The measured data, however,
contains bias and noise. The SDAE, a deep learning-based neural network structure, delivers noise-free
data that the Kalman filter uses to construct an optimal measurement noise covariance matrix. This ma-
trix is then used by the Kalman filter to estimate an error-free obstacle path.The SDAE is trained using
both the Adam and stochastic gradient learning algorithms. To ensure safe navigation, the robot’s path
is re-planned based on the estimated obstacle path. Numerical simulations using MATLAB demonstrate
that the novel methodology is more relevant and superior to traditional Kalman and Particle filter ap-
proaches, and that it can be applied in a variety of navigational applications. In terms of computing
time and robustness in closely spaced obstacles, simulation testing indicated that path planning using the
proposed technique excels the hybrid A star, artificial potential field, and decision algorithms.

Keywords: Denoising autoencoder; dynamic path planning; Kalman filter; measurement noise covari-
ance; motion prediction;

1. Introduction

As a result of recent robotics advancements, autonomous mobile robots are increasingly being employed
in a wide range of applications, including military, hospitals, farm imaging, and surveillance. Mobile
robots could operate in hazardous and unpredictably changing situations. Because the barriers are im-
movable in a static environment, path planning is rather simple, and offline path planning suffices. Path
planning is a difficult problem in a dynamic environment with moving obstacles because the robot must
re-plan its path to reach the destination without colliding.
To achieve intelligent navigation of mobile robots, sensor-actuator control methods are adopted. Most
navigation approaches, including global navigation satellite systems and inertial navigation systems, use
the Kalman filter (Wang S.L., 2013). A unique deep learning-based prediction method is developed
in (Park, J.S., 2020) for generating collision-free trajectories for a robot working in an obscured en-
vironment near a human obstacle. In (Park, J.S., 2020), an occlusion-aware planner is employed to
compute collision-free trajectories, resulting in improved human motion prediction accuracy. The Ex-
tended Kalman Filter and RGBD-SLAM are employed in order to solve landmark localization and build
2D and 3D maps of the environment (Khan, M.S.A., et al., 2021). SLAM techniques are used on a two-
wheeled mobile robot with an encoder to monitor feedback, and the robot is intelligently built to move
autonomously in an indoor static environment. The authors of (Van Den Berg, et al., 2005) employed
road-maps for robot motion planning in dynamic scenarios. In this context, the local path planning has
been developed using a depth-first search on an implicit grid. This method is applicable to any robot type
in any configuration space, and the obstacle motion is unrestricted. Dynamic road maps, on the other
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hand, demand additional processes for smoothing the path prior to execution, making path re-planning
difficult. To handle the path planning problem and to have continuous re-planning of the path, (Volz
A., et al., 2019) presents a predictive route following controller. The ideal control actions for travel-
ing along the intended path are computed here, and the path is regularly re-planned. Another approach
is the one proposed in (Lin X., et al., 2020) , which incorporates artificial potential field and decision
tree concepts. The improved artificial potential field method addresses the problem of local minima and
thus enables real-time path planning. However, the robot experienced vibrations under the influence of
closely spaced obstacles. To avoid high speed obstacles, a viable two period velocity obstacle algorithm
is proposed in (Liu Z., et al., 2018). The first period predicts potential collisions within a limited time
horizon, while the second period predicts collisions beyond that horizon. The robot’s dynamic model
and moving impediments have not been taken into account, resulting in lower prediction accuracy. The
hybrid simulated annealing approach is utilized in (Saricicek I., et al., 2022) to determine autonomous
vehicle routes. An energy efficient routing and scheduling system is also offered in (Saricicek I., et al.,
2022) to reduce the total energy spent by the cars by taking both the traveled distance and the vehicle’s
weight into account. By merging vision-based estimation and control loops, in (Roggeman H., et al.,
2017) safe and autonomous navigation of mobile robots is achieved. To estimate the position of moving
obstacles, a method based on stereo vision data is used. For powerful computation, GPU assistance is
needed. In (Lin Y., et al. , 2017), a sampling-based path planning approach is designed for the safe op-
eration of an unmanned aerial vehicle. The planning time is reduced using a simplified node connection.
In (Zhu, Q., et.al, 2019), a path planner based on a recurrent fuzzy neural network (RFNN) is created to
plan the trajectory and motion of mobile robots in order to accomplish a target. To improve nonlinear
programming performance, RFNN integrates fuzzy logic inference and neural network learning charac-
teristics. To improve the autonomy and intelligence of autonomous guided vehicles (AGVs) navigation
control, ( Ren, Z., et.al, 2021) presented a hybrid real-time optimum control strategy based on deep
neural networks (DNNs). The motion planning problem of an AGV with static and dynamic obstacles
is presented as a nonlinear optimum control problem (OCP) in ( Ren, Z., et.al, 2021), and the optimal
solution is obtained using a direct method incorporating a smooth transformation methodology. The
Prognostics-aware Multi-Robot Route Planning (P-MRRP) algorithm is proposed in (Yayan, U., et.al,
2021) for improving the robot team’s lifetime. In the P-MRRP algorithm, routes are first created using a
route set generation algorithm, and then the most reliable route set is chosen by calculating PoRC based
on the robot team’s reliability, as well as the effect of load on the robots’ path.
In (Elnagar A., 2001), the Kalman filter is utilized to forecast the future positions and orientations of
moving obstacles in dynamic situations. Under the assumption that the prior position and orientation are
known, the Kalman filter may efficiently anticipate obstacle positions. (Wei, H., et al., 2021) proposed a
method for estimating motion state based on region-level instance segmentation and the extended Kalman
filter (EKF). To create optimum motion parameters, the EKF model takes into account ego-motion and
integrates it along with optical flow and disparity. The Kalman filter’s prediction, on the other hand, is
dependent on the process noise covariance matrix R and the measurement noise covariance matrix Q.
When the measurement noise covariance matrix is chosen arbitrarily, the filtering accuracy degrades. In
(Mehra R, 1971), an iterative approach for obtaining unbiased and reliable estimations of Q and R has
been developed. However, this iterative method can be used only for the case in which the form of Q
is known and the number of unknown elements in Q is less than n × r, where n is the dimension of the
state vector and r is the dimension of the measurement vector. The measurement noise covariance is
identified in (Diversi R. et al., 2005) without any knowledge of the noise mean by considering linear
discrete stochastic systems. An estimation of the measurement noise covariance is done in (Yuen K.V.,
et al., 2013) using a probabilistic method. In (Yuen K.V., et al., 2013), the Bayesian technique has been
utilized to determine the optimal noise parameter estimation and associated estimation uncertainty. The
noise covariance of a scalar system is estimated using the maximum likelihood approach by the authors
of (Matisko P., et al., 2010). However, in (Matisko P., et al., 2010), they implemented a simple searching
strategy that would be prohibitively expensive for larger systems. In (Shumway R.H., et al., 2019), the
measurement noise covariance matrix is computed using a gradient-based numerical optimization ap-
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proach that can be applied to measurements taken at irregular intervals but demands a lot of computing
power. The authors of (Valappil J., et al., 2000) have developed a method for estimating the noise covari-
ance matrix of an extended Kalman filter based on Monte Carlo simulations. Using a priori knowledge
of the uncertainties, samples of the parameters are generated in (Valappil J., et al., 2000) and provided
a simplified approach for tuning the Kalman filter. An auto covariance least square method is proposed
by the authors of (Odelson B.J., et al., 2006) to estimate the Q and R of Kalman filter. A lagged auto
covariance function between the measurements is defined in (Odelson B.J., et al., 2006), which is used
to develop a linear least squares formulation to estimate Q and R. A wavelet transform is proposed in
(Park S., et al., 2019) to estimate the time-varying measurement noise variance. The noise covariance
matrix can be correctly predicted using the wavelet transform approach. The computation time, on the
other hand, is longer. The authors of (Wu F., et al., 2020) use temporal convolutional neural networks
to accurately evaluate the measurement noise covariance matrix. The sensor data sequences are used to
estimate the noise covariance via neural networks. Changes in the environment can be reflected using
temporal convolutional neural networks. The approach proposed in (Wu F., et al., 2020), on the other
hand, has a high training cost and cannot be learned directly on the resource constrained integrated nav-
igation platform. The enhanced Hough Transform (HT) algorithm and the Least Squares (LS) method
are combined in (Gao, et.al, 2018) as an effective methodology for multi-objective recognition in 8-ball
billiards vision system. In (Ariff, M.A.M.,, 2021), a time-series prediction technique based on the non-
linear auto-regressive exogenous neural network (NARX) algorithm is developed to forecast generator
speed deviations after a system disturbance. Using the developed strategy, the author of (Ariff, M.A.M.,,
2021) is able to speed up the overall coherency detection procedure in a power system operation.
According to the literature review, the majority of dynamic path planning algorithms assume that the
obstacle motion is known in advance (Xidias, 2021) or that it moves at a constant velocity (Lin X., et al.,
2020). In the vast majority of circumstances, however, assuming obstacle motion is impossible. Most
path planning algorithms require more time to re-plan (Xidias, 2021), resulting in higher processing time
(Lin Y., et al. , 2017) and a significant amount of computing labor (Roggeman H., et al., 2017). The
literature review also reveals that, dynamic path planning algorithms that use sensors for motion predic-
tion may fail to generate a precise collision-free path due to erroneous obstacle path predictions caused
by noisy data. In this study, we offer an approach for estimating the motion of obstacles in dynamic
conditions, which aids the robot in avoiding obstacles, is applicable to varying velocity, and requires less
computing time with higher prediction accuracy. The Kalman filter is an excellent option for predict-
ing obstacle paths. For accurate prediction, however, knowledge of the noise error covariance matrices
is essential. Furthermore, on-line processing of these matrices is often necessary for any time-varying
nonlinear system, such as a mobile robot. In contrast to the use of approximation or random selec-
tion, this method employs the SDAE to determine measurement noise covariance. The following are the
significant contributions of this work:

• This research develops an approach for determining obstacle motion in dynamic environments
using multi-layer neural networks that is suitable to varying velocity and takes less computing time
with improved prediction accuracy. The deep learning based neural network structure proposed in
this work is highly reliable and robust against noise.

• Once trained, the developed stacked denoising autoencoder based extended Kalman filter is able
to predict the obstacle state in the presence of both Gaussian and non- Gaussian noise.

• In terms of performance metrics such as integral squared error (ISE), mean absolute error (MAE),
and integral absolute error (ISE), the developed SDAE methodology with Adam optimizer out-
performs the conventional Kalman filter, Particle filter, and denoising autoencoder (DAE )based
Kalman filter for both colored and Gaussian noise. As compared to (Sedighi S., et al., 2019), (Ge
S.S., et al., 2002), and (Xidias, 2021), the developed methodology generates an optimal path in
terms of processing time, path length, and obstacle avoidance.

The rest of this paper is organized as follows: Problem formulation is explained in section 2. Section
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3 describes the proposed algorithm for motion prediction. Simulation results are given in section 4.
Finally, section 5 presents the concluding remarks.

2. Problem formulation

The path planning problem is defined as finding a collision free path for an autonomous vehicle from a
given start position to a goal position, satisfying a set of constraints. Assume that the mobile robot moves
in a two dimensional (2D) space. The objective of robot the path planning is to find a path from a start

xs

ys

yg

Y

xg X

dynamic obstacle

g0

gf

Fig. 1. Problem definition

position g0 to a goal position gf such that the robot avoids collision with obstacles. Let g represents the
path which can be defined as

g = [g0, g1, g2 . . . gn−2, gn−1, gf ] (1)

where g1, g2 . . . gn−1 are the via points.
To ensure that the path is collision free, there should be no static and dynamic obstacle in the robot’s
safety zone at any time i.e.,

for i = 1, 2, . . . , N, opi(t) /∈ P (x(t)) (2)

where N is the number of obstacles, P (x(t)) corresponds to the safety zone of the robot and opi is
the position of the obstacle. The state of the jth obstacle is given by

oj(t) =

[
opj (t)
ovj (t)

]
(3)

where ovj (t) is the velocity of the obstacle. Considering an obstacle with constant velocity, the
relation between the position and velocity of the jthobstacle using basic kinetic formula can be expressed
as (Lin Y., et al. , 2017)

opj (t) = opj (t0) + ovj (t0) ∗ (t− t0) (4)

The state space model of a robot can be represented as

ṙ(t) = f (r(t), u(t)) (5)

where r(t) is the state of the robot and u(t) corresponds to the control vector. Besides the condition
of collision free, the path should be shortest also which can be expressed mathematically as

g⋆ = argmin

∫
g
dq (6)

where dq is the differential of arc length of the path. In short, the problem can be defined as: Find
a continuous path g(x, y) from the start position g0(xs, ys) to the goal position gf (xg, yg) satisfying the
constraints given by Equations (2), (4), and (5). These concepts are shown in Fig. 1

Real time obstacle motion prediction using neural network based extended Kalman filter for robot path planning

221



3. Proposed methodology

In a real world scenario, the robots are supposed to navigate in dynamic environments which consist
of both static and dynamic obstacles. Obstacle motion prediction is a critical issue in dynamic path
planning. While addressing the motion planning problem, uncertainty in the obstacle motion needs to
be considered. The knowledge about obstacle motion information is very essential for the robots to
complete their task effectively and safely. In most of the robot path planning algorithms, it is assumed
that the obstacles move with a constant velocity or their positions are known to the robots. However, the
data obtained using the sensors may not be precise and can be noisy. Hence, the goal of a successful robot
navigation can be affected. The commonly adopted approach in navigation system for the obstacle path
prediction is the use of extended Kalman filter. The prediction accuracy of the Kalman filter is greatly
affected by the choice of measurement noise covariance matrix R. Filtering techniques and shallow neural
networks such as denoising autoencoder (DAE) (Park S., et al., 2019) for removing the noise have limited
performance in the presence of noises other than Gaussian. In this work, a SDAE is proposed to obtain
an optimum measurement covariance matrix which is used in an extended Kalman filter to estimate the
states of the moving obstacle accurately. Adam and stochastic gradient descent (SGD) algorithm are
used as the training algorithm to achieve maximum accuracy with reduced computation time.

3.1 Stacked Denoising Autoencoder Based Extended Kalman Filter
Kalman filter is a powerful tool for the state estimation of a system. It can provide a more accurate

estimate even if the measurements are noisy. Kalman filter is capable of online real time processing and
hence it can be used to estimate the position and velocity of moving obstacles in path planning problems.
Kalman filter operates in two steps

• Prediction - Based on the past sensor data the next values are predicted.

• Updation - To obtain a value closer to the actual value, the predicted value is refined using the
measured value.

The Kalman filter works well for the linear functions. However, obstacle motion paths can be nonlinear
and so this work considers an extended Kalman filter for the obstacle path estimation. In the extended
Kalman filter, the nonlinear equation is linearised using Jacobian matrix (Prevost C.G., et al., 2007).
Consider a moving robot car having the state

rk =

xkyk
θk

 (7)

where xk, yk, and θk corresponds to the x position, y position, and the orientation of the moving
robot car respectively. The state space model of a robot car after linearisation is given byxkyk

θk

 = A

xk−1

yk−1

θk−1

+B

[
vk−1

ωk−1

]
+ vk−1 (8)

where A =

1 0 0
0 1 0
0 0 1

, B =

cos θk−1 ∗ dk 0
sin θk−1 ∗ dk 0

0 dk

, and vk−1 =

noisek−1

noisek−1

noisek−1


The state at time step k is computed using the state space model, state estimate, and the control input

vector at the previous time step (k-1)

r̂k = f(rk−1, uk−1) (9)

The observation model is defined as
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zk = Hrk + wk (10)

where wk is the sensor noise and H matrix has the same number of rows as sensor measurements
and the same number of columns as states. In a robot car model, the H matrix is defined as

H =

1 0 0
0 1 0
0 0 1


The updated state r̂k

′ is calculated from

r̂′k = r̂k +K(zk −Hkr̂k) (11)

where K is the Kalman gain which is obtained using

K = PkH
T
k (HkPkH

T
k +Rk)

−1 (12)

where Rk is the covariance of the sensor noise. Here Pk is the error covariance matrix and it is first
predicted using

Pk = FkPk−1F
T
k +Qk (13)

where Qk is the process noise covariance, Fk is equivalent to the A matrix in Equation (8) and then
updated with

P ′
k = Pk −KHkPk (14)

From the above equations, it is clear that sensor noise covariance R and process noise covariance Q
are important factors that determine the extended Kalman filter performance. For most of the cases, R
is assumed to be constant or adjusted manually by trial and error approach. However, this may affect
the performance of the extended Kalman filter and can result in an inaccurate estimation of the obstacle
motion. A multi layer neural network based method is developed to estimate the obstacle state accurately.
SDAE are used to denoise the sensor data. The measurement noise covariance matrix is calculated
from the measured data and the noise free data obtained using the SDAE. The adaptively determined
measurement noise covariance matrix is further used by the extended Kalman filter for predicting the
obstacle state accurately. The training of the SDAEs is given in Algorithm 1 and the multi layer neural
network based algorithm for estimating the measurement noise covariance R is described in Algorithm
2. The learning based estimation of noise covariance matrix R consists of three steps.

1. Train the neural network using a set of input-output data. A set of noise free data, Smi, i=1, 2, 3,
. . . , n where n is the length of training data is collected which are considered as the target data of
the neural network. Let Ti , be the data obtained by adding noises to Smi. Both Gaussian noise and
colored noise are considered in this work. Then Ti represents the input data to the neural network.
The length of training data n is so chosen that the cost function C finally converges to zero. The
trained DAE are stacked together such that maximum accuracy is achieved.

2. Apply the noisy measured real time data to the trained SDAE. Then the output of the neural net-
work will be a noise free data Snf .

3. Compute the measurement noise covariance matrix R using

R =

∆x2 0 0
0 ∆y2

0 0 ∆v2

 (15)

Where ∆x is the difference between measured x-position and noise free x-position, ∆y is defined
as the difference between measured y position and noise free y position, and ∆v is defined as the
difference between measured velocity and noise free velocity.
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Algorithm 1: Training of the SDAEs

Training;
Require
Target: Noise free data Smi, i = 1, 2, 3, . . . , n, n is the length of training data;
Input: Noise is added to the noise free data Smi to obtain the input data;
α: Step size;
β1, β2 : Exponential decay rates for the moment estimates;
C(θ): Stochastic objective function with parameters θ;
θ0: Initial parameter vector;
m0: Initialize first moment vector;
v0: Initialize second moment vector;
t: Initialize time step;
while θt not converged do

t← t+ 1;
gt ← ∆θft(θt−1) (Get gradients objective at timestep t);
mt ← β1.mt−1 + (1− β1).gt (Update biased first moment estimate)
vt ← β2.vt−1 + (1− β2).g

2
t (Update biased second raw moment estimate);

m̂t ← mt
(1−βt)g

2
t (Compute bias-corrected first moment estimate);

v̂t ← vt
(1−β2

t )
(Compute bias-corrected second raw moment estimate);

θt ← θt−1 − α m̂t√
v̂t+ϵ

(Update parameters);

end while;
return θt (Resulting parameters)

end

Algorithm 2: Online estimation of measurement noise covariance matrix R

Begin
Step 1: Input: Sensor data Sn

Step 2: Give the input to the trained SDAE ”netθ”
for(t = 0 : ts)
Step 3: Obtain the output

Snf = netθ(Sn)

Step 4: Obtain
∆x = Snf (x)− Sn(x)

∆y = Snf (y)− Sn(y)

∆v = Snf (v)− Sn(v)

Step 5: Calculate the measurement noise covariance using

R =

∆x2 0 0
0 ∆y2 0
0 0 ∆v2


Step 6: Return R
end

Najva Hassan, Abdul Saleem

224



3.1.1 Stacked Denoising Autoencoders
Denoising autoencoders are neural networks which are the extension of autoencoders (Xing C., et

al., 2016). They are trained to obtain the original data from the corrupted version of it. A DAE consists
of encoder-decoder and a set of hidden layers similar to that of a conventional autoencoder. But the input
to the DAE is corrupted data and the decoder output is the noise free data. The working of the DAE is
shown in Fig. 2. For training, a set of noise free measured data is obtained. Then the input signal â is

Hidden layer Decoder

Noise

removed dataEncoder
Noisy

data

Fig. 2. Denoising autoencoder

obtained by adding noise to the noise free data, a. The noisy data â is mapped through the encoder to the
hidden layer. The output of the neurons in the hidden layer is given by

h = fe(Wihâ+ bih) (16)

Wih is the weight matrix connecting the input layer and hidden layer, fe is the activation function of
encoding layer, and bih is the bias in the hidden layer. The original data is reconstructed by the decoder
through the hidden layer.

ae = fd(Whoh+ bho) (17)

Who is the weight matrix connecting the output layer and hidden layer, fd is the activation function
of decoding layer, and bho is the bias in the output layer. The reconstruction error in a DAE is calculated
as

C(a, ae) = ||a− ae||2 (18)

where ae is the output. The cost function is minimized with respect to the DAE model weights

θ = argθ min
1

n

n∑
i=1

C(a(i), a(i)e ) (19)

where θ corresponds to (W, b) and C is the cost function.
The DAEs are robust and provides better results when trained properly. However, its capabilities are lim-
ited and often do not perform well for data with large noise. Thus a SDAE is used in this paper. SDAEs
are built by stacking DAE and have more than one hidden layer (Vincent P., et al., 2010). It consists of
two encoding layers and two decoding layers. The output of the first encoding layer is given as the input
data to the second encoding layer. In this work, a data set of 5000 samples are used to train the SDAE.
The additive white gaussian noise and the colored noise are added to the data set which gives the input
data for training purpose. The developed SDAE consists of two hidden layers with 20 neurons in each
layer. Initially, the first DAE is trained and the weights w, bias b and features h are obtained. These fea-
tures h are provided as the input to the next encoding layer. Layer wise training of DAE is performed and
are stacked together. Adam and stochastic gradient descent algorithms are used as the optimization algo-
rithms for learning. The gradient estimate is computed by using a loss function in the stochastic gradient
descent algorithm. The learning rate determines the magnitude of the parameter updation. Choosing of
the learning rate is a non trivial task in stochastic descent algorithm. The advantages of both adaptive
gradient and RMSprop algorithms are combined in an Adam optimizer. The adam algorithm updates the
gradient (mt) and squared gradient (vt) , with the hyper-parameters β1, β2controlling the exponential
decay rates of these moving averages. The moving averages are estimates of the gradient’s first moment
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(the mean) and second raw moment (Soydaner, D.,, 2020). The pseudo code ofthe Adam algorithm is
explained in Algorithm 1. It works efficiently for problems with noisy and sparse gradients. The SDAE
based extended Kalman filter is used to estimate the path of moving obstacle, which is explained in
Algorithm 3.

Algorithm 3: Proposed SDAE based extended Kalman filter for obstacle motion prediction
Begin
Step 1: Input trained SDAE netθ, noisy data Sn.
Step 2: Obtain noise free data Snf .

Snf = netθ(Sn)

Step 3: Calculate the measurement noise covariance R .

R =

∆x2 0 0
0 ∆y2 0
0 0 ∆v2


Step 4: Adjust the Kalman gain K.

K = PkH
T
k (HkPkH

T
k +Rk)

−1

using updated R.
Step 5: Estimate the moving obstacle state

r̂′k = r̂k +K(zk −Hkr̂k)

end

3.2 Path planning in dynamic environments
In real time applications, the environment that a robot has to navigate can be static or dynamic. If the

environment is dynamic then the robot should be able to predict the obstacle motion so as to successfully
avoid a possible collision with the obstacle. The schematic diagram of the proposed method for path
planning in a dynamic environment is shown in Fig. 3. The developed method is divided into two
phases. Initially, the path is planned considering the static obstacles. In the second phase, the obstacle
motion is predicted and the robot path is re-planned so that the collision is avoided.

3.2.1 Initial path generation
Initially, an offline path planning is done assuming that the environment is static. Let the start and

goal position be g0 and gf respectively. In this approach, we are assuming that the current position of
the moving obstacles is known to us. Let the configuration space be Cspace. It consists of a collision
free space Cfs and a space with obstacles Cobs. Randomly choose a set of configurations P and check
collision at each selected n closest neighbor points. Thus the shortest path is calculated initially using
the algorithm proposed in (Chen J., et al., 2019) within a time period t.

3.2.2 Obstacle motion prediction and path re-planning
In this work, Algorithm 3 is used to predict the obstacle motion. The obstacle path is predicted for the

given time horizon t which is the time required to calculate the initial path. Now check if an intersection
of the initially planned robot path and the estimated obstacle path exists or not. If an intersection of the
two paths occurs then the robot path is re-planned. The new path is now the current robot path and the
process of checking obstacle path and robot path is continued and re-planning is done when both paths
intersect until the goal position is reached.
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using Algorithm 2

Re-plan the path
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Fig. 3. Schematic diagram of proposed method for path planning in dynamic environments

4. Results and discussions

In this section the effectiveness of the developed algorithm for predicting the obstacle motion is validated
using various simulations. A comparative assessment of the prediction algorithm is also performed by
comparing with conventional Kalman filter, Particle filter and denoising autoencoder based Kalman filter.
In order to assess the efficacy of the proposed method, various performance metrics such as IAE, ISE
and MAE in the obstacle path prediction are analyzed.

ISE =

∫ t

0
e(t)2dt (20)

The accumulated error is denoted by the integral of absolute error and is obtained by

IAE =

∫ t

0
|e(t)|dt (21)

where e(t) is the difference between the obstacle’s actual and estimated path. The performance of
the algorithm is tested and validated for both static and dynamic obstacles. The performance of the
proposed algorithm is evaluated using MATLAB simulated environments by comparing it with path
planning algorithms (Sedighi S., et al., 2019),(Ge S.S., et al., 2002), and (Xidias, 2021).
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Fig. 4. Performance plot of of neural network

4.1 Neural Network training
The objective of neural network training is to generate SDAEs which gives a noise free data from a

noisy data. MATLAB 2020a is used in this work to implement the SDAE. The pioneer-1 mobile robot
data set is used for training the neural network. This noise free data set consists of sensor readings of
pioneer-1 mobile robot which are the targets or desired outputs of neural network. The input to the neural
network during the training is obtained by adding noises to the pioneer 1 data. We have considered both
colored and white noises. The deep neural network structure used here consists of two hidden layers. The
weights and bias are tuned using both Adam and stochastic gradient descent algorithms. The sigmoid
function is used as the activation function for all the layers. Once the neural network is trained, the
SDAEs will provide a noise free data if a noisy data is given as input to it. The parameters for training
the SDAEs are given in Table 1. The performance plot which is the variation of the training record error
values against the number of training epochs is shown in Fig. 4. At the end of the training phase, mean
squared error reaches a value of order 10−5. The small value of the mean squared error implies that the
desired outputs and the neural networks outputs for the training set have become very close to each other.

Table 1. Parameters for training stacked denoising autoencoder

Parameters Value
Learning rate 0.02

Number of epochs 100
Number of training data sequences in each iteration 100

Learning algorithm Adam

The trained SDAEs are used to find the measurement noise covariance of the extended Kalman filter
for estimating the obstacle path. The proposed algorithm is implemented on i7 core, 32gb laptop. The
performance of the proposed SDAE based extended Kalman filter for estimating the obstacle path is
discussed subsequently.

4.2 Performance of the stacked denoising autoencoder based extended Kalman filter
In this work, the role of the extended Kalman filter is to estimate the obstacle path. The accuracy

of prediction using extended Kalman filter is dependent on the Kalman gain which further depends on
the measurement noise covariance matrix. The SDAEs are trained using Algorithm 1 and are used to
estimate the measurement noise covariance matrix using Algorithm 2 described in section 3. Initially, an
obstacle moving with a constant velocity is considered.

The initial position of the moving obstacle is measured and is given as input to the trained SDAEs.
Then the output of SDAEs gives noise free measured data. Now the measurement noise covariance
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(a) Obstacle path (b) Estimation error (c) Velocity estimation

Fig. 5. Performance of the SDAE based Kalman filter

(a) Obstacle path (b) Estimation error (c) Velocity estimation

Fig. 6. Performance of the conventional Kalman filter and Particle filter

matrix can be found using Equation (15), which is computed as R =

0.012 0 0
0 0.015 0
0 0 0.023


The Kalman gain is calculated by substituting the estimated measurement covariance matrix in Equation
(12). The obstacle path is estimated using Equations (9)-(14) repeatedly. The estimated obstacle path is
shown in Fig. 5a. The actual path of the obstacle is calculated theoretically by using the basic kinetic
formula given by Equation (4) and it is plotted in the same figure. From 5a, it is clear that the estimated
obstacle path using the proposed algorithm follows the actual path of the obstacle. The error in the
estimated path which is computed as

error =
√

(actual path− estimated path)2

is plotted in Fig. 5b. The maximum error in estimation is of the order of 10−3 which is negligible and
converges to zero. The velocity profile of the moving obstacle estimated using the SDAE based extended
Kalman filter is shown in Fig. 5c. The estimated velocity of the moving obstacle remains constant with
time and follows the actual velocity.

To evaluate the performance of proposed method, it is compared with conventional Kalman filter and
Particle filter (Berntorp K., et al., 2016). Fig. 6a shows the actual and estimated paths of an obstacle.
It is obvious from this figure that the estimated path deviates from the actual path for both Kalman and
Particle filters. Fig. 6b shows the error in the estimated path which is more than the error obtained while
using the SDAE based Kalman filter and is not negligible. The estimation error is not negligible for
both Kalman and Particle filters. The velocity of the moving obstacle estimated is given in Fig. 6c. The
estimated velocity does not remain constant and produced oscillations. Comparing Figs. 5 and 6, it can
be illustrated that the SDAE based Kalman filter outperforms the conventional Kalman filter and Particle
filter by predicting the obstacle path and velocity more precisely. Table 2 summarizes a comparison of the
performance of the developed prediction algorithm with that of the traditional Kalman filter, the particle
filter, and the Kalman filter using DAE. As demonstrated in the table, the proposed method clearly
outperforms existing methods [conventional Kalman filter, Particle filter, and Kalman filter using DAE]
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(a) Integral squared error in prediction of X
position

(b) Integral squared error in prediction of Y
position

Fig. 7. Performance of the SDAE based extended Kalman filter (effect of noise)

in terms of ISE, IAE, and MAE. Since, the proposed SDAE based extended Kalman filter can predict an
error free obstacle path, it can be used in applications like welding and drawing robots where a precise
and error free estimated obstacle path is required. Initially, the weights of the SDAEs are randomly
chosen. The encoder performance will not be satisfactory if the measured data consists of large noise.
The weights can be optimized using Genetic algorithm and thereby the performance of the SDAE can
be improved. Gaussian noises of different standard deviation such as 20%, 40% and 60% are added to
the measured data. The measurement noise covariance is computed using the SDAE (i) with randomly
chosen initial weights and (ii) with Genetic algorithm optimized weights. The computed measurement
covariance matrix in both cases is used to predict the obstacle position. The integral squared error in
the estimated x and y position in each case is shown in Fig. 7. The Kalman filter using SDAE with
optimized weights has better performance as compared to the Kalman filter using SDAE with randomly
chosen weights.

Table 2. Comparison of obstacle path prediction algorithms
(linear motion)

Algorithm ISE IAE MAE
Proposed method 0.421 0.212 0.023

Conventional Kalman filter 4.543 2.276 0.562
Particle filter 3.213 1.562 0.287

Kalman filter using DAE 0.496 0.295 0.031

4.2.1 Obstacle with nonlinear path
Let the obstacle be a mobile robot car with state space model given by Equation (8), which moves

along a nonlinear path. To evaluate the robustness of the developed algorithm the colored noise is added
to the raw data. Pink noise, Brownian noise, and Azure noise are generated with inverse frequency power
α = 1, α = 2, and α = −1 respectively. The noisy measured data are given as inputs to the trained
SDAEs which give noise free data as outputs. The measurement noise covariance matrix is determined

using Algorithm 2 and is computed as R =

0.21 0 0
0 0.17 0
0 0 0.25

.

The measurement noise covariance matrix calculated is used for the computation of Kalman gain. The
non linear path of obstacle is predicted using the SDAE based extended Kalman filter. Fig. 8a shows the
estimated obstacle path using conventional extended Kalman filter and SDAE based extended Kalman
filter. It is observed from this figure that the SDAE based extended Kalman filter is capable of estimating
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(a) Obstacle path estimated (b) Error in estimated obstacle path

(c) Obstacle path estimated (circular path)
(d) Error in estimated obstacle path (circular
path)

Fig. 8. Comparison of the SDAE based Kalman filter and conventional Kalman filter (nonlinear motion)

the nonlinear path more accurately as compared to the conventional extended Kalman filter. This obser-
vation is clearer from Fig. 8b which shows the estimated errors for the both methods. The estimated error
is negligible for the proposed method. In Fig. 8c, the circular path predicted using both the traditional
Kalman filter and the SDAE based Kalman filter is illustrated. The suggested technique has a higher
estimation accuracy, as shown in Fig. 8d. Even though the error converges to zero in both cases, the
conventional Kalman filter’s maximum estimation error is substantial.
Neural network model with single layer fails to understand the training data set properly and produce
results with error. More layers are added to extract more features from the data set. Thus, to produce
an accurate output denoising autoencoder with stacked hidden layers are used. When SDAE and DAE
are employed for determining the measurement noise covariance matrix R of the Kalman filter, the es-
timated nonlinear path and accompanying errors are shown in Figs. 9a and 9b, respectively. These
figures demonstrate that the SDAE-based method produces the least amount of inaccuracy. To further
understand the effectiveness of the proposed SDAE method, the integral squared error for both methods
with Gaussian and the three colored noises are shown in Fig. 9c. In the presence of colored noise SDAE
has better performance as compared to shallow neural network denoising autoencoder. The choosing of
learning rate is one of the challenge in the stochastic gradient descent algorithm. Large learning rate
results in the dwindling at minimum and small learning rate causes slow convergence. To increase the
robustness of the stochastic gradient algorithm, Adam optimizer is used. The obstacle path is estimated
using Kalman filter whose measurement noise covariance matrix are determined using SDAEs trained
using both (i)Adam and (ii) stochastic gradient descent algorithms. During training both Gaussian noise
and colored noise are considered. The performance of the proposed method with Adam and stochastic
gradient descent learning algorithm is also analyzed which is shown in Fig. 10. A comparison of the
performance of proposed method with existing algorithms in predicting the non linear motion of the ob-
stacle is given in Table 3. The Adam optimizer has a better performance as compared to the stochastic
gradient descent algorithm for both the colored and the Gaussian noises.
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(a) Obstacle path (b) Estimation error

(c) Performance comparison

Fig. 9. Comparison of stacked denoising autoencoder and denoising autoencoder

4.3 Performance of the proposed prediction algorithm in simulated environments
The performance of the proposed motion prediction algorithm is quantitatively tested in MATLAB

simulated environments. In the simulation scenario 1, a dynamic environment with three moving obsta-
cles shown in Fig. 11 is considered. Let the start position of the robot be (0,0) and the goal position be
(12,10). Initially, the path is planned offline considering that the obstacles are static. The moving obsta-
cles are detected using ultrasonic sensor. Once the dynamic obstacles are detected, the obstacle path has
to be estimated to ensure collision free navigation. The obstacle path is predicted using the Kalman filter
where the Kalman gain is calculated using Equation (12) for which the measurement noise covariance
matrix is to be determined. The measurement noise covariance matrix is computed using Equation (15)

and is obtained as R =

0.3 0 0
0 0.25 0
0 0 0.4

.

The estimated obstacle path is compared with the robot path planned initially. From Fig. 11, it is clear
that the initially planned path collides with the obstacle path so the path is to be re-planned. Thus, an
optimal and collision free path is obtained. The uncertainty in prediction of the obstacle path using both
the Kalman filter and the SDAE based Kalman filter is depicted in Fig. 12. The uncertainty in obsta-
cle path prediction is large for the conventional Kalman filter which will affect the robot navigation in
applications that require precise path.

4.3.1 Comparison of the performance of the proposed algorithm
To evaluate the efficacy of the proposed path planning algorithm using SDAE based extended Kalman

filter, the proposed method is compared with that of (i) hybrid A star (ii) artificial potential field (iii)
dynamic path planning using decision algorithm. The path length, computation time, and the ability to
obtain collision free path in closely spaced obstacles are considered here for evaluation. The computation

Najva Hassan, Abdul Saleem

232



Fig. 10. Comparison of Adam and SGDM

Table 3. Comparison of obstacle path prediction algorithms
(non-linear motion)

Algorithm ISE IAE MAE
Proposed method (Adam optimizer) 0.534 0.158 0.021

Proposed method (Stochastic method) 0.942 0.382 0.043
Conventional Kalman filter 3.573 1.416 0.328
Kalman filter using DAE 1.32 0.4382 0.064

time is obtained using MATLAB 2020a. A MATLAB simulation environment is considered with both
static and dynamic obstacles (scenario 2). The initial position of the robot is (8,0) and the goal position is
(10,10). The proposed path planning algorithm estimates the obstacle path using SDAEs based extended
Kalman filter whereas in the hybrid A star method, the obstacle motion is assumed to follow a constant
velocity. The robot path planned using the proposed algorithm is shown in Fig. 13a. The initial planned
path collides with the obstacle path and is re-planned. The path obtained using hybrid A star algorithm
is given in Fig. 13b. The hybrid A star algorithm calculate the cost function at each node and finds
the optimal path. Comparing Figs. 13a and 13b, it can be elucidated that the proposed path planning
algorithm is able to find the shortest and optimal path from the initial position to final position and thus,
the proposed algorithm outperforms the hybrid A star path planning algorithm. The path achieved by
the potential field algorithm in the dynamic environment is shown in Fig. 13c. The dynamic obstacle
is having a random motion and is shown in Fig. 13c. The potential field algorithm fails to achieve a
collision free path when the obstacles are closely packed. The proposed algorithm finds the shortest
and collision free path from the start position to the goal position when compared to hybrid A star and

Fig. 11. Path planning (scenario 1)
Fig. 12. Uncertainty in prediction
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(a) Proposed algorithm (b) Hybrid A star (c) Artificial potential field

Fig. 13. Comparison of performance of proposed algorithm (scenario 2)

(a) Path planning using proposed algorithm (b) Path planning using decision algorithm

Fig. 14. Comparison of performance of proposed algorithm (scenario 3)

artificial potential filed algorithms.
The suggested algorithm is compared to the decision algorithm (Xidias, 2021), which takes both dynamic
and static impediments into account. When the obstacle enters the threshold domain, the robot’s velocity
is reduced, and the robot must wait until the obstacle departs the threshold region, according to the
decision algorithm. When the distance between the obstacle and robot exceeds the threshold value, the
robot’s velocity is boosted, allowing it to approach the goal. The path planning in scenario 3 using the
decision algorithm is depicted in Fig. 14b. The robot must wait till the obstruction has passed, resulting
in a longer computation time. The presented algorithm, as shown in Fig. 14a, re-plans the robot path
when there is a collision between the obstacle and the robot path. The computation time in each of the
algorithms is computed using MATLAB 2020a. The computation time is minimum for the proposed
algorithm while compared to decision algorithm. In Table 4, a comparison of the suggested algorithm
with the existing path planning algorithms is given. Analyzing the simulation results, it can be concluded
that the SDAE based extended Kalman filter with Adam optimizer predict the obstacle path precisely. The
proposed algorithm produced negligible error in the presence of both colored (brown, pink, and azure)
and white noise. Also, the prediction uncertainty is less for the proposed algorithm which is a key factor
in robot navigation. By accurately predicting the obstacle motion, the robot is able to achieve a collision
free navigation in the dynamic environment. The developed algorithm outperforms the conventional
Kalman filter and the denoising based extended Kalman filter. In comparison to the (Sedighi S., et al.,
2019), (Ge S.S., et al., 2002), and (Xidias, 2021), path planning employing the developed methodology
is faster and more robust in narrow passages.
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Table 4. Comparison of path planning algorithms
(dynamic environment)

Algorithm Computation time
(s)

Robustness in narrow
passages

Proposed method (scenario 3) 104.643 yes
Decision algorithm (scenario 3) 247.867 yes
Proposed method (scenario 2) 64.342 yes
Hybrid A star (scenario 2) 78.249 yes
Artificial potential field (scenario 2) 68.214 no

5. Conclusion

A SDAE-based extended Kalman filter is proposed in this paper for predicting obstacle motion in dy-
namic scenarios. The SDAE is a deep neural network whose input is a noisy sensor data and output is the
noise free data. The noisy and noise free data is used to get the measurement noise covariance matrix of
the extended Kalman filter which is used to determine the path of a moving obstacle. To train the neural
network, a set of noise free data are collected which are considered as the targets for the training purpose.
The input of the SDAE during training is obtained by adding noises to the target data. Once the SDAE
is trained then it can give the optimum measurement covariance matrix. The SDAE is capable of effec-
tively denoising the measured data in the presence of both Gaussian noise and colored noise. MATLAB
simulations are carried to predict the path of moving obstacle with conventional extended Kalman filter,
Particle filter and by using the proposed SDAE based extended Kalman filter. The results illustrated that
the extended Kalman filter using the SDAE gives a much accurate path for both linear and nonlinear ob-
stacle paths. The simulation study also illustrated that the ISE, IAE, and MAE in the estimated obstacle
path is very less with the SDAE based extended Kalman filter whose learning algorithm is Adam. But the
training time is more for an Adam optimizer while compared to stochastic descent algorithm. Different
scenarios are considered in MATLAB simulations to test the effectiveness of the proposed method for
determining the optimal path in a dynamic environment with multiple impediments. Using MATLAB
simulated testing environments, the performance of the proposed method in path planning is compared
against hybrid A star, artificial potential field, and decision algorithms. The suggested methodology
achieves an optimal collision-free path with minimal computing time in various testing scenarios.
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